CN114296454B - 一种全向全驱移动机器人的自适应运动控制方法及系统 - Google Patents

一种全向全驱移动机器人的自适应运动控制方法及系统 Download PDF

Info

Publication number
CN114296454B
CN114296454B CN202111607748.4A CN202111607748A CN114296454B CN 114296454 B CN114296454 B CN 114296454B CN 202111607748 A CN202111607748 A CN 202111607748A CN 114296454 B CN114296454 B CN 114296454B
Authority
CN
China
Prior art keywords
compensation
wheel
mobile robot
angle
steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111607748.4A
Other languages
English (en)
Other versions
CN114296454A (zh
Inventor
高正杰
李卓函
庄严
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Tianhua Intelligent Technology Co ltd
Dalian Institute Of Artificial Intelligence Dalian University Of Technology
Dalian University of Technology
Original Assignee
Dalian Tianhua Intelligent Technology Co ltd
Dalian Institute Of Artificial Intelligence Dalian University Of Technology
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Tianhua Intelligent Technology Co ltd, Dalian Institute Of Artificial Intelligence Dalian University Of Technology, Dalian University of Technology filed Critical Dalian Tianhua Intelligent Technology Co ltd
Priority to CN202111607748.4A priority Critical patent/CN114296454B/zh
Publication of CN114296454A publication Critical patent/CN114296454A/zh
Application granted granted Critical
Publication of CN114296454B publication Critical patent/CN114296454B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明提供了一种全向全驱移动机器人的自适应运动控制方法及系统,具体包括以下步骤:建立含有自适应补偿参数的全向全驱移动机器人运动学模型;建立全向全驱移动机器人实时运动数据采集系统,根据采集到的实时运动数据构建运动学补偿数据库;根据运动学补偿数据库建立运动学补偿模型,计算补偿矩阵,得到补偿后的机器人车轮速度输入矢量。本发明对机器人的车轮输入速度矢量进行自适应补偿,以提高机器人控制精度,减少机器人后期维护成本。

Description

一种全向全驱移动机器人的自适应运动控制方法及系统
技术领域
本发明涉及移动机器人控制技术领域,特别是涉及一种全向全驱移动机器人的自适应运动控制方法及系统。
背景技术
目前轮式移动机器人的主要驱动和转向方式有:前驱前转、后驱前转、全驱差速转向、麦克纳姆轮式、全向全驱等。传统的前驱前转、后驱后转虽然结构简单,但转向范围有限,不能实现车辆原地转向,在特殊地形中的通过性较易受到限制。全驱差速转向、麦克纳姆轮式虽然在驱动轮角度不变的情况下实现了全角度转向,但其转向方式造成的传动效率较低,在转向中因摩擦力损失较多能量。全向全驱的转向方式能够使所有驱动轮以任意角度旋转,通过运动控制可实现多种灵活的转向方式,同时能够保持较高的驱动效率,但需要实时调整转向机构和驱动机构互相配合,在运动控制上有一定难度。
全向全驱运动控制方法主要依赖阿克曼转向几何原理进行计算。首先建立移动机器人运动学模型,在给定期望转向半径和线速度的情况下,控制器解算出每个车轮理论的角度和速度,下发到伺服电机驱动器执行。为保证转向角度精确,转向电机会采用绝对值编码器,每次工作结束后能够自动回到零位。但随着机器人工作时间的增加,转向电机零位会由于累计误差产生偏移,导致车辆实际运动不能符合阿克曼转向几何,造成驱动轮和地面产生滑动摩擦,从而降低机器人的轨迹跟踪精度和能源效率,甚至电机控制发散。目前针对这种情况还没有有效的解决方法,一般是定期进行人工目视校准,步骤较为繁琐,且精度也得不到保障。
发明内容
针对现有技术中存在的缺陷,本发明的目的在于提供一种全向全驱移动机器人的自适应运动控制方法及系统,对机器人工作过程中车轮由于转向电机累计误差进行补偿,得到新的机器人输入速度矢量,提高了机器人的控制精度,降低了机器人的维护成本。
为了达到上述目的,本发明所采用的具体技术方案如下:
一种全向全驱移动机器人的自适应运动控制方法,具体包括以下步骤:
步骤1,建立含有自适应补偿参数的全向全驱移动机器人运动学模型,所述自适应补偿参数与每个车轮的偏移角度相关;
步骤2,建立全向全驱移动机器人实时运动数据采集系统,根据采集到的实时运动数据构建运动学补偿数据库;
步骤3,根据运动学补偿数据库建立运动学补偿模型,计算补偿矩阵,得到补偿后的机器人车轮速度输入矢量。
优选的,步骤1具体包括以下内容:
建立移动机器人环境坐标系、移动机器人本体坐标系及其坐标变换关系;
根据刚体运动学,确定移动机器人每个驱动轮的理论速度输入矢量;
设每个车轮的偏移角度为则自适应补偿角度为/>计算补偿后每个车轮的速度输入矢量为/>其中,VOn为补偿前的理论速度输入矢量,/>为角度补偿矩阵:
优选的,步骤2具体包括以下内容:
获取移动机器人在环境坐标系中的实际转向半径Rz及实际线速度Vz
获取每个车轮的实时速度Vrn(n=1,2,3,4);
获取移动机器人的期望转向半径R和期望线速度V;
存储多个时刻对应的期望转向半径、期望线速度、实际转向半径、实际线速度、实时速度,构成运动学补偿数据库。
优选的,步骤3具体包括以下内容:
建立车轮的角度补偿模型其中,/>为整车轨迹误差补偿角度,/>为车轮的转向误差补偿角度,整车轨迹误差补偿角度根据移动机器人实际转向半径分配的车轮转向角度与理想转向角度的差值计算得到,车轮的转向误差补偿角度根据移动机器人实际转向半径分配的车轮线速度和实际车轮线速度的差值计算得到;
由刚体运动学和移动机器人期望转向半径求得理想情况下机器人每个车轮的转向角度;
根据刚体运动学计算得到移动机器人实际转向半径分配的每个车轮的速度;
计算补偿矩阵,得到补偿后的机器人车轮速度输入矢量。
一种全向全驱移动机器人的自适应运动控制系统,包括移动机器人和设在所述移动机器人上的控制器、数据采集器,所述移动机器人的每个车轮上设有驱动电机和转向电机,所述数据采集器采集每个车轮的实时运动数据,并传输给所述控制器;
所述控制器建立含有自适应补偿参数的全向全驱移动机器人运动学模型,所述自适应补偿参数与每个车轮的偏移角度相关;根据采集到的实时运动数据构建运动学补偿数据库;根据运动学补偿数据库建立运动学补偿模型,计算补偿矩阵,得到补偿后的机器人车轮速度输入矢量。
优选的,建立含有自适应补偿参数的全向全驱移动机器人运动学模型具体指的是:
建立移动机器人环境坐标系、移动机器人本体坐标系及其坐标变换关系;
根据刚体运动学,确定移动机器人每个驱动轮的理论速度输入矢量;
设每个车轮的偏移角度为则自适应补偿角度为/>计算补偿后每个车轮的速度输入矢量为/>其中,VOn为补偿前的理论速度输入矢量,/>为角度补偿矩阵:
优选的,根据采集到的实时运动数据构建运动学补偿数据库具体指的是:
获取移动机器人在环境坐标系中的实际转向半径Rz及实际线速度Vz
获取每个车轮的实时速度Vrn(n=1,2,3,4);
获取移动机器人的期望转向半径R和期望线速度V;
存储多个时刻对应的期望转向半径、期望线速度、实际转向半径、实际线速度、实时速度,构成运动学补偿数据库。
优选的,根据运动学补偿数据库建立运动学补偿模型,计算补偿矩阵,得到补偿后的机器人车轮速度输入矢量具体指的是:
建立车轮的角度补偿模型其中,/>为整车轨迹误差补偿角度,/>为车轮的转向误差补偿角度,整车轨迹误差补偿角度根据移动机器人实际转向半径分配的车轮转向角度与理想转向角度的差值计算得到,车轮的转向误差补偿角度根据移动机器人实际转向半径分配的车轮线速度和实际车轮线速度的差值计算得到;
由刚体运动学和移动机器人期望转向半径求得理想情况下机器人每个车轮的转向角度;
根据刚体运动学计算得到移动机器人实际转向半径分配的每个车轮的速度;
计算补偿矩阵,得到补偿后的机器人车轮速度输入矢量。
本发明的有益效果在于:针对机器人工作过程中由于累计误差可能产生转向角度偏移,对机器人轨迹跟踪精度造成影响的情况,设计了一种在线采集、实时补偿的运动控制方法,对机器人的车轮输入速度矢量进行自适应补偿,以提高机器人控制精度,减少机器人后期维护成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是移动机器人的传动分布图;
图2是本发明一种全向全驱移动机器人的自适应运动控制方法的流程图;
图3是本发明一种全向全驱移动机器人的自适应运动控制系统的原理框图。
图中,1-驱动电机、2-转向电机。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的其他实施例,都属于本发明保护的范围。
图1中,从上到下,从左到右依次是一号轮、二号轮、三号轮和四号轮。
如图1和图2所示,本发明提出了一种全向全驱移动机器人的自适应运动控制方法,具体包括以下步骤:
步骤1,建立含有自适应补偿参数的全向全驱移动机器人运动学模型,所述自适应补偿参数与每个车轮的偏移角度相关;
步骤1具体包括以下内容:
建立移动机器人环境坐标系(Xw(t),Yw(t),θw(t))、移动机器人本体坐标系(X(t),Y(t),θ(t))及其坐标变换关系;给定移动机器人在环境坐标系中的期望运动轨迹,可求得移动机器人在环境坐标系下的速度为移动机器人在本体坐标系下速度为/>其坐标变换关系为:
根据刚体运动学,确定移动机器人每个驱动轮的理论速度输入矢量为
VOn=Vm+ω×Mn,n=1,2,3,4 (2)
其中,Vm为移动机器人质心速度矢量,ω为移动机器人绕质心旋转的角速度矢量,M为车轮几何中心在移动机器人本体坐标系X-Y平面的投影点到质心的位置矢量,
设每个车轮的偏移角度为则自适应补偿角度为/>计算补偿后每个车轮的速度输入矢量为
其中,VOn为补偿前的理论速度输入矢量,为角度补偿矩阵:
步骤2,建立全向全驱移动机器人实时运动数据采集系统,根据采集到的实时运动数据构建运动学补偿数据库;
步骤2具体包括以下内容:
利用移动机器人上的三维激光定位系统获取移动机器人在环境坐标系中的实际转向半径Rz(左转为正,右转为负)及实际线速度Vz
利用移动机器人驱动电机的编码器获取每个车轮的实时速度Vrn(n=1,2,3,4);
根据上层控制器路径规划结果可获取移动机器人的期望转向半径R(左转为正,右转为负)和期望线速度V;
存储多个时刻对应的期望转向半径、期望线速度、实际转向半径、实际线速度、实时速度,构建数组Nt=[R V Rz Vz Vr1 Vr2 Vr3 Vr4],t=1,2,...,300,t为控制器时间戳,在控制器中保存过去300个时刻机器人的数组Nt的实时数据,从而构成运动学补偿数据库为下一步控制器自适应参数的计算提供支持。
步骤3,根据运动学补偿数据库建立运动学补偿模型,计算补偿矩阵,得到补偿后的机器人车轮速度输入矢量。
步骤3具体包括以下内容:
移动机器人逆运动学是一个多解的问题,不同的转向角度和轮速分配可能产生相同的整车速度,为了在降低整车轨迹跟踪误差的同时,减小每个车轮的局部转向误差,建立车轮的角度补偿模型
其中,为整车轨迹误差补偿角度,/>为车轮的转向误差补偿角度,整车轨迹误差补偿角度根据移动机器人实际转向半径分配的车轮转向角度与理想转向角度的差值计算得到,车轮的转向误差补偿角度根据移动机器人实际转向半径分配的车轮线速度和实际车轮线速度的差值计算得到;
由刚体运动学和移动机器人期望转向半径求得理想情况下机器人每个车轮的转向角度;
其中,L为机器人轴距,W为机器人轮距。
同理可求得由机器人实际转向半径分配的每个车轮角度:
根据刚体运动学计算得到移动机器人实际转向半径分配的每个车轮的速度;
整车轨迹误差补偿角度来源于机器人实际转向半径分配的车轮转向角度于理想转向角度的差值,差值越大,补偿值越大,具体计算方式如下:
其中,k1为调整系数,默认值为1,可根据实际情况进行调整。
局部转向误差补偿角度基于机器人实际转向半径分配的车轮线速度和实际车轮线速度的差值,根据每个车轮的情况对式(12)中的转角差值进行进一步调整和分配,具体计算方式如下:
其中,k2为调整系数,默认值为1,可根据实际情况进行调整。
求得单个车轮补偿角度为:
联立式(14)、(3)、(4),即得到补偿后的机器人车轮速度输入矢量为:
其中,
VOn=Vm+ω×Mn,n=1,2,3,4
如图1和图3所示,本发明还提出了一种全向全驱移动机器人的自适应运动控制系统,包括移动机器人和设在所述移动机器人上的控制器、数据采集器,所述移动机器人的每个车轮上设有驱动电机1和转向电机2,所述数据采集器采集每个车轮的实时运动数据,并传输给所述控制器;
所述控制器建立含有自适应补偿参数的全向全驱移动机器人运动学模型,所述自适应补偿参数与每个车轮的偏移角度相关;根据采集到的实时运动数据构建运动学补偿数据库;根据运动学补偿数据库建立运动学补偿模型,计算补偿矩阵,得到补偿后的机器人车轮速度输入矢量。
优选的,建立含有自适应补偿参数的全向全驱移动机器人运动学模型具体指的是:
建立移动机器人环境坐标系、移动机器人本体坐标系及其坐标变换关系;
根据刚体运动学,确定移动机器人每个驱动轮的理论速度输入矢量;
设每个车轮的偏移角度为则自适应补偿角度为/>计算补偿后每个车轮的速度输入矢量为/>其中,VOn为补偿前的理论速度输入矢量,/>为角度补偿矩阵:
优选的,根据采集到的实时运动数据构建运动学补偿数据库具体指的是:
获取移动机器人在环境坐标系中的实际转向半径Rz及实际线速度Vz
获取每个车轮的实时速度Vrn(n=1,2,3,4);
获取移动机器人的期望转向半径R和期望线速度V;
存储多个时刻对应的期望转向半径、期望线速度、实际转向半径、实际线速度、实时速度,构成运动学补偿数据库。
优选的,根据运动学补偿数据库建立运动学补偿模型,计算补偿矩阵,得到补偿后的机器人车轮速度输入矢量具体指的是:
建立车轮的角度补偿模型其中,/>为整车轨迹误差补偿角度,/>为车轮的转向误差补偿角度,整车轨迹误差补偿角度根据移动机器人实际转向半径分配的车轮转向角度与理想转向角度的差值计算得到,车轮的转向误差补偿角度根据移动机器人实际转向半径分配的车轮线速度和实际车轮线速度的差值计算得到;
由刚体运动学和移动机器人期望转向半径求得理想情况下机器人每个车轮的转向角度;
根据刚体运动学计算得到移动机器人实际转向半径分配的每个车轮的速度;
计算补偿矩阵,得到补偿后的机器人车轮速度输入矢量。
本发明的有益效果在于:针对机器人工作过程中由于累计误差可能产生转向角度偏移,对机器人轨迹跟踪精度造成影响的情况,设计了一种在线采集、实时补偿的运动控制方法,对机器人的车轮输入速度矢量进行自适应补偿,以提高机器人控制精度,减少机器人后期维护成本。
建立含自适应补偿参数的四轮移动机器人运动学模型,将目标轨迹输入转化为理想车轮速度输入矢量,并与补偿矩阵相乘后提供给运动控制器作为控制输入;采用实时采集数据的方式,收集并保存机器人最近一段时间的期望转向半径及线速度、实际转向半径及线速度、车轮线速度等数据,构建运动学补偿数据库为机器人运动补偿提供支持;建立运动学补偿模型,从整车轨迹误差和每个车轮的线速度误差进行综合补偿,由机器人期望转向半径和实际转向半径的差值得到整车轨迹误差补偿项,由实际转向半径解算的车轮线速度和车轮实际线速度的差值得到车轮线速度误差补偿项,二者结合得到补偿矩阵;将补偿矩阵与机器人车轮理想速度输入矢量结合得到补偿后的机器人车轮速度输入矢量,将其输入运动控制器得到一种全向全驱移动机器人自适应运动控制方法。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,本领域技术人员完全可以在不偏离本发明技术思想的范围内,进行多样的变更以及修改。本发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求书范围来确定其技术性范围。

Claims (6)

1.一种全向全驱移动机器人的自适应运动控制方法,其特征在于,具体包括以下步骤:
步骤1,建立含有自适应补偿参数的全向全驱移动机器人运动学模型,所述自适应补偿参数与每个车轮的偏移角度相关;
步骤2,建立全向全驱移动机器人实时运动数据采集系统,根据采集到的实时运动数据构建运动学补偿数据库;
步骤3,根据运动学补偿数据库建立运动学补偿模型,计算补偿矩阵,得到补偿后的机器人车轮速度输入矢量;
步骤3具体包括以下内容:
建立车轮的角度补偿模型其中,/>为整车轨迹误差补偿角度,/>为车轮的转向误差补偿角度,整车轨迹误差补偿角度根据移动机器人实际转向半径分配的车轮转向角度与理想转向角度的差值计算得到,车轮的转向误差补偿角度根据移动机器人实际转向半径分配的车轮线速度和实际车轮线速度的差值计算得到;
由刚体运动学和移动机器人期望转向半径求得理想情况下机器人每个车轮的转向角度;
根据刚体运动学计算得到移动机器人实际转向半径分配的每个车轮的速度;
计算补偿矩阵,得到补偿后的机器人车轮速度输入矢量;
整车轨迹误差补偿角度计算方式如下:
其中,k1为调整系数;
局部转向误差补偿角度计算方式如下:
其中,k2为调整系数;
单个车轮补偿角度为:
2.根据权利要求1所述的一种全向全驱移动机器人的自适应运动控制方法,其特征在于,步骤1具体包括以下内容:
建立移动机器人环境坐标系、移动机器人本体坐标系及其坐标变换关系;
根据刚体运动学,确定移动机器人每个驱动轮的理论速度输入矢量;
设每个车轮的偏移角度为则自适应补偿角度为/>计算补偿后每个车轮的速度输入矢量为/>其中,VOn为补偿前的理论速度输入矢量,/>为角度补偿矩阵:
3.根据权利要求2所述的一种全向全驱移动机器人的自适应运动控制方法,其特征在于,步骤2具体包括以下内容:
获取移动机器人在环境坐标系中的实际转向半径Rz及实际线速度Vz
获取每个车轮的实时速度Vrn(n=1,2,3,4);
获取移动机器人的期望转向半径R和期望线速度V;
存储多个时刻对应的期望转向半径、期望线速度、实际转向半径、实际线速度、实时速度,构成运动学补偿数据库。
4.一种全向全驱移动机器人的自适应运动控制系统,其特征在于,包括移动机器人和设在所述移动机器人上的控制器、数据采集器,所述移动机器人的每个车轮上设有驱动电机和转向电机,所述数据采集器采集每个车轮的实时运动数据,并传输给所述控制器;
所述控制器建立含有自适应补偿参数的全向全驱移动机器人运动学模型,所述自适应补偿参数与每个车轮的偏移角度相关;根据采集到的实时运动数据构建运动学补偿数据库;根据运动学补偿数据库建立运动学补偿模型,计算补偿矩阵,得到补偿后的机器人车轮速度输入矢量;
所述控制器还用于建立车轮的角度补偿模型其中,/>为整车轨迹误差补偿角度,/>为车轮的转向误差补偿角度,整车轨迹误差补偿角度根据移动机器人实际转向半径分配的车轮转向角度与理想转向角度的差值计算得到,车轮的转向误差补偿角度根据移动机器人实际转向半径分配的车轮线速度和实际车轮线速度的差值计算得到;
由刚体运动学和移动机器人期望转向半径求得理想情况下机器人每个车轮的转向角度;
根据刚体运动学计算得到移动机器人实际转向半径分配的每个车轮的速度;
计算补偿矩阵,得到补偿后的机器人车轮速度输入矢量;
整车轨迹误差补偿角度计算方式如下:
其中,k1为调整系数;
局部转向误差补偿角度计算方式如下:
其中,k2为调整系数;
单个车轮补偿角度为:
5.根据权利要求4所述的一种全向全驱移动机器人的自适应运动控制系统,其特征在于,建立含有自适应补偿参数的全向全驱移动机器人运动学模型具体指的是:
建立移动机器人环境坐标系、移动机器人本体坐标系及其坐标变换关系;
根据刚体运动学,确定移动机器人每个驱动轮的理论速度输入矢量;
设每个车轮的偏移角度为则自适应补偿角度为/>计算补偿后每个车轮的速度输入矢量为/>其中,VOn为补偿前的理论速度输入矢量,/>为角度补偿矩阵:
6.根据权利要求5所述的一种全向全驱移动机器人的自适应运动控制系统,其特征在于,根据采集到的实时运动数据构建运动学补偿数据库具体指的是:
获取移动机器人在环境坐标系中的实际转向半径Rz及实际线速度Vz
获取每个车轮的实时速度Vrn(n=1,2,3,4);
获取移动机器人的期望转向半径R和期望线速度V;
存储多个时刻对应的期望转向半径、期望线速度、实际转向半径、实际线速度、实时速度,构成运动学补偿数据库。
CN202111607748.4A 2021-12-24 2021-12-24 一种全向全驱移动机器人的自适应运动控制方法及系统 Active CN114296454B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111607748.4A CN114296454B (zh) 2021-12-24 2021-12-24 一种全向全驱移动机器人的自适应运动控制方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111607748.4A CN114296454B (zh) 2021-12-24 2021-12-24 一种全向全驱移动机器人的自适应运动控制方法及系统

Publications (2)

Publication Number Publication Date
CN114296454A CN114296454A (zh) 2022-04-08
CN114296454B true CN114296454B (zh) 2024-05-28

Family

ID=80970024

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111607748.4A Active CN114296454B (zh) 2021-12-24 2021-12-24 一种全向全驱移动机器人的自适应运动控制方法及系统

Country Status (1)

Country Link
CN (1) CN114296454B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106406277A (zh) * 2016-09-23 2017-02-15 贵州珞石三盛科技有限公司 机器人运动学参数误差优化补偿方法及装置
CN109885052A (zh) * 2019-02-26 2019-06-14 华南理工大学 基于全向移动机器人运动学建模的误差模型预测控制方法
CN110542429A (zh) * 2019-07-15 2019-12-06 大连大华中天科技有限公司 一种全向移动机器人误差补偿方法
CN112109084A (zh) * 2020-08-21 2020-12-22 华南理工大学 基于机器人关节角度补偿的末端位置补偿方法及其应用
CN112129297A (zh) * 2020-09-25 2020-12-25 重庆大学 一种多传感器信息融合的自适应校正室内定位方法
WO2021238049A1 (zh) * 2020-05-28 2021-12-02 杭州键嘉机器人有限公司 机械臂的多负载自适应重力补偿方法、装置及控制设备
CN113821891A (zh) * 2021-09-30 2021-12-21 上海电机学院 一种全向移动机器人动力学模型的建模方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106406277A (zh) * 2016-09-23 2017-02-15 贵州珞石三盛科技有限公司 机器人运动学参数误差优化补偿方法及装置
CN109885052A (zh) * 2019-02-26 2019-06-14 华南理工大学 基于全向移动机器人运动学建模的误差模型预测控制方法
CN110542429A (zh) * 2019-07-15 2019-12-06 大连大华中天科技有限公司 一种全向移动机器人误差补偿方法
WO2021238049A1 (zh) * 2020-05-28 2021-12-02 杭州键嘉机器人有限公司 机械臂的多负载自适应重力补偿方法、装置及控制设备
CN112109084A (zh) * 2020-08-21 2020-12-22 华南理工大学 基于机器人关节角度补偿的末端位置补偿方法及其应用
CN112129297A (zh) * 2020-09-25 2020-12-25 重庆大学 一种多传感器信息融合的自适应校正室内定位方法
CN113821891A (zh) * 2021-09-30 2021-12-21 上海电机学院 一种全向移动机器人动力学模型的建模方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Mecanum轮全向机器人运动误差补偿方法;华铁丹;张少雷;;工业控制计算机(第10期);全文 *
基于大脑情感学习的四轮驱动机器人速度补偿控制;陈建平;王建彬;杨宜民;;智能系统学报(04);全文 *
基于模糊PD控制的四轮驱动全向移动机器人速度补偿控制器研究;匡建辉;杨宜民;;计算技术与自动化(第01期);第21-25页 *

Also Published As

Publication number Publication date
CN114296454A (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
CN109910878B (zh) 基于轨迹规划的自动驾驶车辆避障控制方法及系统
CN108227491B (zh) 一种基于滑模神经网络的智能车轨迹跟踪控制方法
CN112977602B (zh) 一种双电机线控转向系统及其混合鲁棒稳定性控制方法
CN111694361B (zh) 基于改进趋近律滑模控制的钢结构柔性探伤机器人轨迹跟踪方法
CN110262517A (zh) Agv系统的轨迹跟踪控制方法
CN105652869A (zh) 一种基于cmac和pid的全向移动机器人及移动控制方法
CN107065887A (zh) 全向移动机器人通道内倒行导航方法
CN104808590A (zh) 一种基于关键帧策略的移动机器人视觉伺服控制方法
CN111308884B (zh) 一种全向移动agv多舵轮协同控制方法
CN111596671A (zh) 一种无人智能清扫车轨迹跟踪控制方法及系统
CN102039589A (zh) 模块化的灾害救援机器人
CN111679676A (zh) 一种agv运动轨迹控制方法
CN111158376A (zh) 松软崎岖地形中摇杆摇臂式星球车轨迹跟踪协调控制方法
CN107509443A (zh) 一种智能割草机的坡地行驶控制方法及系统
Liu et al. Method for adaptive robust four-wheel localization and application in automatic parking systems
CN114442054A (zh) 一种移动机器人的传感器与底盘联合标定系统及方法
CN114296454B (zh) 一种全向全驱移动机器人的自适应运动控制方法及系统
CN113467475A (zh) 一种麦克纳姆轮全向移动机器人轨迹跟踪滑模控制方法
Li et al. Development of the automatic navigation system for combine harvester based on GNSS
CN116009562A (zh) 田间作物表型监测机器人自走平台与监测方法
CN115848162A (zh) 一种用于六轮独立电驱动无人车辆差动转向的控制方法
TWI770966B (zh) 無人自走車之導引控制方法
Gao et al. Path Tracking Control of Micro-tracked mobile robot
CN113829351A (zh) 一种基于强化学习的移动机械臂的协同控制方法
CN115185273B (zh) 一种空地异构多机器人轨迹跟踪平台

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant