CN114308084A - Preparation method of titanium dioxide/lead-free halogen perovskite composite photocatalytic material - Google Patents
Preparation method of titanium dioxide/lead-free halogen perovskite composite photocatalytic material Download PDFInfo
- Publication number
- CN114308084A CN114308084A CN202210023490.1A CN202210023490A CN114308084A CN 114308084 A CN114308084 A CN 114308084A CN 202210023490 A CN202210023490 A CN 202210023490A CN 114308084 A CN114308084 A CN 114308084A
- Authority
- CN
- China
- Prior art keywords
- titanium dioxide
- lead
- free halogen
- photocatalytic material
- composite photocatalytic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 164
- 239000004408 titanium dioxide Substances 0.000 title claims abstract description 70
- 229910052736 halogen Inorganic materials 0.000 title claims abstract description 49
- 150000002367 halogens Chemical class 0.000 title claims abstract description 49
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 39
- 239000002131 composite material Substances 0.000 title claims abstract description 37
- 239000000463 material Substances 0.000 title claims abstract description 32
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 239000000243 solution Substances 0.000 claims abstract description 33
- 239000002904 solvent Substances 0.000 claims abstract description 15
- 239000003446 ligand Substances 0.000 claims abstract description 5
- 238000001953 recrystallisation Methods 0.000 claims abstract description 5
- 150000004820 halides Chemical class 0.000 claims abstract description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 20
- LYQFWZFBNBDLEO-UHFFFAOYSA-M caesium bromide Chemical compound [Br-].[Cs+] LYQFWZFBNBDLEO-UHFFFAOYSA-M 0.000 claims description 20
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 10
- 239000002243 precursor Substances 0.000 claims description 10
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 5
- 238000009775 high-speed stirring Methods 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- 239000002244 precipitate Substances 0.000 claims description 5
- 238000005303 weighing Methods 0.000 claims description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 2
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- 238000003980 solgel method Methods 0.000 claims description 2
- 238000000527 sonication Methods 0.000 claims description 2
- 230000003197 catalytic effect Effects 0.000 abstract description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 2
- 239000001257 hydrogen Substances 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 239000011259 mixed solution Substances 0.000 abstract description 2
- 239000011941 photocatalyst Substances 0.000 abstract description 2
- 230000009467 reduction Effects 0.000 abstract description 2
- 230000004298 light response Effects 0.000 abstract 1
- 238000003911 water pollution Methods 0.000 abstract 1
- 239000011148 porous material Substances 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009210 therapy by ultrasound Methods 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- 229940043267 rhodamine b Drugs 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
Abstract
本发明公开了一种二氧化钛/无铅卤系钙钛矿复合光催化材料的制备方法。首先,利用配体辅助重结晶法制备无铅卤系钙钛矿。然后,称取一定量的二氧化钛,将其超声分散于溶剂中,得到二氧化钛溶液。将上述无铅卤系钙钛矿按照一定比例加入到二氧化钛溶液中,在一定的温度下搅拌一段时间。最后,将上述混合液离心、干燥,即可获得二氧化钛/无铅卤系钙钛矿复合光催化材料。本发明将无铅卤系钙钛矿负载到二氧化钛表面,增大了其比表面积,同时,将光响应范围拓宽到可见光区域,有效地提高了二氧化钛的可见光催化性能。这类光催化剂具有广泛的应用前景,可将其用于水污染处理、CO2还原以及制氢等领域。
The invention discloses a preparation method of a titanium dioxide/lead-free halogen system perovskite composite photocatalytic material. First, lead-free halide perovskites were prepared by ligand-assisted recrystallization. Then, a certain amount of titanium dioxide is weighed and ultrasonically dispersed in a solvent to obtain a titanium dioxide solution. The above-mentioned lead-free halogen perovskite is added into the titanium dioxide solution according to a certain proportion, and is stirred at a certain temperature for a period of time. Finally, the above mixed solution is centrifuged and dried to obtain a titanium dioxide/lead-free halogen-based perovskite composite photocatalytic material. The present invention loads the lead-free halogen perovskite on the surface of titanium dioxide to increase its specific surface area, and at the same time, widens the light response range to the visible light region, thereby effectively improving the visible light catalytic performance of the titanium dioxide. Such photocatalysts have broad application prospects and can be used in water pollution treatment, CO reduction, and hydrogen production.
Description
技术领域technical field
本发明属于光催化材料领域,具体涉及一种二氧化钛/无铅卤系钙钛矿复合光催化材料的制备方法。The invention belongs to the field of photocatalytic materials, in particular to a preparation method of a titanium dioxide/lead-free halogen perovskite composite photocatalytic material.
背景技术Background technique
多年来,二氧化钛由于具有化学稳定性高、来源广泛、价格低廉等优点, 在光催化领域应用最为广泛。但其较宽的带隙、光催化作用需依靠紫外光激发, 对可见光的利用率极低及光生电子和空穴极易复合使二氧化钛的光催化性能受到极大限制。因此,如何提高二氧化钛的光催化性能成为人们的焦点。Over the years, titanium dioxide has been widely used in the field of photocatalysis due to its high chemical stability, wide sources, and low price. However, its wide band gap and photocatalytic action rely on ultraviolet light excitation, the utilization rate of visible light is extremely low, and the photo-generated electrons and holes are easily recombined, which greatly limits the photocatalytic performance of TiO2. Therefore, how to improve the photocatalytic performance of titanium dioxide has become the focus of people.
无铅卤系钙钛矿作为一种新型的半导体材料,由于其具有可见光吸收能力强、比表面积大、表面活性位点多和低毒等优点,近年来已逐渐作为光催化剂被应用于光催化制氢、光催化还原NO、污染物降解等多个领域(Angewandte Chemie International Edition,2019, 58: 7263-7267;Journal of Catalysis:2021,397:27-35;Journal of Colloidand Interface Science 2021,596:376-383)。将无铅卤系钙钛矿负载到二氧化钛的表面,将有望提高二氧化钛的比表面积并增强其可见光催化性能。As a new type of semiconductor material, lead-free halogen perovskite has been gradually applied as a photocatalyst in recent years due to its advantages of strong visible light absorption, large specific surface area, many surface active sites and low toxicity. Hydrogen production, photocatalytic reduction of NO, pollutant degradation and other fields (Angewandte Chemie International Edition, 2019, 58: 7263-7267; Journal of Catalysis: 2021, 397: 27-35; Journal of Colloid and Interface Science 2021, 596: 376-383). Loading lead-free halogen perovskite onto the surface of TiO2 is expected to increase the specific surface area of TiO2 and enhance its visible light catalytic performance.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种二氧化钛/无铅卤系钙钛矿复合光催化材料的制备方法。The purpose of the present invention is to provide a preparation method of titanium dioxide/lead-free halogen perovskite composite photocatalytic material.
本发明所采用的技术方案为:The technical scheme adopted in the present invention is:
一种二氧化钛/无铅卤系钙钛矿复合光催化材料的制备方法,首先,称取二氧化钛,将其超声分散于溶剂中,得到二氧化钛溶液, 然后将无铅卤系钙钛矿按比例加入到二氧化钛溶液中,搅拌,最后,将混合液离心、干燥,即可获得二氧化钛/无铅卤系钙钛矿复合光催化材料。A method for preparing a titanium dioxide/lead-free halogen-based perovskite composite photocatalytic material. First, the titanium dioxide is weighed and ultrasonically dispersed in a solvent to obtain a titanium dioxide solution, and then the lead-free halogen-based perovskite is added in a proportion. The titanium dioxide solution is stirred, and finally, the mixed solution is centrifuged and dried to obtain the titanium dioxide/lead-free halogen perovskite composite photocatalytic material.
具体包括以下步骤:Specifically include the following steps:
步骤一、称取二氧化钛粉末,将其超声分散于无水乙醇、异丙醇或氯仿溶剂中,得到二氧化钛溶液;Step 1: Weighing titanium dioxide powder, ultrasonically dispersing it in absolute ethanol, isopropanol or chloroform solvent to obtain a titanium dioxide solution;
步骤二、将无铅卤系钙钛矿加入到步骤二的二氧化钛溶液中,在10~35℃下搅拌30~60 min,最后,将混合液离心处理10~30 min,离心速度为2000~8000rpm/min,取底部沉淀,在30~60℃的烘箱干燥1~3 h,即可获得二氧化钛/无铅卤系钙钛矿复合光催化材料。Step 2: Add lead-free halogen perovskite into the titanium dioxide solution in step 2, stir at 10-35 °C for 30-60 min, and finally, centrifuge the mixture for 10-30 min, and the centrifugal speed is 2000-8000 rpm /min, take the bottom precipitate and dry it in an oven at 30-60 °C for 1-3 h to obtain the titanium dioxide/lead-free halogen perovskite composite photocatalytic material.
所述无铅卤系钙钛矿的尺寸范围为5~1000nm,其制备方法为配体辅助重结晶法或热注入法。The size range of the lead-free halogen-based perovskite is 5-1000 nm, and the preparation method is a ligand-assisted recrystallization method or a thermal injection method.
所述配体辅助重结晶法制备无铅卤系钙钛矿的具体步骤为:The specific steps for preparing lead-free halogen perovskite by the ligand-assisted recrystallization method are:
首先,将CsBr、AgBr和BiBr3加入到装有二甲基亚砜的玻璃瓶中,超声处理180 min后,获得透明浅黄绿色的前驱体溶液;然后将前驱体溶液按1滴/s 的速度滴加到高速搅拌状态下的异丙醇溶剂中,搅拌5~30 min后,通过离心处理即可获得无铅钙钛矿溶液。First, CsBr, AgBr and BiBr 3 were added to a glass bottle filled with dimethyl sulfoxide, and after sonication for 180 min, a transparent light yellow-green precursor solution was obtained; then the precursor solution was added at a rate of 1 drop/s Add dropwise to isopropanol solvent under high-speed stirring, stir for 5-30 min, and then centrifuge to obtain lead-free perovskite solution.
所述CsBr、AgBr、BiBr3与二甲基亚砜的质量体积比为6~10mg:1~4mg: 6~10mg:0.6~1.2mL。The mass-volume ratio of the CsBr, AgBr, BiBr 3 to dimethyl sulfoxide is 6-10 mg: 1-4 mg: 6-10 mg: 0.6-1.2 mL.
所述二氧化钛为市售二氧化钛或通过溶胶凝胶法、水热法自制的二氧化钛。The titanium dioxide is commercially available titanium dioxide or self-made titanium dioxide by a sol-gel method or a hydrothermal method.
步骤二中,二氧化钛与溶剂的质量体积比为1~10mg:50ml,超声功率为40~80 kHz,超声时间为30~90 min。In step 2, the mass-volume ratio of titanium dioxide to the solvent is 1-10 mg:50 ml, the ultrasonic power is 40-80 kHz, and the ultrasonic time is 30-90 min.
本发明具有以下优点:The present invention has the following advantages:
1. 本发明涉及一种二氧化钛/无铅卤系钙钛矿复合光催化材料的制备方法,复合材料绿色环保,制备方法便捷,反应时间短。1. The present invention relates to a preparation method of a titanium dioxide/lead-free halogen perovskite composite photocatalytic material, the composite material is environmentally friendly, the preparation method is convenient, and the reaction time is short.
2. 本发明所得二氧化钛/无铅卤系钙钛矿复合光催化材料在可见光下具有良好的光催化活性且稳定性好。2. The titanium dioxide/lead-free halogen perovskite composite photocatalytic material obtained in the present invention has good photocatalytic activity and good stability under visible light.
3. 本发明所得二氧化钛/无铅卤系钙钛矿复合光催化材料的结构为一部分钙钛矿负载在二氧化钛的表面,另一部分镶嵌在二氧化钛的孔隙中,有利于增加两者界面之间电子和空穴的迁移速度。同时,采用这种结构能使二氧化钛、钙钛矿及复合光催化材料协同进行光催化降解反应。3. The structure of the titanium dioxide/lead-free halide perovskite composite photocatalytic material obtained in the present invention is that a part of the perovskite is supported on the surface of the titanium dioxide, and the other part is embedded in the pores of the titanium dioxide, which is beneficial to increase the electrons and electrons between the two interfaces. The speed of hole migration. At the same time, the adoption of this structure enables titania, perovskite and composite photocatalytic materials to synergistically carry out photocatalytic degradation reactions.
附图说明Description of drawings
图1为无铅卤系钙钛矿和本发明实施例2制得的二氧化钛/无铅卤系钙钛矿复合材料的光催化速率图。FIG. 1 is a photocatalytic rate diagram of the lead-free halogen perovskite and the titanium dioxide/lead-free halogen perovskite composite material prepared in Example 2 of the present invention.
图2为二氧化钛和本发明实施例2制得的二氧化钛/无铅卤系钙钛矿复合材料的N2吸附-解析等温线(a)和孔径分布图(b)。Figure 2 is the N 2 adsorption-analytical isotherm (a) and pore size distribution diagram (b) of titanium dioxide and the titanium dioxide/lead-free halogen perovskite composite material prepared in Example 2 of the present invention.
图3 二氧化钛、无铅卤系钙钛矿和二氧化钛/无铅卤系钙钛矿复合材料的紫外光谱图(a)和带隙能计算图(b)。Fig. 3 Ultraviolet spectrum (a) and band gap energy calculation (b) of titanium dioxide, lead-free halogen perovskite and titanium dioxide/lead-free halogen perovskite composite.
具体实施方式Detailed ways
下面结合具体实施方式对本发明进行详细的说明。The present invention will be described in detail below with reference to specific embodiments.
本发明的目的在于提供一种二氧化钛/无铅卤系钙钛矿复合光催化材料的制备方法。所制备的二氧化钛/无铅卤系钙钛矿复合光催化材料比表面积较大,表面活性位点多。同时,无铅卤系钙钛矿的引入使得复合材料光吸收拓宽到可见光范围,也有利于提高光生电子和空穴的分离效率,从而提高材料的光催化性能。The purpose of the present invention is to provide a preparation method of titanium dioxide/lead-free halogen perovskite composite photocatalytic material. The prepared titanium dioxide/lead-free halogen perovskite composite photocatalytic material has a large specific surface area and many surface active sites. At the same time, the introduction of lead-free halogen-based perovskites broadens the light absorption of the composite material to the visible light range, which is also conducive to improving the separation efficiency of photogenerated electrons and holes, thereby improving the photocatalytic performance of the material.
实施例1Example 1
步骤一、首先,将CsBr、AgBr和BiBr3加入到装有二甲基亚砜的玻璃瓶中,超声处理180 min后,获得透明浅黄绿色的前驱体溶液;然后将前驱体溶液按1滴/s 的速度滴加到高速搅拌状态下的异丙醇溶剂中,搅拌5 min后,通过离心处理即可获得无铅钙钛矿溶液。CsBr、AgBr、BiBr3与二甲基亚砜的质量体积比为6mg:1mg: 6mg:0.6mL。
步骤二、称取一定量的二氧化钛粉末,将其超声分散于无水乙醇中,得到二氧化钛溶液。其中二氧化钛与溶剂的质量体积比为1mg:50ml,超声功率为40 kHz,超声时间为30min。Step 2: Weighing a certain amount of titanium dioxide powder, ultrasonically dispersing it in absolute ethanol to obtain a titanium dioxide solution. The mass-volume ratio of titanium dioxide to solvent was 1 mg:50 ml, the ultrasonic power was 40 kHz, and the ultrasonic time was 30 min.
步骤三、将步骤一中无铅卤系钙钛矿加入到上述二氧化钛溶液中,在10℃下搅拌30 min。最后,将上述混合液离心处理10 min,离心速度为2000 rpm/min,取底部沉淀,在30℃的烘箱干燥1 h,即可获得二氧化钛/无铅卤系钙钛矿复合光催化材料。Step 3: The lead-free halogen-based perovskite in
实施例2Example 2
步骤一、首先,将CsBr、AgBr和BiBr3加入到装有二甲基亚砜的玻璃瓶中,超声处理180 min后,获得透明浅黄绿色的前驱体溶液;然后将前驱体溶液按1滴/s 的速度滴加到高速搅拌状态下的异丙醇溶剂中,搅拌15 min后,通过离心处理即可获得无铅钙钛矿溶液。CsBr、AgBr、BiBr3与二甲基亚砜的质量体积比为8mg:2mg: 8mg:0.8mL。
步骤二、称取一定量的二氧化钛粉末,将其超声分散于异丙醇中,得到二氧化钛溶液。其中二氧化钛与溶剂的质量体积比为5mg:50ml,超声功率为60 kHz,超声时间为60min。Step 2: Weighing a certain amount of titanium dioxide powder, ultrasonically dispersing it in isopropanol to obtain a titanium dioxide solution. The mass-volume ratio of titanium dioxide to solvent was 5 mg:50 ml, the ultrasonic power was 60 kHz, and the ultrasonic time was 60 min.
步骤三、将步骤一中无铅卤系钙钛矿加入到上述二氧化钛溶液中,在10~35℃下搅拌30~60 min。最后,将上述混合液离心处理20 min,离心速度为5000rpm/min,取底部沉淀,在45℃的烘箱干燥2 h,即可获得二氧化钛/无铅卤系钙钛矿复合光催化材料。Step 3: Add the lead-free halogen perovskite in
实施例3Example 3
步骤一、首先,将CsBr、AgBr和BiBr3加入到装有二甲基亚砜的玻璃瓶中,超声处理180 min后,获得透明浅黄绿色的前驱体溶液;然后将前驱体溶液按1滴/s 的速度滴加到高速搅拌状态下的异丙醇溶剂中,搅拌30 min后,通过离心处理即可获得无铅钙钛矿溶液。CsBr、AgBr、BiBr3与二甲基亚砜的质量体积比为10mg:4mg: 10mg:1.2mL。
步骤二、称取一定量的二氧化钛粉末,将其超声分散于异丙醇中,得到二氧化钛溶液。其中二氧化钛与溶剂的质量体积比为10mg:50ml,超声功率为80 kHz,超声时间为90min。Step 2: Weighing a certain amount of titanium dioxide powder, ultrasonically dispersing it in isopropanol to obtain a titanium dioxide solution. The mass-volume ratio of titanium dioxide to solvent was 10 mg:50 ml, the ultrasonic power was 80 kHz, and the ultrasonic time was 90 min.
步骤三、将步骤一中无铅卤系钙钛矿加入到上述二氧化钛溶液中,在35℃下搅拌60 min。最后,将上述混合液离心处理30 min,离心速度为8000 rpm/min,取底部沉淀,在60℃的烘箱干燥3 h,即可获得二氧化钛/无铅卤系钙钛矿复合光催化材料。Step 3: The lead-free halogen perovskite in
图1为无铅卤系钙钛矿和实施例2中的二氧化钛/无铅卤系钙钛矿复合材料的光催化速率图,具体过程如下。FIG. 1 is a photocatalytic rate diagram of the lead-free halogen perovskite and the titanium dioxide/lead-free halogen perovskite composite material in Example 2. The specific process is as follows.
选用罗丹明 B(Rh B)为模拟污染物,测试二氧化钛/无铅卤系钙钛矿复合光催化材料在可见光照射下催化降解Rh B的性能。具体操作:称取一定量的的二氧化钛/无铅卤系钙钛矿复合光催化材料加入到装有浓度为10 mg/L Rh B溶液的烧杯中,室温下搅拌一定时间,使其达到吸附平衡,打开可见光灯源进行光催化反应。利用紫外-可见分光光度计对光催化降解过程进行监测。Rhodamine B (Rh B) was selected as the simulated pollutant to test the performance of TiO2/lead-free halide perovskite composite photocatalytic material in the catalytic degradation of Rh B under visible light irradiation. Specific operation: Weigh a certain amount of titanium dioxide/lead-free halogen perovskite composite photocatalytic material into a beaker with a concentration of 10 mg/L Rh B solution, and stir at room temperature for a certain period of time to achieve adsorption equilibrium , turn on the visible light source for the photocatalytic reaction. The photocatalytic degradation process was monitored by UV-Vis spectrophotometer.
从图1中可以看出,相比于钙钛矿而言,二氧化钛/无铅卤系钙钛矿复合光催化材料对罗丹明 B的催化降解速率很明显地提高了。As can be seen from Figure 1, compared with perovskite, the catalytic degradation rate of rhodamine B by TiO2/lead-free halogen perovskite composite photocatalytic material is significantly improved.
从图2可以分析得到,钙钛矿大部分负载到二氧化钛的表面以增大其比表面积,小部分镶嵌到二氧化钛的孔隙中,降低了平均孔径。It can be analyzed from Figure 2 that most of the perovskite is loaded on the surface of TiO2 to increase its specific surface area, and a small part is embedded in the pores of TiO2, reducing the average pore size.
从图3可以看出,二氧化钛与无铅卤系钙钛矿的复合有助于提高对可见光区域的光响应能力,从而改善在可见光条件下复合材料的催化性能。It can be seen from Figure 3 that the composite of TiO2 and lead-free halogen perovskite helps to improve the photoresponse ability to visible light region, thereby improving the catalytic performance of the composite material under visible light conditions.
本发明的内容不限于实施例所列举,本领域普通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,均为本发明的权利要求所涵盖。The content of the present invention is not limited to those listed in the embodiments, and any equivalent transformations taken by those of ordinary skill in the art to the technical solutions of the present invention by reading the description of the present invention are covered by the claims of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210023490.1A CN114308084A (en) | 2022-01-10 | 2022-01-10 | Preparation method of titanium dioxide/lead-free halogen perovskite composite photocatalytic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210023490.1A CN114308084A (en) | 2022-01-10 | 2022-01-10 | Preparation method of titanium dioxide/lead-free halogen perovskite composite photocatalytic material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114308084A true CN114308084A (en) | 2022-04-12 |
Family
ID=81026656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210023490.1A Pending CN114308084A (en) | 2022-01-10 | 2022-01-10 | Preparation method of titanium dioxide/lead-free halogen perovskite composite photocatalytic material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114308084A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115465891A (en) * | 2022-09-30 | 2022-12-13 | 云南师范大学 | Application ball mill for preparing nano Cs 2 AgBiBr 6 /TiO 2 Method for compounding materials |
CN115970715A (en) * | 2022-09-30 | 2023-04-18 | 云南师范大学 | Z-shaped heterojunction Cs 2 AgBiBr 6 /TiO 2 Composite material and method for producing the same |
CN116212918A (en) * | 2022-12-28 | 2023-06-06 | 四川启睿克科技有限公司 | CABI@C 3 N 4 Heterojunction catalyst and preparation method and application thereof |
CN116550345A (en) * | 2023-05-11 | 2023-08-08 | 北京工业大学 | A kind of TiO2/Cs2AgBiBr6 composite catalyst and its preparation method and application |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4055513A (en) * | 1976-04-13 | 1977-10-25 | Exxon Research & Engineering Co. | Perovskite catalysts and process for their preparation |
CN106890645A (en) * | 2016-10-18 | 2017-06-27 | 浙江树人大学 | A kind of perovskite oxide doping TiO2Photochemical catalyst and preparation method thereof |
CN108855156A (en) * | 2018-07-18 | 2018-11-23 | 河南工业大学 | A kind of full-inorganic non-lead perovskite composite Ti O2Nano wire and preparation method thereof |
CN110003907A (en) * | 2019-04-14 | 2019-07-12 | 天津大学 | A kind of synthetic method of non-lead double perovskite nanocrystals |
CN110616461A (en) * | 2019-10-17 | 2019-12-27 | 南京信息工程大学 | Cs (volatile organic Compounds)2AgBiBr6Preparation method of type double perovskite crystal |
CN112295576A (en) * | 2020-10-27 | 2021-02-02 | 苏州大学 | Cs3Bi2Br9/TiO2 perovskite heterojunction and its preparation method and its application in photocatalytic toluene oxidation |
-
2022
- 2022-01-10 CN CN202210023490.1A patent/CN114308084A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4055513A (en) * | 1976-04-13 | 1977-10-25 | Exxon Research & Engineering Co. | Perovskite catalysts and process for their preparation |
CN106890645A (en) * | 2016-10-18 | 2017-06-27 | 浙江树人大学 | A kind of perovskite oxide doping TiO2Photochemical catalyst and preparation method thereof |
CN108855156A (en) * | 2018-07-18 | 2018-11-23 | 河南工业大学 | A kind of full-inorganic non-lead perovskite composite Ti O2Nano wire and preparation method thereof |
CN110003907A (en) * | 2019-04-14 | 2019-07-12 | 天津大学 | A kind of synthetic method of non-lead double perovskite nanocrystals |
CN110616461A (en) * | 2019-10-17 | 2019-12-27 | 南京信息工程大学 | Cs (volatile organic Compounds)2AgBiBr6Preparation method of type double perovskite crystal |
CN112295576A (en) * | 2020-10-27 | 2021-02-02 | 苏州大学 | Cs3Bi2Br9/TiO2 perovskite heterojunction and its preparation method and its application in photocatalytic toluene oxidation |
Non-Patent Citations (1)
Title |
---|
范倩倩: ""基于酪素胶束模板的多孔TiO2复合材料及其在功能涂层中的应用"", 《中国博士学位论文全文数据库工程科技Ⅰ辑》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115465891A (en) * | 2022-09-30 | 2022-12-13 | 云南师范大学 | Application ball mill for preparing nano Cs 2 AgBiBr 6 /TiO 2 Method for compounding materials |
CN115970715A (en) * | 2022-09-30 | 2023-04-18 | 云南师范大学 | Z-shaped heterojunction Cs 2 AgBiBr 6 /TiO 2 Composite material and method for producing the same |
CN115465891B (en) * | 2022-09-30 | 2023-11-10 | 云南师范大学 | A method for preparing nano-Cs2AgBiBr6/TiO2 composite materials using a ball mill |
CN115970715B (en) * | 2022-09-30 | 2024-07-16 | 云南师范大学 | Z-type heterojunction Cs2AgBiBr6/TiO2Composite material and preparation method thereof |
CN116212918A (en) * | 2022-12-28 | 2023-06-06 | 四川启睿克科技有限公司 | CABI@C 3 N 4 Heterojunction catalyst and preparation method and application thereof |
CN116550345A (en) * | 2023-05-11 | 2023-08-08 | 北京工业大学 | A kind of TiO2/Cs2AgBiBr6 composite catalyst and its preparation method and application |
CN116550345B (en) * | 2023-05-11 | 2024-12-17 | 北京工业大学 | TiO (titanium dioxide)2/Cs2AgBiBr6Composite catalyst and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114308084A (en) | Preparation method of titanium dioxide/lead-free halogen perovskite composite photocatalytic material | |
CN105195197B (en) | A kind of visible light-responded TiO of bigger serface2Catalyst and preparation method thereof | |
CN108745347A (en) | Pt atom carried titanium dioxide catalysis material and preparation method thereof | |
CN112521618B (en) | A kind of bismuth-based metal organic framework material, preparation method and application thereof | |
CN101347724B (en) | A kind of carbon 60/titanium dioxide nanocomposite photocatalyst and its preparation method and application | |
CN108786792B (en) | A metal/semiconductor composite photocatalyst and its preparation and application | |
CN111437867A (en) | A composite photocatalyst containing tungsten oxide and its preparation method and application | |
CN103721700B (en) | A kind of high activity SnO 2-TiO 2the preparation method of composite photo-catalyst | |
CN115814859B (en) | Novel photocatalyst, preparation method and application | |
WO2024088050A1 (en) | Preparation method for water-chestnut-shaped antimony tungstate composite material, and use thereof | |
CN112439416A (en) | Preparation method and application of high-dispersion copper-loaded titanium dioxide nanosheet | |
CN103041865B (en) | Organic anthraquinone dye sensitized and precious metal supported inorganic semiconductor visible-light photocatalyst, and preparation method and application of photocatalyst | |
CN114425330A (en) | Double precious metal-supported nano-titanium dioxide and its preparation method and application | |
CN102976402B (en) | A kind of TiO2 xerogel with light-controlled reversible adsorption of azo dyes and its preparation method and application | |
CN110694655A (en) | Preparation method of silver sulfide/silver phosphate/graphene oxide composite photocatalyst | |
CN115414967A (en) | Ag @ ZIF-8@ g-C 3 N 4 Composite photocatalyst and preparation method and application thereof | |
CN114682241A (en) | Titanium dioxide-alumina composite desulfurization catalyst and preparation method and application thereof | |
CN112354559B (en) | Two-dimensional receptor molecule/hierarchical pore TiO 2 Composite photocatalyst, preparation method and photocatalytic application thereof | |
CN108514886A (en) | A kind of argentum-based catalyzer for photo-thermal concerted catalysis degradation of toluene | |
CN109999857B (en) | Near-infrared response hollow cerium fluoride up-conversion photocatalytic material and preparation method and application thereof | |
CN102921438A (en) | Preparation for silver phosphate nano ball-graphene composite material and photocatalysis application | |
CN109174129B (en) | A kind of dual-sensitized titanium dioxide photocatalyst and preparation method thereof | |
CN114588897B (en) | A kind of composite porous photocatalyst material and its preparation method and application | |
CN117065739A (en) | GO/TiO 2 Composite catalyst and preparation method thereof | |
CN108160120A (en) | A kind of compounded visible light photocatalyst Ag2CO3/TiO2/UIO-66-(COOH)2And organic matter degradation application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220412 |