CN114310159B - Method for regulating and controlling rolling texture of in-situ autogenous particle reinforced aluminum matrix composite material - Google Patents
Method for regulating and controlling rolling texture of in-situ autogenous particle reinforced aluminum matrix composite material Download PDFInfo
- Publication number
- CN114310159B CN114310159B CN202111476773.3A CN202111476773A CN114310159B CN 114310159 B CN114310159 B CN 114310159B CN 202111476773 A CN202111476773 A CN 202111476773A CN 114310159 B CN114310159 B CN 114310159B
- Authority
- CN
- China
- Prior art keywords
- composite material
- particle
- rolling
- reinforced aluminum
- situ
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 54
- 239000002245 particle Substances 0.000 title claims abstract description 48
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 44
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 34
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 27
- 239000011159 matrix material Substances 0.000 title claims abstract description 22
- 238000005096 rolling process Methods 0.000 title claims abstract description 21
- 230000001105 regulatory effect Effects 0.000 title claims abstract description 12
- 230000001276 controlling effect Effects 0.000 title claims abstract 6
- 238000003756 stirring Methods 0.000 claims abstract description 30
- 238000005097 cold rolling Methods 0.000 claims abstract description 20
- 239000000463 material Substances 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 11
- 238000000265 homogenisation Methods 0.000 claims description 8
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 claims description 5
- 229910033181 TiB2 Inorganic materials 0.000 claims description 5
- 239000006185 dispersion Substances 0.000 abstract description 5
- 238000009826 distribution Methods 0.000 abstract description 4
- 238000011084 recovery Methods 0.000 abstract description 2
- 239000000956 alloy Substances 0.000 description 21
- 229910045601 alloy Inorganic materials 0.000 description 20
- 229910000838 Al alloy Inorganic materials 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 238000005266 casting Methods 0.000 description 3
- 229910001369 Brass Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 229910018580 Al—Zr Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
技术领域technical field
本发明属于材料技术领域,尤其是涉及一种调控原位自生颗粒增强铝基复合材料轧制织构的方法。The invention belongs to the field of material technology, and in particular relates to a method for regulating the rolling texture of in-situ self-generated particles reinforced aluminum-based composite materials.
背景技术Background technique
铝合金因其密度低、塑性好、易加工、抗腐蚀性能好等优点而成为工业中应用广泛的金属结构材料。然而,在铝合金的制备和加工过程中,不可避免地会形成织构。多晶体材料的织构是的材料呈现宏观各项异性,同时对材料的弹性模量、强度、塑性、泊松比、电导率和热膨胀系数等都有很大的影响。合理地利用铝合金的织构,可以实现材料性能的优化。如,铝合金的{111}面织构可以明显降低其冲压制耳效应,提高铝合金的深冲压能力;提高高压电容阳极铝箔中立方织构的含量可以有效提升其电容量。Aluminum alloy has become a metal structure material widely used in industry because of its low density, good plasticity, easy processing, and good corrosion resistance. However, texture is inevitably formed during the preparation and processing of aluminum alloys. The texture of polycrystalline materials is that the material presents macroscopic anisotropy, and at the same time has a great influence on the elastic modulus, strength, plasticity, Poisson's ratio, electrical conductivity and thermal expansion coefficient of the material. Reasonable use of the texture of aluminum alloys can optimize material properties. For example, the {111} surface texture of aluminum alloy can significantly reduce its stamping ear effect and improve the deep drawing ability of aluminum alloy; increasing the content of cubic texture in high-voltage capacitor anode aluminum foil can effectively increase its capacitance.
铝合金材料在铸造、变形和再结晶等过程中,都会形成相应的织构。铸态铝合金表面主要为旋转的立方织构{001}<110>,轧制变形后的铝合金内会形成明显的轧制织构,包括高斯织构Goss{011}<100>,黄铜织构Brass{011}<211>,铜织构Copper{112}<111>和S织构{123}<634>等。铝合金在轧制过程中,由于变形的不均匀性以及剪切变形的分布不均,会引起织构的不均匀分布,从而导致材料宏观性能的不稳定。因此,急需一种调控铝基材料的轧制变形织构,从而优化其物理性能的方法。Aluminum alloy materials will form corresponding textures in the process of casting, deformation and recrystallization. The surface of the as-cast aluminum alloy is mainly a rotating cubic texture {001}<110>, and an obvious rolling texture will be formed in the aluminum alloy after rolling deformation, including Goss{011}<100>, brass Texture Brass{011}<211>, copper texture Copper{112}<111> and S texture {123}<634>, etc. During the rolling process of aluminum alloy, due to the inhomogeneity of deformation and the uneven distribution of shear deformation, the uneven distribution of texture will be caused, which will lead to the instability of the macroscopic properties of the material. Therefore, there is an urgent need for a method to adjust the rolling deformation texture of aluminum-based materials to optimize their physical properties.
发明内容Contents of the invention
本发明的目的就是为了合理利用铝基材料的织构而提供的一种调控原位自生颗粒增强铝基复合材料轧制织构的方法,通过原位熔体自生控制的方法,制备含有不同颗粒体积分数的原位自生颗粒增强铝基复合材料,通过冷轧和搅拌摩擦加工使复合材料内的颗粒均匀分布,利用不同颗粒间距对轧制过程中位错的交滑移和动态回复的影响,实现对铝基复合材料轧制织构的调控。The purpose of the present invention is to provide a method for regulating the rolling texture of in-situ self-generated particle-reinforced aluminum-based composite materials in order to rationally utilize the texture of aluminum-based materials. The volume fraction of in-situ self-generated particles reinforced aluminum matrix composites, the particles in the composite materials are uniformly distributed by cold rolling and friction stir processing, and the influence of different particle spacing on the cross-slip and dynamic recovery of dislocations during rolling is used, Realize the control of rolling texture of aluminum matrix composites.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
本发明提供了一种调控原位自生颗粒增强铝基复合材料轧制织构的方法,其包括以下步骤:The invention provides a method for regulating the rolling texture of in-situ self-generated particles reinforced aluminum-based composite materials, which comprises the following steps:
(1)采用原位熔体自生控制的方法,制备含有不同颗粒体积分数的原位自生颗粒增强铝基复合材料;(1) Using the method of in-situ melt self-generation control, preparing in-situ self-generated particle-reinforced aluminum matrix composites with different particle volume fractions;
(2)将制备得到的含不同颗粒体积分数的原位自生颗粒增强铝基复合材料进行冷轧处理;(2) Cold-rolling the prepared in-situ self-generated particle-reinforced aluminum matrix composites containing different particle volume fractions;
(3)将冷轧后的原位自生颗粒增强铝基复合材料进行搅拌摩擦加工;(3) The in-situ self-generated particle reinforced aluminum matrix composite material after cold rolling is subjected to friction stir processing;
(4)对搅拌摩擦加工后的原位自生颗粒铝基复合材料进行均匀化热处理;(4) Homogenizing the in-situ self-generated particle aluminum-based composite material after friction stir processing;
(5)对均匀化热处理后的原位自生颗粒铝基复合材料进行不同道次的冷轧,即可完成工艺。(5) The in-situ self-generated granular aluminum-based composite material after homogenization heat treatment is cold-rolled in different passes to complete the process.
步骤1所述的颗粒增强铝基复合材料为含有1~10wt%TiB2增强铝基复合材料,采用原位熔体自生控制的方法,制备的原位自生颗粒增强铝基复合材料含有不同的颗粒体积分数在1~10%之间。The particle-reinforced aluminum-matrix composite material described in step 1 is a reinforced aluminum-matrix composite material containing 1 to 10 wt% TiB 2 , and the in-situ self-generated particle-reinforced aluminum-matrix composite material is prepared by adopting the method of in-situ melt autogenous control, which contains different particles The volume fraction is between 1 and 10%.
步骤(2)中冷轧变形量控制在40~80%之间。In step (2), the cold rolling deformation is controlled between 40% and 80%.
步骤(3)中搅拌摩擦加工所述的搅拌头以20~400mm/min走速从复合材料的一端开始向另一端前进,达到终点后使搅拌头以同样的速度沿相同路径回到起点;搅拌摩擦加工所述的搅拌头的转速为300~900rmp。The stirring head described in the friction stir processing in step (3) advances from one end of the composite material to the other end at a speed of 20 to 400 mm/min, and after reaching the end point, the stirring head returns to the starting point along the same path at the same speed; stirring The rotational speed of the stirring head described in the friction processing is 300-900 rpm.
步骤(4)中均匀化热处理时温度控制在400~550℃,热处理时间为24~48h。During the homogenization heat treatment in step (4), the temperature is controlled at 400-550° C., and the heat treatment time is 24-48 hours.
步骤(5)中冷轧的次数大于等于8次,每次轧制变形量小于等于10%,材料总变形量大于等于80%。The number of times of cold rolling in step (5) is greater than or equal to 8 times, the deformation amount of each rolling is less than or equal to 10%, and the total deformation amount of the material is greater than or equal to 80%.
本发明的有益效果在于:The beneficial effects of the present invention are:
与现有技术相比,本发明采用两道冷轧工艺与搅拌摩擦工艺来实现纳米颗粒增强相在铝基复合材料中的弥散分布。传统的二次加工方式难以使颗粒分散均匀,尤其是对于纳米级的增强相颗粒。基于搅拌摩擦的处理方法使材料发生强塑性变形,同时产生剧烈的流动,增强相颗粒随之分布均匀。冷轧工艺也有利于促进复合材料内颗粒的均匀分散,制备出较小的铝基体变形晶粒;使强度和塑性同时得到提高。本发明方法工艺操作简单易行,低成本高效率,可以实现大规模生产。Compared with the prior art, the present invention adopts two cold-rolling processes and a friction-stirring process to realize the dispersion distribution of the nano particle reinforcement phase in the aluminum-based composite material. The traditional secondary processing method is difficult to disperse the particles uniformly, especially for the nanoscale reinforcement phase particles. The treatment method based on friction stir causes strong plastic deformation of the material, and at the same time produces a violent flow, and the reinforcing phase particles are evenly distributed. The cold rolling process is also conducive to promoting the uniform dispersion of particles in the composite material and preparing smaller deformed grains of the aluminum matrix; thus improving the strength and plasticity at the same time. The method of the invention is simple and easy to operate, has low cost and high efficiency, and can realize large-scale production.
具体实施方式Detailed ways
下面结合具体实施例对本发明进行详细说明。The present invention will be described in detail below in conjunction with specific embodiments.
实施例1Example 1
一种调控原位自生颗粒增强铝基复合材料轧制织构的方法,通过原位自生熔体控制的方法,制备出铸态的TiB2颗粒增强Al-6Zn-2Mg-1.8Cu合金复合材料,将制备得到的含不同颗粒体积分数的原位自生颗粒增强铝基复合材料进行冷轧处理,实现原位自生TiB2颗粒增强Al-6Zn-2Mg-1.8Cu合金复合材料内TiB2颗粒的均匀分散;将冷轧后的原位自生TiB2颗粒增强Al-6Zn-2Mg-1.8Cu合金复合材料进行搅拌摩擦加工,得到均匀弥散分布的微纳米TiB2颗粒和细小等轴的基体晶粒组织,再结合Al-6Zn-2Mg-1.8Cu合金的均匀化热处理与多道次冷轧处理,制备出同时具有高强高塑性的TiB2颗粒增强Al-6Zn-2Mg-1.8Cu合金复合材料。A method for regulating the rolling texture of in-situ self-generated particle-reinforced aluminum-matrix composite materials, through the method of in-situ self-generated melt control, prepared as-cast TiB 2 particle-reinforced Al-6Zn-2Mg-1.8Cu alloy composite material, The prepared in situ self-generated particle reinforced aluminum matrix composites containing different particle volume fractions were cold-rolled to realize the uniform dispersion of TiB 2 particles in the in situ self-generated TiB 2 particle reinforced Al-6Zn-2Mg-1.8Cu alloy composite ; The cold-rolled in-situ self-generated TiB2 particle reinforced Al-6Zn-2Mg-1.8Cu alloy composite material is subjected to friction stir processing to obtain uniformly dispersed micro-nano TiB2 particles and fine equiaxed matrix grain structure, and then combined Al-6Zn-2Mg-1.8Cu alloy homogenized heat treatment and multi-pass cold rolling treatment, prepared TiB 2 particle reinforced Al-6Zn-2Mg-1.8Cu alloy composite material with high strength and high plasticity.
具体采用以下步骤:Specifically take the following steps:
(1)将工业纯铝加热,用JZF-03型高温覆盖剂覆盖后升温至650℃;(1) Heat industrial pure aluminum, cover it with JZF-03 high-temperature covering agent and raise the temperature to 650°C;
(2)将KBF4、K2TiF6按质量比为1:0.5均匀混合,烘干后加入步骤(1)得到的熔体中,机械搅拌;(2) Mix KBF 4 and K 2 TiF 6 uniformly according to the mass ratio of 1:0.5, add to the melt obtained in step (1) after drying, and stir mechanically;
(3)反应结束后,取出反应副产物,依次加入Al-50Cu中间合金以及工业纯Mg和工业纯Zn,在熔体中加入JZJ型无害铝合金精炼剂进行除气精炼,控制温度为650℃,静置20min,然后在650℃浇入铸模形成铸坯;(3) After the reaction is over, take out the reaction by-products, add Al-50Cu master alloy, industrial pure Mg and industrial pure Zn in turn, add JZJ type harmless aluminum alloy refining agent to the melt for degassing and refining, and control the temperature to 650 ℃, let it stand for 20min, and then pour it into a mold at 650℃ to form a slab;
(4)将铸造得到的原位自生TiB2颗粒增强Al-6Zn-2Mg-1.8Cu合金复合材料进行合金元素进行冷轧处理,变形量为50%;(4) Carry out cold rolling treatment of alloying elements to the in-situ self-generated TiB particle reinforced Al- 6Zn -2Mg-1.8Cu alloy composite material obtained by casting, and the deformation amount is 50%;
(5)将冷轧后的原位自生TiB2颗粒增强Al-6Zn-2Mg-1.8Cu合金复合材料进行搅拌摩擦加工,搅拌头以600rmp的转速插入,以80mm/min的走速从待加工板材左侧开始沿着板材纵向方向前进,达到终点后使搅拌头保持走速不变反向移动,回到起点后将搅拌头向右侧平移5mm,再沿纵向方向往返前进,周而复始,直至整块板加工完成。(5) The cold-rolled in-situ self-generated TiB 2 particle reinforced Al-6Zn-2Mg-1.8Cu alloy composite material is subjected to friction stir processing. Start to advance along the longitudinal direction of the plate on the left side. After reaching the end point, keep the stirring head at a constant speed and move in reverse. After returning to the starting point, move the stirring head to the right side by 5mm, and then move back and forth along the longitudinal direction, and repeat until the whole piece Board processing is complete.
(6)对搅拌摩擦加工后的原位自生TiB2颗粒增强Al-6Zn-2Mg-1.8Cu合金复合材料进行均匀化热处理,控制温度为500℃时间为24h;(6) Homogenize the in-situ self-generated TiB 2 particle reinforced Al-6Zn-2Mg-1.8Cu alloy composite material after friction stir processing, and control the temperature at 500 ° C for 24 hours;
(7)最后将均匀化热处理后的原位自生TiB2颗粒增强Al-6Zn-2Mg-1.8Cu合金复合材料进行8次多道次冷轧变形,每次轧制变形量10%,材料总变形量为80%。(7) Finally, the in-situ self-generated TiB 2 particle reinforced Al-6Zn-2Mg-1.8Cu alloy composite material after homogenization heat treatment was subjected to 8 times of multi-pass cold rolling deformation, and the deformation amount of each rolling was 10%, and the total deformation of the material The amount is 80%.
实施例2Example 2
一种调控原位自生颗粒增强铝基复合材料轧制织构的方法,通过原位自生熔体控制的方法,制备出铸态的TiB2颗粒增强Al-6Mg-0.2Sc-0.1Zr合金复合材料,将制备得到的含不同颗粒体积分数的原位自生颗粒增强铝基复合材料进行冷轧处理,实现原位自生TiB2颗粒增强Al-6Mg-0.2Sc-0.1Zr合金复合材料内TiB2颗粒的均匀分散;将冷轧后的原位自生TiB2颗粒增强Al-6Mg-0.2Sc-0.1Zr合金复合材料进行搅拌摩擦加工,得到均匀弥散分布的微纳米TiB2颗粒和细小等轴的基体晶粒组织,再结合Al-6Mg-0.2Sc-0.1Zr合金的均匀化热处理与多道次冷轧处理,制备出同时具有高强高塑性的TiB2颗粒增强Al-6Mg-0.2Sc-0.1Zr合金复合材料。A method for adjusting the rolling texture of in-situ self-generated particle-reinforced aluminum-matrix composite materials, through the method of in-situ self-generated melt control, to prepare as-cast TiB 2 particle-reinforced Al-6Mg-0.2Sc-0.1Zr alloy composite material , the prepared in-situ self-generated particle-reinforced aluminum matrix composites containing different particle volume fractions were cold-rolled to realize the in-situ self-generated TiB 2 particle-reinforced TiB 2 particles in the Al-6Mg-0.2Sc-0.1Zr alloy composite Uniform dispersion; the cold-rolled in-situ self-generated TiB2 particle reinforced Al-6Mg-0.2Sc-0.1Zr alloy composite material is subjected to friction stir processing to obtain uniformly dispersed micro-nano TiB2 particles and fine equiaxed matrix grain structure , combined with the homogenization heat treatment and multi-pass cold rolling treatment of Al-6Mg-0.2Sc-0.1Zr alloy, the TiB 2 particle reinforced Al-6Mg-0.2Sc-0.1Zr alloy composite material with high strength and high plasticity was prepared.
具体采用以下步骤:Specifically take the following steps:
(1)将工业纯铝加热,用JZF-03型高温覆盖剂覆盖后升温至650℃;(1) Heat industrial pure aluminum, cover it with JZF-03 high-temperature covering agent and raise the temperature to 650°C;
(2)将KBF4、K2TiF6按质量比为1:0.5均匀混合,烘干后加入步骤(1)得到的熔体中,机械搅拌;(2) Mix KBF 4 and K 2 TiF 6 uniformly according to the mass ratio of 1:0.5, add to the melt obtained in step (1) after drying, and stir mechanically;
(3)反应结束后,取出反应副产物,依次加入Al-Sc,Al-Zr中间合金以及工业纯Mg,在熔体中加入JZJ型无害铝合金精炼剂进行除气精炼,控制温度为650℃,静置20min,然后在650℃浇入铸模形成铸坯;(3) After the reaction is over, take out the reaction by-products, add Al-Sc, Al-Zr intermediate alloy and industrial pure Mg in turn, add JZJ type harmless aluminum alloy refining agent to the melt for degassing and refining, and control the temperature to 650 ℃, let it stand for 20min, and then pour it into a mold at 650℃ to form a slab;
(4)将铸造得到的原位自生TiB2颗粒增强Al-6Mg-0.2Sc-0.1Zr合金复合材料进行合金元素进行冷轧处理,变形量为40%;(4) Carry out cold rolling treatment of alloying elements to the in-situ self-generated TiB particle reinforced Al-6Mg-0.2Sc-0.1Zr alloy composite material obtained by casting, and the deformation amount is 40%;
(5)将冷轧后的原位自生TiB2颗粒增强Al-6Mg-0.2Sc-0.1Zr合金复合材料进行搅拌摩擦加工,搅拌头以300rmp的转速插入,以240mm/min的走速从待加工板材左侧开始沿着板材纵向方向前进,达到终点后使搅拌头保持走速不变反向移动,回到起点后将搅拌头向右侧平移5mm,再沿纵向方向往返前进,周而复始,直至整块板加工完成。(5) The cold-rolled in-situ self-generated TiB 2 particle reinforced Al-6Mg-0.2Sc-0.1Zr alloy composite material is subjected to friction stir processing, the stirring head is inserted at a speed of 300rmp, and the speed is 240mm/min The left side of the plate starts to advance along the longitudinal direction of the plate. After reaching the end point, the stirring head keeps moving at the same speed and moves in the opposite direction. The board is finished.
(6)对搅拌摩擦加工后的原位自生TiB2颗粒增强Al-6Mg-0.2Sc-0.1Zr合金复合材料进行均匀化热处理,控制温度为450℃时间为48h;(6) Perform homogenization heat treatment on the in-situ self-generated TiB 2 particle reinforced Al-6Mg-0.2Sc-0.1Zr alloy composite material after friction stir processing, and control the temperature at 450°C for 48h;
(7)最后将均匀化热处理后的原位自生TiB2颗粒增强Al-6Mg-0.2Sc-0.1Zr合金复合材料进行10次多道次冷轧变形,每次轧制变形量10%,材料总变形量为100%。(7) Finally, the in-situ self-generated TiB 2 particle reinforced Al-6Mg-0.2Sc-0.1Zr alloy composite material after homogenization heat treatment was subjected to 10 times of multi-pass cold rolling deformation, and the deformation amount of each rolling was 10%, and the total material The amount of deformation is 100%.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111476773.3A CN114310159B (en) | 2021-12-02 | 2021-12-02 | Method for regulating and controlling rolling texture of in-situ autogenous particle reinforced aluminum matrix composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111476773.3A CN114310159B (en) | 2021-12-02 | 2021-12-02 | Method for regulating and controlling rolling texture of in-situ autogenous particle reinforced aluminum matrix composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114310159A CN114310159A (en) | 2022-04-12 |
CN114310159B true CN114310159B (en) | 2023-06-16 |
Family
ID=81048588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111476773.3A Active CN114310159B (en) | 2021-12-02 | 2021-12-02 | Method for regulating and controlling rolling texture of in-situ autogenous particle reinforced aluminum matrix composite material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114310159B (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4789253B2 (en) * | 2006-04-24 | 2011-10-12 | 住友軽金属工業株式会社 | Aluminum alloy bonding material excellent in formability and manufacturing method thereof |
CN106399954A (en) * | 2016-08-30 | 2017-02-15 | 有研亿金新材料有限公司 | Processing method of long-service-life copper manganese alloy target material |
CN106367628B (en) * | 2016-08-31 | 2018-06-26 | 上海交通大学 | A kind of method for preparing High-strength high-plasticity aluminum matrix composite |
CN106435261B (en) * | 2016-11-28 | 2018-01-12 | 河北宏靶科技有限公司 | A kind of long-life copper manganese-base alloy target and its processing method for having ultrafine-grained (UFG) microstructure |
CN111663089A (en) * | 2020-05-15 | 2020-09-15 | 江苏理工学院 | Treatment method for improving surface strength of Al-Mg alloy |
CN113427116B (en) * | 2021-06-25 | 2022-05-24 | 中南大学 | A method for improving the strength of friction stir welded joints of aluminum-magnesium alloy sheets |
-
2021
- 2021-12-02 CN CN202111476773.3A patent/CN114310159B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN114310159A (en) | 2022-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11505850B2 (en) | 7000-series aluminum alloy wire for additive manufacturing and preparation method thereof | |
Tao et al. | Effects of hot rolling deformation on the microstructure and tensile properties of an in situ-generated ZrB2 nanoparticle-reinforced AA6111 composite | |
CN104018040B (en) | A kind of automobile high formability aluminum alloy materials | |
Tao et al. | Microstructures and properties of in situ ZrB2/AA6111 composites synthesized under a coupled magnetic and ultrasonic field | |
CN103589916B (en) | Rapid solidification Al-Ti-B-Sc intermediate alloy refiner and preparation method thereof | |
CN107739865A (en) | A kind of high intensity, high-modulus in-situ Al-base composition and preparation method thereof | |
CN109628812B (en) | Low-alloy high-performance superplastic magnesium alloy and preparation method thereof | |
CN105087990B (en) | A Composite Treatment Method for Modified Mg2Si/Fe-rich Aluminum Matrix Composite Structure | |
CN103882271A (en) | Al-Mg-Si-Cu alloy material with high strength and high elongation and preparation method thereof | |
Chen et al. | Evolution of grain structure, micro-texture and second phase during porthole die extrusion of Al–Zn–Mg alloy | |
CN108796404B (en) | An extrusion process of in-situ nanoparticle-reinforced aluminum matrix composites for vehicle body | |
CN113718125B (en) | Graphene reinforced aluminum-based composite material with high conductivity and preparation method thereof | |
CN107460382A (en) | The superpower Alcoa rolled plate of isotropism and preparation method | |
Cao et al. | Effect of different rare earths on microstructures and tensile strength of in situ hybrid reinforced (TiB2p+ TiBw)/Cu composites | |
CN103643190B (en) | A kind of method improving plastic deformation capacity of aluminum matrix composite | |
CN102011072B (en) | Aging treatment process for novel Al-Mg-Si-Er aluminum alloy plate material | |
Chen et al. | Hot deformation behaviors of titanium particles reinforced AZ91 composite | |
Chen et al. | Achieving high strength in graphene nanoplatelets reinforced Mg-Zn-Mn matrix composites via liquid-state molding technology and low temperature deformation process | |
CN103643192B (en) | An Electromagnetic Coupling Method for Improving Plastic Deformation Ability of Aluminum Matrix Composite | |
CN107675053A (en) | A kind of preparation method of high strength magnesium lithium alloy and its deep cooling intensive treatment | |
CN101914704B (en) | Cr-containing creep-resisting extruded zinc alloy and preparation method thereof | |
CN114310159B (en) | Method for regulating and controlling rolling texture of in-situ autogenous particle reinforced aluminum matrix composite material | |
CN104152824B (en) | A kind of high-performance 5050 aluminium alloy extrusions production technologies | |
CN111455243A (en) | A kind of Mg-Ca-Mn-Al-Zn wrought magnesium alloy with high Mn content and preparation method thereof | |
CN108504883A (en) | A kind of preparation method of the Mg-LRE-HRE-Zn systems deforming alloy with weak texture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |