CN114301048A - 一种防反灌电路、直流变换电路以及直流充电桩 - Google Patents

一种防反灌电路、直流变换电路以及直流充电桩 Download PDF

Info

Publication number
CN114301048A
CN114301048A CN202110351583.2A CN202110351583A CN114301048A CN 114301048 A CN114301048 A CN 114301048A CN 202110351583 A CN202110351583 A CN 202110351583A CN 114301048 A CN114301048 A CN 114301048A
Authority
CN
China
Prior art keywords
circuit
converter
relay
direct current
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110351583.2A
Other languages
English (en)
Inventor
刘亮
刘洋
胡彪
陈建生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Digital Power Technologies Co Ltd
Original Assignee
Huawei Digital Power Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Digital Power Technologies Co Ltd filed Critical Huawei Digital Power Technologies Co Ltd
Priority to CN202110351583.2A priority Critical patent/CN114301048A/zh
Publication of CN114301048A publication Critical patent/CN114301048A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例提供一种防反灌电路、直流变换电路以及直流充电桩,用以解决现有的防反灌设计中存在的效率低、占板面积大的问题。防反灌电路置于直流母线上,防反灌电路包括:继电器,与直流变换器的输出端耦合,用于在直流变换器的输出电流小于第一预设电流值的情况下断开,在直流变换器的输出电流大于或等于第一预设电流值的情况下闭合;开关管,与继电器并联,开关管在继电器断开时导通,在继电器闭合时关断;熔断器,与继电器耦合,用于在直流变换器的输出端流入的电流大于第二预设电流值时熔断,第二预设电流值大于第一预设电流值。

Description

一种防反灌电路、直流变换电路以及直流充电桩
技术领域
本申请涉及能源技术领域,尤其涉及一种防反灌电路、直流变换电路以及直流充电桩。
背景技术
随着新能源技术的发展,电动汽车的应用越来越普遍。通常,电动汽车可以通过充电站安装的充电桩充电。充电桩中包括多个并联的充电模块,每个充电模块中用于进行交流(alternating current,AC)/直流(direct current,DC)变换,输出的直流电用于为电动汽车中的动力电池充电。
为保证充电模块能可靠工作,充电模块中要配置防反灌电路,以防止动力电池短路或反接等异常情况下,产生大的冲击电流反灌至充电模块,造成器件的损坏,甚至引发火灾。现有技术中,通常会在充电模块的输出侧增加防反二极管,以杜绝此类隐患。如图1所示,在AC/DC变换器输出侧的正母线上并联有多个防反二极管,当大电流从该充电模块的输出端灌入时,二极管可以阻止大电流流入,以保护该充电模块中的器件。其中,多个二极管并联,是因为在充电模块正常工作的情况下,电动汽车的充电功率较高,母线上的电流较大,多个二极管并联可以实现分流。
但是,图1所示的方案中,由于需要用到多个二极管、且二极管的导通压降较大,在充电电流较大的情况下,二极管的导通损耗较大,采用该方案会影响充电模块的效率。此外,采用多个二极管并联的方案需要为多个二极管提供体积较大的散热器件,影响单板的空间利用率。
因此,现有技术所提供的防反灌设计存在充电效率低、占板面积大的问题。
发明内容
本申请实施例提供一种防反灌电路、直流变换电路以及直流充电桩,用以解决现有的防反灌设计中存在的效率低、占板面积大的问题。
第一方面,本申请实施例提供一种防反灌电路,防反灌电路置于直流母线上,防反灌电路包括:继电器,与直流变换器的输出端耦合,用于在直流变换器的输出电流小于第一预设电流值的情况下断开,在直流变换器的输出电流大于或等于第一预设电流值的情况下闭合;开关管,与继电器并联,开关管在继电器断开时导通,在继电器闭合时关断;熔断器,与继电器耦合,用于在直流变换器的输出端流入的电流大于第二预设电流值时熔断,第二预设电流值大于第一预设电流值。
其中,继电器可以为交流继电器、直流继电器或接触器。开关管可以为二极管、金属-氧化物半导体场效应晶体管MOSFET、绝缘栅双极型晶体管IGBT或晶闸管。熔断器可以为直流保险管或交流保险管。
采用第一方面提供的防反灌电路,在直流变换器上电前,开关管起反顶作用,防止电流反灌;在直流变换器上电后,当外部有较大电流从直流变换器的输出端反灌时,熔断器熔断,反灌的大电流无法流入直流变换器,因而采用防反灌电路可以起到防反灌的作用。在直流变换器正常工作时,可以根据直流变换器的输出电流选择不同的输出路径,因而导通损耗较小,可以提高直流变换器的效率。此外,通过继电器、开关管和熔断器三个器件实现防反灌电路,可以减小占板面积。
在一种可能的设计中,开关管与继电器并联,可以有两种实现方式:1、熔断器与继电器串联;2、熔断器串联在直流母线上。
采用上述方案,在不同的实现方式中,当大电流从直流变换器的输出端反灌时,防反灌电路的防反灌方式有所不同。在第一种实现方式中,在直流变换器上电后,当外部有较大电流从直流变换器的输出端反灌时,熔断器熔断,那么,反灌的大电流无法通过继电器+熔断器的支路流入直流变换器;由于开关管(例如可以是二极管)对电流流向有限制,因而反灌的大电流也无法通过开关管流入直流变换器。在第二种实现方式中,在直流变换器上电后,当外部有较大电流从直流变换器的输出端反灌时,熔断器熔断,反灌的大电流无法流入直流变换器。
在一种可能的设计中,直流母线可以为正母线,也可以为负母线。
此外,第一方面提供的防反灌电路还可以包括逻辑判断电路和控制电路。其中,逻辑判断电路用于将直流变换器的输出电流与第一预设电流值进行比较;控制电路用于在逻辑判断电路确定直流变换器的输出电流小于第一预设电流值的情况下控制继电器断开;在逻辑判断电路确定直流变换器的输出电流大于或等于第一预设电流值的情况下控制继电器闭合。
采用上述方案,可以通过逻辑判断电路对直流变换器的输出电流值进行判断,并根据判断结果控制控制电路,使得控制电路对继电器的断开和闭合进行控制。
第二方面,本申请实施例提供一种直流变换电路,该直流变换电路包括直流变换器以及上述第一方面及其任一可能的设计中所提供的防反灌电路,防反灌电路用于对直流变换器进行防反灌保护。
进一步地,直流变换器可以为DC/DC变换器或AC/DC变换器。
第三方面,本申请实施例提供一种直流充电桩,直流充电桩包括多个第二方面及其任一可能的设计中所提供的直流变换电路,多个直流变换电路并联,输出的直流电用于为动力电池充电。
另外,应理解,第二方面~第三方面及其任一种可能设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为现有技术提供的一种防反灌电路的结构示意图;
图2为本申请实施例提供的第一种防反灌电路的结构示意图;
图3为本申请实施例提供的第二种防反灌电路的结构示意图;
图4为本申请实施例提供的第三种防反灌电路的结构示意图;
图5为本申请实施例提供的第四种防反灌电路的结构示意图;
图6为本申请实施例提供的第五种防反灌电路的结构示意图;
图7为本申请实施例提供的第六种防反灌电路的结构示意图;
图8为本申请实施例提供的第七种防反灌电路的结构示意图;
图9为本申请实施例提供的第八种防反灌电路的结构示意图;
图10为本申请实施例提供的第九种防反灌电路的结构示意图;
图11为本申请实施例提供的一种直流变换电路的结构示意图;
图12为本申请实施例提供的一种直流充电桩的结构示意图。
具体实施方式
下面,首先对本申请实施例的应用场景进行介绍。
本申请实施例可应用于直流变换器中,用于防止大电流反灌至该直流变换器,损坏直流变换器中的器件,甚至引发火灾。应理解,本申请实施例中,直流变换器是指输出直流电的变换器,该直流变换器可以是AC/DC变换器,也可以是DC/DC变换器。
在一种场景中,直流变换器可以是直流充电桩(即输出直流电的充电桩)内的变换器,用于将输入的交流电转换为直流电,从而为电动汽车中的动力电池充电。
在另一种场景中,直流变换器也可以是车载充电器(on board charger,OBC)中的直流变换器。比如,当OBC连接交流充电桩(即输出交流电的充电桩)时,OBC中包括AC/DC变换器和DC/DC变换器。其中,AC/DC变换器可以采用功率因数校正(power factorcorrection,PFC)电路拓扑。本申请实施例中的直流变换器可以是OBC中的AC/DC变换器,也可以是OBC中的DC/DC变换器。
当然,本申请实施例所提供的防反灌电路也可以应用于其他场景。只要直流变换器有防反灌需求,就可以采用本申请实施例提供的防反灌电路来防止大电流反灌至直流变换器,本申请实施例中对防反灌电路的应用场景不做具体限定。
下面将结合附图对本申请实施例作进一步地详细描述。
需要说明的是,本申请实施例中,多个是指两个或两个以上。另外,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。本申请实施例中所提到的“耦合”,是指电学连接,具体可以包括直接连接或者间接连接两种方式。
本申请实施例提供一种防反灌电路。参见图2,防反灌电路200置于直流母线上,防反灌电路200包括继电器201、开关管202和熔断器203。
具体地,继电器201与直流变换器的输出端耦合,用于在直流变换器的输出电流小于第一预设电流值的情况下断开,在直流变换器的输出电流大于或等于第一预设电流值的情况下闭合;开关管202与继电器201并联,开关管202在继电器201断开时导通,在继电器201闭合时关断;熔断器203与继电器201耦合,用于在直流变换器的输出端流入的电流大于第二预设电流值时熔断,第二预设电流值大于第一预设电流值。
实际应用中,继电器201例如可以是交流继电器、直流继电器、接触器等;开关管202例如可以是二极管、金属-氧化物半导体场效应晶体管(metal-oxide-semiconductorfield-effect transistor,MOSFET)、氮化镓(gallium nitride,GaN)晶体管、绝缘栅双极型晶体管(insulated gate bipolar transist,IGBT)、双极结型晶体管(bipolarjunction transistor,BJT)、晶闸管、三极管等;熔断器203例如可以是直流保险管、交流保险管。此外,熔断器也可以称为熔丝管。
本申请实施例中,熔断器203与继电器201耦合,有两种实现方式:1、熔断器203与继电器201串联,继电器201与熔断器203串联后的支路再与开关管202并联;2、熔断器203串联在直流母线上,继电器201与开关管202并联后再与熔断器203串联。在图2的示例中,以第一种实现方式为例进行示意,对于熔断器203串联在直流母线上的方案,可以如图3所示。
需要说明的是,在图2的示例中,以继电器201与直流变换器的输出端连接、熔断器203与继电器201串联为例进行示意。实际应用中,也可以是熔断器203与直流变换器的输出端连接、继电器201与熔断器203串联,如图4所示。也就是说,当继电器201与熔断器203串联形成软启动电路200的一个支路、该支路再与开关管202并联时,本申请实施例对继电器201和熔断器203之间的位置关系不做限定。
同样需要说明的是,在图3的示例中,以继电器201与开关管202并联后与直流变换器连接、熔断器203再与继电器201和开关管202的并联支路串联为例进行示意。实际应用中,也可以是熔断器203与直流变换器的输出端连接、继电器201与开关管202并联后再与熔断器203串联,如图5所示。也就是说,当熔断器203串联在直流母线上、继电器201与开关管202并联后与熔断器203串联时,本申请实施例对继电器201和开关管202的并联支路与熔断器203之间的位置关系不做限定。
此外,本申请实施例中,直流母线可以为正母线也可以为负母线。也就是说,防反灌电路200可以置于正母线上,也可以置于负母线上。图2中以防反灌电路200置于正母线上为例进行示意。对于防反灌电路200置于负母线上的方案,可以如图6所示。
在图2所示的防反灌电路200中,在直流变换器上电前,开关管202起反顶作用,防止电流反灌;在直流变换器上电后,当外部有较大电流从直流变换器的输出端反灌时,比如直流变换器的输出端流入的电流大于第二预设电流值时,熔断器203熔断,那么,反灌的大电流无法通过继电器201+熔断器203的支路流入直流变换器;由于开关管202(例如可以是二极管)对电流流向有限制,因而反灌的大电流也无法通过开关管202流入直流变换器。因此,采用图2所示的防反灌电路200,可以防止大电流反灌至直流变换器,即可以满足直流变换器的防反灌需求。
在直流变换器正常工作时,若直流变换器的输出电流小于第一预设电流值,则继电器201断开、开关管202导通,电流通过开关管202的支路输出。虽然开关管202的导通压降大,但是直流变换器的输出电流较小(小于第一预设电流值),因而流经开关管202时不会产生较大的导通损耗。若直流变换器的输出电流大于或等于第一预设电流值,则继电器201闭合、开关管202关断,电流通过继电器201+熔断器203的支路输出。虽然直流变换器的输出电流较大(大于或等于第一预设电流值),但是继电器201和熔断器203的导通压降小,因而不会产生较大的导通损耗。因此,采用图2所示的防反灌电路200,在直流变换器正常工作时,可以降低防反灌电路200产生的损耗,提高直流变换器的效率。
实际应用中,第一预设电流值可以预先配置在控制电路中,控制电路根据第一预设电流值对继电器201的断开和闭合进行控制;第二预设电流值可以是熔断器203的熔断电流值,可以通过熔断器203的选型确定。
此外,在图2所示的防反灌电路200中,仅通过继电器201、开关管202和熔断器203三个器件即可实现防反灌电路200。其中,继电器201和熔断器203无需配置散热器件。由于开关管202仅在直流变换器的输出电流小于第一预设电流值时导通,因而开关管202可以配置体积较小的散热器件或不配置散热器件。因此,采用防反灌电路200与采用现有技术方案相比,可以减小占板面积。
同样地,在图3所示的防反灌电路200中,在直流变换器上电前,开关管202起反顶作用,防止电流反灌;在直流变换器上电后,当外部有较大电流从直流变换器的输出端反灌时,熔断器203熔断,反灌的大电流无法流入直流变换器。在直流变换器正常工作时,若直流变换器的输出电流小于第一预设电流值,则电流通过开关管202的支路输出,直流变换器的输出电流较小,因而导通损耗较小。若直流变换器的输出电流大于或等于第一预设电流值,电流通过继电器201的支路输出,继电器201和熔断器203的导通压降小,因而导通损耗较小。因此,采用防反灌电路200可以降低防反灌电路200产生的损耗,提高直流变换器的效率。此外,通过继电器201、开关管202和熔断器203三个器件实现防反灌电路,可以减少散热器件的体积,减小占板面积。
同样地,当防反灌电路200置于负母线时也有同样的技术效果,此处不再赘述。
此外,本申请实施例中,防反灌电路200中还可以包括逻辑判断电路和控制电路,如图7所示。逻辑判断电路用于将直流变换器的输出电流与第一预设电流值进行比较;控制电路用于在逻辑判断电路确定直流变换器的输出电流小于第一预设电流值的情况下控制继电器201断开;在逻辑判断电路确定直流变换器的输出电流大于或等于第一预设电流值的情况下控制继电器201闭合。
此外,若开关管202为MOSFET、IGBT、BJT、晶闸管、三极管等可控开关管,那么开关管202的导通和关断也可以由控制电路控制。
同样地,图3和图6所示的防反灌电路200中也可以包括逻辑判断电路和控制电路,此处不再赘述。
综上,采用本申请实施例提供的防反灌电路200,在直流变换器上电前,开关管202起反顶作用,防止电流反灌;在直流变换器上电后,当外部有较大电流从直流变换器的输出端反灌时,熔断器203熔断,反灌的大电流无法流入直流变换器,因而采用防反灌电路200可以起到防反灌的作用。在直流变换器正常工作时,可以根据直流变换器的输出电流选择不同的输出路径,因而导通损耗较小,可以提高直流变换器的效率。此外,通过继电器201、开关管202和熔断器203三个器件实现防反灌电路,可以减小占板面积。
需要说明的是,本申请实施例提供的防反灌电路可以应用在直流充电桩中的充电模块内,在每个充电模块中配置本申请实施例提供的防反灌电路200,以防止动力电池短路或反接时产生的大电流反灌回充电模块。此外,本申请实施例提供的防反灌电路200也可以应用于其他直流变换器中,在直流变换器的输出端设置防反灌电路200,可以防止直流变换器的下一级电路产生的大电流反灌至直流变换器。比如,防反灌电路200还可以应用于OBC中,在OBC中包括AC/DC变换器和DC/DC变换器;在AC/DC变换器的输出端设置防反灌电路200,可以防止DC/DC变换器产生的大电流反灌至AC/DC变换器;在DC/DC变换器的输出端设置防反灌电路200,可以防止动力电池产生的大电流反灌至DC/DC变换器。当然,防反灌电路200也可以应用于其他领域,例如应用于数据中心或通信电源中,本申请实施例对防反灌电路200的应用场景不做具体限定。
下面,通过三个具体示例对本申请实施例提供的防反灌电路进行介绍。
示例一
在示例一中,如图8所示,防反灌电路包括继电器K1、保险管、二极管D1、控制电路和逻辑判断电路,防反灌电路串联在正母线上。其中,继电器K1与保险管串联后再与二极管D1并联。
在变换器上电前,继电器K1触点不吸合,二极管D1起反顶作用,防止电流反灌。
在变换器上电后,如果逻辑判断电路检测到输出电流小于预设值(第一预设电流值的一个具体示例),则控制电路控制继电器K1不动作,电流通过二极管D1流出,如图8中的a示例所示;如果逻辑判断电路检测到输出电流大于预设值时,则控制电路控制继电器K1吸合,电流通过继电器K1与保险管流出,从而将二极管D1旁路,降低二极管D1两端的压降,减少导通损耗,如图8中的b示例所示。
在变换器上电后,如果外部有大电流从输出端Vout+灌入,那么保险管会熔断。反灌的大电流无法通过继电器K1和保险管的支路流入变换器,也无法通过二极管D1的支路流入直流变换器,起到防反灌的作用。
示例二
在示例二中,如图9所示,防反灌电路包括继电器K1、保险管、二极管D1、控制电路和逻辑判断电路,防反灌电路串联在正母线上。其中,继电器K1与二极管D1并联,保险管串联在正母线上。
在变换器上电前,继电器K1触点不吸合,二极管D1起反顶作用,防止电流反灌。
在变换器上电后,如果逻辑判断电路检测到输出电流小于预设值,则控制电路控制继电器K1不动作,电流通过二极管D1和保险管流出,如图9中的a示例所示;如果逻辑判断电路检测到输出电流大于预设值时,则控制电路控制继电器K1吸合,电流通过继电器K1和保险管流出,从而将二极管D1旁路,降低二极管D1两端的压降,降低导通损耗,如图9中的b示例所示。
在变换器上电后,如果外部有大电流从输出端Vout+灌入,那么保险管会熔断。反灌的大电流无法通过保险管流入变换器,起到防反灌的作用。
示例三
在示例三中,如图10所示,防反灌电路包括继电器K1、保险管、二极管D1、控制电路和逻辑判断电路,防反灌电路串联在负母线上。其中,继电器K1与保险管串联后再与二极管D1并联。
图10所示的防反灌电路与图8所示的防反灌电路的工作原理类似,此处不再赘述。
本申请实施例还提供一种直流变换电路,如图11所示,该直流变换电路1100包括直流变换器1101以及防反灌电路200,防反灌电路200用于对直流变换器1101进行防反灌保护。
其中,直流变换器1101可以为DC/DC变换器或AC/DC变换器。
需要说明的是,直流变换电路1100中未详尽描述的实现方式及其技术效果可以参见防反灌电路200中的相关描述,此处不再赘述。
本申请实施例还提供一种直流充电桩,如图12所示,直流充电桩1200包括多个直流变换电路1100。
其中,多个直流变换电路1100并联,直流变换电路1100输出的直流电用于为动力电池充电。
需要说明的是,直流充电桩1200中未详尽描述的实现方式及其技术效果可以参见防反灌电路200和直流变换电路1100中的相关描述,此处不再赘述。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (10)

1.一种防反灌电路,其特征在于,所述防反灌电路置于直流母线上,所述防反灌电路包括:
继电器,与直流变换器的输出端耦合,用于在所述直流变换器的输出电流小于第一预设电流值的情况下断开,在所述直流变换器的输出电流大于或等于所述第一预设电流值的情况下闭合;
开关管,与所述继电器并联,所述开关管在所述继电器断开时导通,在所述继电器闭合时关断;
熔断器,与所述继电器耦合,用于在所述直流变换器的输出端流入的电流大于第二预设电流值时熔断,所述第二预设电流值大于所述第一预设电流值。
2.如权利要求1所述的电路,其特征在于,所述熔断器与所述继电器串联,或者,所述熔断器串联在所述直流母线上。
3.如权利要求1或2所述的电路,其特征在于,所述直流母线为正母线或负母线。
4.如权利要求1~3任一项所述的电路,其特征在于,还包括:
逻辑判断电路,用于将所述直流变换器的输出电流与所述第一预设电流值进行比较;
控制电路,用于在所述逻辑判断电路确定所述直流变换器的输出电流小于所述第一预设电流值的情况下控制所述继电器断开;在所述逻辑判断电路确定所述直流变换器的输出电流大于或等于所述第一预设电流值的情况下控制所述继电器闭合。
5.如权利要求1~4任一项所述的电路,其特征在于,所述继电器为交流继电器、直流继电器或接触器。
6.如权利要求1~5任一项所述的电路,其特征在于,所述开关管为二极管、金属-氧化物半导体场效应晶体管MOSFET、绝缘栅双极型晶体管IGBT或晶闸管。
7.如权利要求1~6任一项所述的电路,其特征在于,所述熔断器为直流保险管或交流保险管。
8.一种直流变换电路,其特征在于,包括:直流变换器以及如权利要求1~7任一项所述的防反灌电路,所述防反灌电路用于对所述直流变换器进行防反灌保护。
9.如权利要求8所述的电路,其特征在于,所述直流变换器为DC/DC变换器或AC/DC变换器。
10.一种直流充电桩,其特征在于,包括多个如权利要求8或9所述的直流变换电路,所述多个直流变换电路并联。
CN202110351583.2A 2021-03-31 2021-03-31 一种防反灌电路、直流变换电路以及直流充电桩 Pending CN114301048A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110351583.2A CN114301048A (zh) 2021-03-31 2021-03-31 一种防反灌电路、直流变换电路以及直流充电桩

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110351583.2A CN114301048A (zh) 2021-03-31 2021-03-31 一种防反灌电路、直流变换电路以及直流充电桩

Publications (1)

Publication Number Publication Date
CN114301048A true CN114301048A (zh) 2022-04-08

Family

ID=80963823

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110351583.2A Pending CN114301048A (zh) 2021-03-31 2021-03-31 一种防反灌电路、直流变换电路以及直流充电桩

Country Status (1)

Country Link
CN (1) CN114301048A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147738A (ja) * 1993-11-22 1995-06-06 Omron Corp 逆流防止装置及び太陽電池保護装置
CN102055184A (zh) * 2010-12-31 2011-05-11 广东美的电器股份有限公司 有极性区分的直流电源防反接电路及其控制方法
CN203278227U (zh) * 2013-05-22 2013-11-06 上海正泰电源系统有限公司 一种高效防反汇流箱电路
CN206180627U (zh) * 2016-11-04 2017-05-17 深圳市安一福科技有限公司 一种电池充放电管理装置
CN106712226A (zh) * 2017-03-31 2017-05-24 许继电源有限公司 充电机、直流充电防反灌装置及控制方法
CN209888793U (zh) * 2019-05-15 2020-01-03 广东威灵汽车部件有限公司 车辆的供电系统和具有该系统的车辆
CN211979030U (zh) * 2019-12-12 2020-11-20 杭州奥能电源设备有限公司 一种宽范围高精度电流采样电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147738A (ja) * 1993-11-22 1995-06-06 Omron Corp 逆流防止装置及び太陽電池保護装置
CN102055184A (zh) * 2010-12-31 2011-05-11 广东美的电器股份有限公司 有极性区分的直流电源防反接电路及其控制方法
CN203278227U (zh) * 2013-05-22 2013-11-06 上海正泰电源系统有限公司 一种高效防反汇流箱电路
CN206180627U (zh) * 2016-11-04 2017-05-17 深圳市安一福科技有限公司 一种电池充放电管理装置
CN106712226A (zh) * 2017-03-31 2017-05-24 许继电源有限公司 充电机、直流充电防反灌装置及控制方法
CN209888793U (zh) * 2019-05-15 2020-01-03 广东威灵汽车部件有限公司 车辆的供电系统和具有该系统的车辆
CN211979030U (zh) * 2019-12-12 2020-11-20 杭州奥能电源设备有限公司 一种宽范围高精度电流采样电路

Similar Documents

Publication Publication Date Title
US10525841B2 (en) Gate driver with short circuit protection
CN107887939B (zh) 电池组隔离装置
CN106849635B (zh) 级联多电平换流器子模块失控强制旁路电路
EP2410551B1 (en) Direct-current switch
US20160036323A1 (en) Three port dc-dc converter
CN103731059B (zh) 一种模块化多电平换流器的双嵌位子模块结构电路
US9774215B2 (en) Power conversion apparatus
US20120069604A1 (en) Compact power converter with high efficiency in operation
US10625622B2 (en) Power supply device of vehicle
CN102969918B (zh) 三相桥式逆变器系统及紧急下短路保护电路
US20230238591A1 (en) Battery energy processing device and method, and vehicle
CN113285584A (zh) 基于负极预充的预充电电路以及飞跨电容三电平变换器
CN107579695B (zh) 能量回馈保护电路及电机控制系统
CN107472032B (zh) 一种电动汽车电机控制器高压直流电路控制系统
WO2023159704A1 (zh) 无功率输出中断的电池串并联切换主电路及系统、方法
US20220216703A1 (en) Energy transfer circuit and power storage system
JP6044476B2 (ja) 駆動対象スイッチング素子の駆動回路
CN109861189B (zh) 一种灭弧型低压直流断路器
WO2020114502A1 (zh) 充放电电路
TWI717661B (zh) 用於充電台的電力電子模組以及對應的充電台和充電站
CN114301048A (zh) 一种防反灌电路、直流变换电路以及直流充电桩
KR20200084455A (ko) Fail-Safety 기능을 구비하는 파워 릴레이 어셈블리 및 그 구동 방법
CN211166517U (zh) 一种超级电容复合系统的充放电电路
CN209170224U (zh) 软开关降压电路、供电电路、车辆及充电桩
JP2019004594A (ja) 車両の電源装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination