CN114292082A - 一种路用赤泥基稳定材料及其制备方法与应用 - Google Patents

一种路用赤泥基稳定材料及其制备方法与应用 Download PDF

Info

Publication number
CN114292082A
CN114292082A CN202111552697.XA CN202111552697A CN114292082A CN 114292082 A CN114292082 A CN 114292082A CN 202111552697 A CN202111552697 A CN 202111552697A CN 114292082 A CN114292082 A CN 114292082A
Authority
CN
China
Prior art keywords
red mud
nano
aggregate
cementing
cementing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111552697.XA
Other languages
English (en)
Other versions
CN114292082B (zh
Inventor
周勇
李召峰
左志武
王川
游浩
马川义
张健
王凯
高益凡
张宁
周志浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Shandong High Speed Group Co Ltd
Original Assignee
Shandong University
Shandong High Speed Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University, Shandong High Speed Group Co Ltd filed Critical Shandong University
Priority to CN202111552697.XA priority Critical patent/CN114292082B/zh
Publication of CN114292082A publication Critical patent/CN114292082A/zh
Application granted granted Critical
Publication of CN114292082B publication Critical patent/CN114292082B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Road Paving Structures (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本发明公开了一种路用赤泥基稳定材料及其制备方法与应用。本发明解决了当下水泥生产过程中的污染环境,消耗不可再生矿产资源的问题,并且高效利用赤泥,本发明凝结时间,无侧限抗压强度均满足实际施工要求,大幅降低施工成本。

Description

一种路用赤泥基稳定材料及其制备方法与应用
技术领域
本发明涉及道路工程领域,具体提供一种路用赤泥基稳定材料及其制备方法与应用。
背景技术
赤泥是铝土矿提取Al2O3时产生的强碱性固体废物。目前大多数生产厂家每生产1吨Al2O3将附带产生0.8-1.5吨赤泥。据统计,全球每年赤泥产量为1.7亿吨,累计堆存量达42亿吨。中国是世界上最大的铝生产国,2020年我国氧化铝产量为6063万吨,产生赤泥量约1亿吨。目前世界赤泥平均利用率为15%,但我国赤泥综合利用率仅为8%。同时,在赤泥利用中,赤泥用量过多容易造成力学性能和稳定性降低,因此,需要在充分利用赤泥的时候解决材料力学性能和稳定性降低的问题。
发明内容
为了解决上述技术问题,本发明提出一种赤泥基稳定材料及其制备方法。该赤泥基稳定材料实现了赤泥的大宗消耗,绿色环保,制备工艺简单,并且该赤泥基稳定材料力学性能和稳定性好,满足道路施工要求,成本低廉,经济效益高,适宜向社会推广应用。
为解决以上技术问题,本发明的提供了如下技术方案:
本发明第一方面,提供一种赤泥基稳定材料,包括:胶凝材料、胶结剂、骨料和水;
其中,胶凝材料按质量百分比计包括:赤泥50%~70%,矿粉20%~50%,固化稳定剂0.5%~5%,纳米改性剂0.01%~1%;
胶结剂为赤泥和矿粉质量和的2%~5%;
骨料与胶凝材料、胶结剂质量和之比为93~97.5:7~2.5;
水为胶凝材料、胶结剂、骨料质量和的3.5%~7%。
进一步的,所述赤泥为拜耳法赤泥,其粒径为45目~200目。
进一步的,所述矿粉为S95或S75级矿渣粉。
进一步的,所述胶结剂为硅酸钠、氢氧化钠、生石灰、氢氧化钾、碳酸钠中任意一种或几种以任意比例混合使用。
优选的,硅酸钠的模数为1.2~1.8。
进一步的,所述固化稳定剂为固化稳定剂A和固化稳定剂B,其质量比为1~3:0.5~1。
优选的,所述固化稳定剂A为水泥、硅灰和粉煤灰,按质量比为0.8~1.2:0.8~1.2:0.3~0.6:0.5~1混合。
优选的,所述固化稳定剂B为环氧树脂、脲甲醛树脂、聚酯树脂中的一种。
进一步的,所述水泥为42.5普通硅酸盐水泥,粉煤灰为二级F类粉煤灰。
进一步的,所述纳米改性剂为纳米ZnO、纳米SiO2、纳米CaCO3和纳米Al2O3,按质量比为0.4~1.5:0.4~1.5:0.4~1.5:0.4~1.5进行混合。
进一步的,所述骨料为建筑固废、尾矿和煤矸石,其质量比为2~5:0.5~2:1~3进行混合。
进一步的,所述骨料粒径由以下重量百分比组成:20mm~30mm粒径12%~20%、10mm~20mm粒径32%~42%、5mm~10mm粒径16%~25%、0~5mm粒径25~35%;
本发明第二方面,提供一种赤泥基稳定材料的制备方法,包括:
(1)将赤泥、矿粉、胶结剂、固化稳定剂、纳米改性剂混合搅拌均匀后得混合料;
(2)将混合料与骨料和水混合搅拌均匀后得赤泥基稳定材料。
本发明第三方面,提供一种赤泥基稳定材料在道路施工建设中的应用,包括:将赤泥基稳定材料进行填筑后,经摊铺机摊铺,压路机压实,压实度不小于98%。
加入胶结剂可促进赤泥和矿粉水化反应进行,生成更多的水化产物,随着水化反应的进行,结构不断被填充密实,强度稳定性不断增加。胶凝材料在水化过程中形成的N-C-S-A-H凝胶、N-S-A-H凝胶、C-S-A-H凝胶以及C-S-A凝胶对重金属具有吸附固化作用,此外,N-C-S-A-H凝胶、N-S-A-H凝胶为三维网络结构,它们在形成过程中对重金属组分具有物理封裹效应。加入少量固化稳定剂,残余游离态重金属元素可以通过吸附、沉降、离子交换、钝化等多种方式被固化,从而有效解决赤泥重金属污染问题。
加入纳米SiO2,由于纳米SiO2颗粒的结晶成核作用促进了赤泥和矿粉的水化,微集料充填效应提高了材料早期强度,提高赤泥基稳定材料的力学性能。加入纳米ZnO可提高材料结构致密性从而提高力学性能。加入纳米CaCO3可加快材料水化速度,增加水化程度,最终使材料力学性能均有所提高。加入纳米Al2O3可以增大新拌赤泥基浆体的屈服应力和塑性黏度,使得赤泥基稳定材料在各龄期的抗压强度和抗折强度都有所增长,同时弥补了纳米CaCO3导致的收缩缺陷。每种纳米材料具有其独特的性质,同时又可在体系中协同互补使作用效果最大化。
材料中骨料是建筑固废,尾矿和煤矸石中的一种或几种以任意比例混合使用,其中建筑固废,尾矿和煤矸石选用的是不同粒径分布的颗粒集配,能够形成良好的孔隙结构,配合赤泥基胶凝材料作用形成良好的密实结构,提高了体系强度和稳定性。
本发明具有以下有益效果:
(1)该赤泥基稳定材料中赤泥利用率高,各组分互相配合,实现了在大量使用赤泥的同时保证材料力学性能和稳定性。本发明主要将赤泥与矿粉在胶结剂的作用下组成二元体系聚物类胶凝材料,辅以固化稳定剂和纳米改性剂,结合骨料形成具有优秀抗压强度、劈裂强度的路用材料,且其水稳定系数大,水稳定性好,解决了赤泥掺量过高导致的强度变低,耐久性变差的问题。
(2)该赤泥基稳定材料不仅实现了赤泥的大宗消耗,而且实现了减少水泥用量。该材料的骨料采用建筑固废、尾矿等,实现废物利用,达到绿色环保节约资源的目的。该赤泥基稳定材料制备方法工艺简单,成本低廉适宜向社会推广应用。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
实施例1:
一种赤泥基稳定材料,其组分为胶凝材料、胶结剂、骨料和水;
胶凝材料按质量百分比计包括:赤泥55%,矿粉43.5%,固化稳定剂1.48%,纳米改性剂0.02%,胶结剂为赤泥和矿粉质量和的3%,骨料与胶凝材料、胶结剂质量和的比为2.5:97.5,水为凝材料、胶结剂、骨料质量和的4.5%。
所述赤泥为拜耳法赤泥,赤泥的粒径为150目。
所述矿粉为S95级矿渣粉。
所述胶结剂为1.4模零水硅酸钠。
所述固化稳定剂A和固化稳定剂B质量比为2:0.5。
所述固化稳定剂A为水泥、硅灰、粉煤灰,其质量比为0.8:0.5:0.6。
所述固化稳定剂B为环氧树脂。
所述水泥为42.5普通硅酸盐水泥,粉煤灰为二级F类粉煤灰。
所述纳米改性剂为纳米ZnO、纳米SiO2、纳米CaCO3、纳米Al2O3其质量比为1:0.5:1:0.4。
所述骨料为建筑固废、尾矿和煤矸石,其质量比为5:1:1。
所述骨料由以下组分组成:20mm~30mm粒径15%、10mm~20mm粒径35%、5mm~10mm粒径20%、0~5mm粒径30%。
上述赤泥基稳定材料的制备方法,包括:
将赤泥、矿粉、胶结剂、固化稳定剂、纳米改性剂混合搅拌均匀后得混合料。
将混合料与集配碎石和水混合搅拌均匀后得赤泥基稳定材料。
应用时,将赤泥基稳定材料进行填筑后,经摊铺机摊铺,压路机压实,压实度不小于98%。
实施例2:
一种赤泥基稳定材料,其组分为胶凝材料、胶结剂、骨料和水;
胶凝材料按质量百分比计包括:赤泥68%,矿粉30%,固化稳定剂1.96%,纳米改性剂0.04%,胶结剂为赤泥和矿粉质量和的2.5%,骨料与胶凝材料、胶结剂质量和的比为2.5:97.5,水为凝材料、胶结剂、骨料质量和的5%。
所述赤泥为拜耳法赤泥,赤泥的粒径为100目。
所述矿粉为S95级矿渣粉。
所述胶结剂为1.4模零水硅酸钠。
所述固化稳定剂A和固化稳定剂B质量比为3:1。
所述固化稳定剂A为水泥、硅灰、粉煤灰,其质量比为1:0.5:0.5。
所述固化稳定剂B为环氧树脂。
所述水泥为42.5普通硅酸盐水泥,粉煤灰为二级F类粉煤灰。
所述纳米改性剂为纳米ZnO、纳米SiO2、纳米CaCO3、纳米Al2O3其质量比为0.8:0.6:1:0.5。
所述骨料为建筑固废、尾矿和煤矸石,其质量比为4:2:1。
所述骨料由以下组分组成:20mm~30mm粒径20%、10mm~20mm粒径30%、5mm~10mm粒径20%、0~5mm粒径30%。
上述赤泥基稳定材料的制备方法,包括:
将赤泥、矿粉、胶结剂、固化稳定剂、纳米改性剂混合搅拌均匀后得混合料。
将混合料与集配碎石和水混合搅拌均匀后得赤泥基稳定材料。
应用时,将赤泥基稳定材料进行填筑后,经摊铺机摊铺,压路机压实,压实度不小于98%。
实施例3:
一种赤泥基稳定材料,其组分为胶凝材料、胶结剂、骨料和水;
胶凝材料按质量百分比计包括:赤泥62%,矿粉36%,固化稳定剂1.5%,纳米改性剂0.5%,胶结剂为赤泥和矿粉质量和的2.8%,骨料与胶凝材料、胶结剂质量和的比为4:96,水为凝材料、胶结剂、骨料质量和的5%。
所述赤泥为拜耳法赤泥,赤泥的粒径为200目。
所述矿粉为S95级矿渣粉。
所述胶结剂为1.4模零水硅酸钠。
所述固化稳定剂A和固化稳定剂B质量比为1:1。
所述固化稳定剂A为水泥、硅灰、粉煤灰,其质量比为1:0.6:0.1。
所述固化稳定剂B为聚脂。
所述水泥为42.5普通硅酸盐水泥,粉煤灰为二级F类粉煤灰。
所述纳米改性剂为纳米ZnO、纳米SiO2、纳米CaCO3、纳米Al2O3其质量比为1:1:1:0.5。
所述骨料为建筑固废、尾矿和煤矸石,其质量比为3:2:1。
所述骨料由以下组分组成:20mm~30mm粒径20%、10mm~20mm粒径30%、5mm~10mm粒径22%、0~5mm粒径28%。
上述赤泥基稳定材料的制备方法,包括:
将赤泥、矿粉、胶结剂、固化稳定剂、纳米改性剂混合搅拌均匀后得混合料。
将混合料与集配碎石和水混合搅拌均匀后得赤泥基稳定材料。
应用时,将赤泥基稳定材料进行填筑后,经摊铺机摊铺,压路机压实,压实度不小于98%。
对比例1:
与实施例一相比,不同的是不添加纳米改性剂。
对比例2:
与实施例一相比,不同的是纳米改性剂为纳米SiO2、纳米CaCO3、纳米Al2O3其质量比为0.5:1:0.4。
对比例3:
与实施例一相比,不同的是纳米改性剂为纳米ZnO、纳米CaCO3、纳米Al2O3其质量比为1:1:0.4。
对比例4:
与实施例一相比,不同的是纳米改性剂为纳米ZnO、纳米SiO2、纳米Al2O3其质量比为1:0.5:0.4。
对比例5:
与实施例一相比,不同的是纳米改性剂为纳米ZnO、纳米SiO2、纳米CaCO3质量比为1:0.5:1。
性能测试
根据JTG E51-2009《公路工程无机结合料稳定材料试验规程》对实施例1-3以及对比例1-5进行性能测试。
水稳定性测试方法:在固定胶凝材料掺量的基础上,测定28d龄期的饱水(24h)和非饱水无侧限抗压强度代表值,其比值为水稳定系数,且水稳定性系数越大,水稳定性越高。
表1路用赤泥基稳定材料性能测试结果
Figure BDA0003417609130000091
从表1的性能测试结果可知,本发明实现了在大量使用赤泥的同时保证材料力学性能,其抗压强度可达6.6Mpa。从表1可知,纳米改性剂中各组分相互配合,大大提高其水化速度、抗压强度、劈裂强度等性能。

Claims (10)

1.一种赤泥基稳定材料,包括:胶凝材料、胶结剂、骨料和水;
其中,胶凝材料按质量百分比计包括:赤泥50%~70%,矿粉20%~50%,固化稳定剂0.5%~5%,纳米改性剂0.01%~1%;
胶结剂为赤泥和矿粉质量和的2%~5%;
骨料与胶凝材料、胶结剂质量和之比为93~97.5:7~2.5;
水为胶凝材料、胶结剂、骨料质量和的3.5%~7%。
2.根据权利要求1所述的赤泥基稳定材料,其特征在于,所述赤泥拜耳法赤泥,其粒径为45目~200目。
3.根据权利要求1所述的赤泥基稳定材料,其特征在于,所述矿粉为S95或S75级矿渣粉。
4.根据权利要求1所述的赤泥基稳定材料,其特征在于,所述胶结剂为硅酸钠、氢氧化钠、生石灰、氢氧化钾、碳酸钠中任意一种或几种以任意比例混合使用,优选的,硅酸钠的模数为1.2~1.8。
5.根据权利要求1所述的赤泥基稳定材料,其特征在于,所述固化稳定剂为固化稳定剂A和固化稳定剂B,其质量比为1~3:0.5~1;
优选的,所述固化稳定剂A为水泥、硅灰和粉煤灰,按质量比为0.8~1.2:0.8~1.2:0.3~0.6:0.5~1混合;
优选的,所述固化稳定剂B为环氧树脂、脲甲醛树脂、聚酯树脂中的一种。
6.根据权利要求5所述的赤泥基稳定材料,其特征在于,所述水泥为42.5普通硅酸盐水泥,粉煤灰为二级F类粉煤灰。
7.根据权利要求1所述的赤泥基稳定材料,其特征在于,所述纳米改性剂为纳米ZnO、纳米SiO2、纳米CaCO3和纳米Al2O3,按质量比为0.4~1.5:0.4~1.5:0.4~1.5:0.4~1.5进行混合。
8.根据权利要求1所述的赤泥基稳定材料,其特征在于,所述骨料为建筑固废、尾矿和煤矸石,其按质量比2~5:0.5~2:1~3进行混合;所述骨料粒径由以下重量百分比组成:20mm~30mm粒径12%~20%、10mm~20mm粒径32%~42%、5mm~10mm粒径16%~25%、0~5mm粒径25~35%。
9.一种如权利要求1-8任一项所述的赤泥基稳定材料的制备方法,其特征在于,该制备方法包括如下步骤:
(1)将赤泥、矿粉、胶结剂、固化稳定剂、纳米改性剂混合搅拌均匀后得混合料;
(2)将混合料与骨料和水混合搅拌均匀后得赤泥基稳定材料。
10.一种如权利要求1-8任一项所述的赤泥基稳定材料在道路施工建设中的应用,其特征在于,将赤泥基稳定材料进行填筑后,经摊铺机摊铺,压路机压实,压实度不小于98%。
CN202111552697.XA 2021-12-17 2021-12-17 一种路用赤泥基稳定材料及其制备方法与应用 Active CN114292082B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111552697.XA CN114292082B (zh) 2021-12-17 2021-12-17 一种路用赤泥基稳定材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111552697.XA CN114292082B (zh) 2021-12-17 2021-12-17 一种路用赤泥基稳定材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN114292082A true CN114292082A (zh) 2022-04-08
CN114292082B CN114292082B (zh) 2022-09-23

Family

ID=80967070

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111552697.XA Active CN114292082B (zh) 2021-12-17 2021-12-17 一种路用赤泥基稳定材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114292082B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114656234A (zh) * 2022-04-14 2022-06-24 太原理工大学 一种赤泥/煤矸石基胶凝材料道路基层配方及制备工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104692733A (zh) * 2015-03-16 2015-06-10 洛阳理工学院 用于盐渍土地区的半埋混凝土及其制备方法
CN105693127A (zh) * 2016-03-15 2016-06-22 程钰 拜耳法赤泥路基专用固化剂、其制备方法及应用方法
AU2014410209A1 (en) * 2014-10-28 2017-03-09 Halliburton Energy Services, Inc. Extended-life cement compositions comprising red mud solids
CN110330282A (zh) * 2019-07-24 2019-10-15 中国地质大学(北京) 复合胶凝材料及其制备方法和应用
CN112408827A (zh) * 2020-12-07 2021-02-26 北京金隅混凝土有限公司 一种再生混凝土及其制备方法
CN113135727A (zh) * 2021-04-19 2021-07-20 山东高速集团有限公司 一种用于路基水稳层的赤泥基材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014410209A1 (en) * 2014-10-28 2017-03-09 Halliburton Energy Services, Inc. Extended-life cement compositions comprising red mud solids
CN104692733A (zh) * 2015-03-16 2015-06-10 洛阳理工学院 用于盐渍土地区的半埋混凝土及其制备方法
CN105693127A (zh) * 2016-03-15 2016-06-22 程钰 拜耳法赤泥路基专用固化剂、其制备方法及应用方法
CN110330282A (zh) * 2019-07-24 2019-10-15 中国地质大学(北京) 复合胶凝材料及其制备方法和应用
CN112408827A (zh) * 2020-12-07 2021-02-26 北京金隅混凝土有限公司 一种再生混凝土及其制备方法
CN113135727A (zh) * 2021-04-19 2021-07-20 山东高速集团有限公司 一种用于路基水稳层的赤泥基材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
(英)JOHN L.PROVIS 等主编: "《碱激发材料》", 31 January 2019, 中国建材工业出版社 *
刘冬梅: "《生态修复理论与技术》", 31 July 2017, 哈尔滨工业大学出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114656234A (zh) * 2022-04-14 2022-06-24 太原理工大学 一种赤泥/煤矸石基胶凝材料道路基层配方及制备工艺

Also Published As

Publication number Publication date
CN114292082B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
CN107459311B (zh) 一种利废抗折增韧的湿磨浆状掺合料的制备方法
CN111233407B (zh) 一种3d打印固废混凝土构件及制备方法
CN110526613B (zh) 一种铝模专用超细砂泵送混凝土聚羧酸减水剂
CN108178578B (zh) 一种水下不分散混凝土
CN111908862A (zh) 一种可再生环保型透水混凝土及其制备方法
CN108675694A (zh) 一种早强耐候地质聚合物透水混凝土
CN111704410A (zh) 一种高性能机制砂混凝土及其制备方法
CN111039604A (zh) 一种用于路面脱空的煤矸石粉基灌浆材料及其制备方法
CN109467362B (zh) 一种水利工程地基灌浆处理工程用的混合浆液及制备方法
CN108546009B (zh) 掺多尺度粒径CaCO3的高性能混凝土浆状掺合料
CN112062507A (zh) 一种包含再生废砖细骨料的混凝土
CN112777981A (zh) 一种低成本高性能全再生骨料砂浆及其制备方法
CN113754331A (zh) 一种赤泥基胶凝材料及其制备方法和应用
CN114292082B (zh) 一种路用赤泥基稳定材料及其制备方法与应用
CN114163174A (zh) 一种固废基改性胶结材料及其应用
CN111574135A (zh) 一种利用回收浆水制备的高性能混凝土
CN115073101B (zh) 一种超细玄武岩粉末注浆材料
CN111268988A (zh) 一种高耐水免煅烧磷石膏基边坡砌块材料及其制备
CN1323974C (zh) 应用于可控制性低强度回填材料的骨材及其处理方法
CN105601205A (zh) 一种铸造废砂自密实混凝土
CN115196936A (zh) 一种用磷石膏活性粉配制的石膏基室内地坪自流平混凝土及其制备方法和应用
CN114735980B (zh) 一种塑性混凝土及其制备方法
CN115745541B (zh) 一种超细尾矿基水稳层材料及其制备方法
CN112897955B (zh) 一种免蒸免烧尾矿砖及其制备方法
CN117819898A (zh) 一种钢渣基道路水稳材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant