CN114289931A - Solid welding wire for submerged arc transverse welding of high-manganese austenitic low-temperature steel and welding process thereof - Google Patents
Solid welding wire for submerged arc transverse welding of high-manganese austenitic low-temperature steel and welding process thereof Download PDFInfo
- Publication number
- CN114289931A CN114289931A CN202210114162.2A CN202210114162A CN114289931A CN 114289931 A CN114289931 A CN 114289931A CN 202210114162 A CN202210114162 A CN 202210114162A CN 114289931 A CN114289931 A CN 114289931A
- Authority
- CN
- China
- Prior art keywords
- welding
- submerged arc
- wire
- temperature steel
- low temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003466 welding Methods 0.000 title claims abstract description 256
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 80
- 239000010959 steel Substances 0.000 title claims abstract description 80
- 239000011572 manganese Substances 0.000 title claims abstract description 76
- 229910052748 manganese Inorganic materials 0.000 title claims abstract description 71
- 239000007787 solid Substances 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 37
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 49
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 33
- 239000000126 substance Substances 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 239000000945 filler Substances 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 8
- 229910052717 sulfur Inorganic materials 0.000 claims description 14
- 230000004907 flux Effects 0.000 claims description 12
- 229910052698 phosphorus Inorganic materials 0.000 claims description 12
- 229910052721 tungsten Inorganic materials 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 5
- 229910004261 CaF 2 Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 238000005245 sintering Methods 0.000 claims description 4
- 238000003723 Smelting Methods 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 238000005242 forging Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 238000005096 rolling process Methods 0.000 claims description 3
- 238000004381 surface treatment Methods 0.000 claims description 3
- 238000004804 winding Methods 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 abstract description 43
- 239000002184 metal Substances 0.000 abstract description 43
- 239000003496 welding fume Substances 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 description 11
- 239000003949 liquefied natural gas Substances 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 238000005728 strengthening Methods 0.000 description 10
- 238000003860 storage Methods 0.000 description 9
- 239000010949 copper Substances 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 229910000617 Mangalloy Inorganic materials 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 229910001338 liquidmetal Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 239000002893 slag Substances 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000011573 trace mineral Substances 0.000 description 2
- 235000013619 trace mineral Nutrition 0.000 description 2
- NGONBPOYDYSZDR-UHFFFAOYSA-N [Ar].[W] Chemical compound [Ar].[W] NGONBPOYDYSZDR-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Landscapes
- Arc Welding In General (AREA)
- Nonmetallic Welding Materials (AREA)
Abstract
本发明涉及一种高锰奥氏体低温钢埋弧横焊用实芯焊丝及其焊接工艺。其技术方案是:所述高锰奥氏体低温钢埋弧横焊用实芯焊丝的化学组分是:C为0.20~0.60wt%;Si为≤0.05wt%;Mn为20~32wt%;Ni为0.1~2wt%;Cr为0.1~1.8wt%;Cu为0.55~1.00wt%;W为0.5~1.9wt%;Mo为1.3~3.0wt%;Al为0.5~2wt%;Nb+V+Ti+B+RE为0~0.5wt%;P≤0.002wt%;S≤0.001wt%;余量为Fe和不可避免的杂质。高锰奥氏体低温钢埋弧横焊用实芯焊丝的焊接工艺依次为打底焊、填充焊和盖面焊。本发明用于横焊位置焊接,具有能全自动焊接、焊接效率高、无焊接烟尘、焊缝金属成型好和力学性能优良的特点;所形成的焊缝金属低温韧性优良以及强度与高锰奥氏体低温钢相匹配。The invention relates to a solid core welding wire for submerged arc horizontal welding of high manganese austenite low temperature steel and a welding process thereof. The technical scheme is: the chemical composition of the solid core welding wire for submerged arc horizontal welding of high manganese austenite low temperature steel is: C is 0.20-0.60wt%; Si is ≤0.05wt%; Mn is 20-32wt%; Ni: 0.1-2wt%; Cr: 0.1-1.8wt%; Cu: 0.55-1.00wt%; W: 0.5-1.9wt%; Mo: 1.3-3.0wt%; Al: 0.5-2wt%; Nb+V+ Ti+B+RE is 0-0.5wt%; P≤0.002wt%; S≤0.001wt%; the balance is Fe and inevitable impurities. The welding process of solid wire for submerged arc horizontal welding of high manganese austenitic low temperature steel is bottom welding, filler welding and cover welding. The invention is used for horizontal welding position welding, and has the characteristics of fully automatic welding, high welding efficiency, no welding fume, good welding seam metal forming and excellent mechanical properties; Tensite low temperature steel to match.
Description
技术领域technical field
本发明属于埋弧横焊用实芯焊丝技术领域。具体涉及一种高锰奥氏体低温钢埋弧横焊用实芯焊丝及其焊接工艺。The invention belongs to the technical field of solid core welding wire for submerged arc horizontal welding. In particular, it relates to a solid core welding wire for submerged arc horizontal welding of high manganese austenite low temperature steel and a welding process thereof.
背景技术Background technique
近年来,随着液化天然气(简写为LNG,下同)清洁能源的快速发展,LNG储运装备(其服役温度为-196℃)呈现出前所未有的巨大需求。目前商业用LNG储罐用钢为9Ni钢,价格昂贵,因此,开发和研制新型低温钢成为世界各国的重要方向。锰含量为22~25%的高锰钢,以其与镍具有相同的物理冶金特点,通过添加其它合金元素,使高锰钢的层错能控制在22~24mJ/m2以上,在-196℃的超低温条件下其微观组织仍然为稳定的奥氏体,从而保证了超低温条件下的优良综合力学性能,高锰奥氏体低温钢与9Ni钢的力学性能相当,因而,高锰奥氏体低温钢成为未来极具竞争力的、替代9Ni钢用于LNG储运装备的新型低温钢铁材料。In recent years, with the rapid development of clean energy of liquefied natural gas (abbreviated as LNG, the same below), LNG storage and transportation equipment (the service temperature of which is -196°C) presents an unprecedented huge demand. At present, the steel used for commercial LNG storage tanks is 9Ni steel, which is expensive. Therefore, the development and development of new low-temperature steel has become an important direction for all countries in the world. High-manganese steel with manganese content of 22-25% has the same physical metallurgical characteristics as nickel. By adding other alloying elements, the stacking fault energy of high-manganese steel can be controlled above 22-24mJ/m 2 , and at -196 Under the ultra-low temperature of ℃, its microstructure is still stable austenite, thus ensuring excellent comprehensive mechanical properties under ultra-low temperature conditions. The mechanical properties of high-manganese austenite low-temperature steel are equivalent to 9Ni steel. Low-temperature steel has become a highly competitive new low-temperature steel material to replace 9Ni steel for LNG storage and transportation equipment in the future.
与高锰奥氏体低温钢配套的焊接材料与焊接工艺是制备LNG储运装备的关键技术之一,决定着整个结构的完整性和运行的安全性。现有技术中:The welding material and welding process matched with high-manganese austenitic low-temperature steel is one of the key technologies for preparing LNG storage and transportation equipment, which determines the integrity of the entire structure and the safety of operation. In the prior art:
《一种用于高锰奥氏体低温钢手工电弧焊接的低氢型焊条》(CN201910008172.6)专利技术,公开了一种与高锰低温钢配套的手工电焊条,该手工电焊条虽可实现全位置焊接,但全部采用人工操作,劳动强度大,劳动力成本高,焊接效率低;焊条的发尘量大,不利于焊工的身体健康。The patented technology of "A Low-Hydrogen Electrode for Manual Arc Welding of High Manganese Austenitic Low-Temperature Steel" (CN201910008172.6) discloses a manual welding electrode matched with high-manganese low-temperature steel. All-position welding is realized, but all manual operations are used, which is labor-intensive, labor-cost high, and welding efficiency is low; the amount of dust generated by the electrode is large, which is not conducive to the health of the welder.
《一种高锰超低温钢焊丝及其焊接工艺》(CN201710432013.X)专利技术、《用于超低温高锰钢焊接的钨极氩弧焊实芯焊丝》(CN201710194207.0)专利技术和《TUNGSTENINERT GAS WELDING MATERIAL FOR HIGH MANGANESE STEEL》(KR20140188144)专利技术,公开了三种与高锰奥氏体低温钢配套的钨极氩弧焊焊丝及焊接工艺,由于钨极氩弧焊采用钨极作为电极,通过钨极与焊接板接触产生电弧来熔化焊丝和钢板,只能人工操作,不能实现自动化,存在焊接效率低的问题。"A high-manganese and ultra-low temperature steel welding wire and its welding process" (CN201710432013.X) patented technology, "Tungsten argon arc welding solid core welding wire for ultra-low temperature high-manganese steel welding" (CN201710194207.0) patented technology and "TUNGSTENINERT GAS" WELDING MATERIAL FOR HIGH MANGANESE STEEL" (KR20140188144) patent technology, discloses three kinds of tungsten electrode argon arc welding wire and welding process matching with high manganese austenitic low temperature steel, because tungsten electrode argon arc welding uses tungsten electrode as electrode, The contact between the tungsten electrode and the welding plate produces an arc to melt the welding wire and the steel plate, which can only be operated manually and cannot be automated, and there is a problem of low welding efficiency.
《一种适用于高锰奥氏体低温钢的高效埋弧焊金属粉芯药芯焊丝》(CN201811602479.0)专利技术、《制备LNG贮罐的高锰钢用全自动埋弧焊实芯焊丝》(CN201710194206.6)专利技术、《一种25Mn奥氏体钢用金属粉芯埋弧焊丝焊剂组合》(CN202010599845.2)专利技术和《一种节镍型高锰低温钢用全自动埋弧焊实芯焊丝》(CN202010993137.7)专利技术,公开了用于高锰奥氏体低温钢焊接的全自动埋弧焊焊丝和焊剂,但埋弧焊只能实现平焊位置焊接。《HIGH STRENGTH WELDING JOINT HAVINGEXCELLENT IMPACT TOUGHNESS AT VERY LOW TEMPERATURE,AND FLUX-CORED ARC WELDINGWIRE THEREFOR》(US201816189232)专利技术和《一种超低温高锰钢用熔化极气体保护焊金属粉芯药芯焊丝》(CN201910008171.1)专利技术,公开了用于高锰低温钢的CO2或CO2+Ar混合气体保护的药芯焊丝和实芯焊丝,虽然可实现全位置高效率焊接,但是存在烟尘大、飞溅大、焊缝金属成型差和力学性能低等问题。"A high-efficiency submerged arc welding metal powder-cored flux-cored wire suitable for high-manganese austenitic low-temperature steel" (CN201811602479.0) patented technology, "Full-automatic submerged arc welding solid wire for preparing high-manganese steel for LNG storage tanks""(CN201710194206.6) patented technology, "a combination of metal powder core submerged arc welding wire flux for 25Mn austenitic steel" (CN202010599845.2) patented technology and "a fully automatic submerged arc for nickel-saving high manganese low temperature steel""Solid Core Welding Wire" (CN202010993137.7) patent technology, discloses fully automatic submerged arc welding wire and flux for welding high manganese austenitic low temperature steel, but submerged arc welding can only achieve flat welding position welding. "HIGH STRENGTH WELDING JOINT HAVINGEXCELLENT IMPACT TOUGHNESS AT VERY LOW TEMPERATURE, AND FLUX-CORED ARC WELDINGWIRE THEREFOR" (US201816189232) patented technology and "A kind of metal powder-cored flux-cored welding wire for ultra-low temperature and high manganese steel" (CN201910008171. 1) The patented technology discloses the flux-cored welding wire and solid-cored welding wire for the protection of CO 2 or CO 2 +Ar mixed gas for high-manganese low-temperature steel. Poor weld metal formation and low mechanical properties.
在进行LNG储罐建造过程中,不可避免会出现比较长的横焊焊缝。在采用手工电弧焊、钨极氩弧焊时,存在焊接效率低、不能实现自动化的问题;在采用埋弧焊时,不能实现横焊位置的全自动化焊接;在采用CO2或CO2+Ar混合气体保护的药芯焊丝和实芯焊丝,存在烟尘大、飞溅大、成型不好和焊缝金属力学性能低的问题。During the construction of LNG storage tanks, it is inevitable that relatively long horizontal welds will appear. When manual arc welding and tungsten argon arc welding are used, there are problems of low welding efficiency and automation cannot be realized; when submerged arc welding is used, fully automatic welding at the horizontal welding position cannot be realized; when CO 2 or CO 2 +Ar is used Flux-cored welding wire and solid-cored welding wire protected by mixed gas have the problems of large smoke and dust, large splash, poor forming and low mechanical properties of weld metal.
发明内容SUMMARY OF THE INVENTION
本发明旨在克服现有技术的不足,目的是提供一种能全自动焊接、焊接效率高、无焊接烟尘、焊缝金属成型好和力学性能优良的高锰奥氏体低温钢埋弧横焊用实芯焊丝及其焊接工艺;所形成的焊缝金属低温韧性优良以及强度与高锰奥氏体低温钢相匹配,能满足用于-196℃工作温度的LNG贮罐的强度和超低温韧性的技术要求。The invention aims to overcome the deficiencies of the prior art, and aims to provide a submerged arc horizontal welding of high manganese austenitic low temperature steel capable of automatic welding, high welding efficiency, no welding fume, good weld metal formation and excellent mechanical properties Using solid core welding wire and its welding process; the formed weld metal has excellent low temperature toughness and the strength matches that of high manganese austenitic low temperature steel, which can meet the requirements of strength and ultra-low temperature toughness for LNG storage tanks with a working temperature of -196 °C. skills requirement.
为实现上述目的,本发明采用的技术方案是:For achieving the above object, the technical scheme adopted in the present invention is:
所述高锰奥氏体低温钢埋弧横焊用实芯焊丝的化学组分是:C为0.20~0.60wt%;Si为≤0.05wt%;Mn为20~32wt%;Ni为0.1~2wt%;Cr为0.1~1.8wt%;Cu为0.55~1.00wt%;W为0.5~1.9wt%;Mo为1.3~3.0wt%;Al为0.5~2wt%;Nb+V+Ti+B+RE为0~0.5wt%;P≤0.002wt%;S≤0.001wt%;余量为Fe和不可避免的杂质。The chemical composition of the solid core welding wire for submerged arc transverse welding of high-manganese austenite low-temperature steel is: C is 0.20-0.60wt%; Si is ≤0.05wt%; Mn is 20-32wt%; Ni is 0.1-2wt% %; Cr: 0.1-1.8wt%; Cu: 0.55-1.00wt%; W: 0.5-1.9wt%; Mo: 1.3-3.0wt%; Al: 0.5-2wt%; Nb+V+Ti+B+RE It is 0~0.5wt%; P≤0.002wt%; S≤0.001wt%; the balance is Fe and inevitable impurities.
所述高锰奥氏体低温钢埋弧横焊用实芯焊丝的制备方法是:按照所述的埋弧横焊的实芯焊丝的化学组分冶炼,锻造,轧制,热处理,拉拔,表面处理和层绕,制得高锰奥氏体低温钢埋弧横焊用实芯焊丝。The preparation method of the solid core welding wire for submerged arc horizontal welding of high manganese austenite low temperature steel is: smelting, forging, rolling, heat treatment, drawing according to the chemical composition of the solid core welding wire of the submerged arc horizontal welding, Surface treatment and layer winding are carried out to obtain a solid core welding wire for submerged arc horizontal welding of high manganese austenitic low temperature steel.
所述高锰奥氏体低温钢埋弧横焊用实芯焊丝的直径为2.0~3.2mm。The diameter of the solid core welding wire for submerged arc horizontal welding of high manganese austenite low temperature steel is 2.0-3.2 mm.
所述高锰奥氏体低温钢埋弧横焊用实芯焊丝的配套焊剂为BaO-MgO-CaF2-Al2O3-REO型的高碱性烧结焊剂。The matching flux of the solid core welding wire for submerged arc horizontal welding of high manganese austenite low temperature steel is BaO-MgO-CaF 2 -Al 2 O 3 -REO type high alkaline sintering flux.
所述高锰奥氏体低温钢埋弧横焊用实芯焊丝的焊接工艺依次为打底焊、填充焊和盖面焊:The welding process of the solid core welding wire for submerged arc horizontal welding of high-manganese austenitic steel at low temperature is in turn bottom welding, filling welding and cover welding:
所述打底焊的焊接工艺:焊接电流为310~470A,电弧电压为22~34V,焊接速度为30~55cm/min。The welding process of the bottom welding: the welding current is 310-470A, the arc voltage is 22-34V, and the welding speed is 30-55cm/min.
所述填充焊的焊接工艺:焊接电流为320~550A,电弧电压为24~35V,焊接速度为35~65cm/min。The welding process of the filler welding: the welding current is 320-550A, the arc voltage is 24-35V, and the welding speed is 35-65cm/min.
所述盖面焊的焊接工艺:焊接电流为300~550A,电弧电压为24~35V,焊接速度为35~75cm/min。The welding process of the cover welding: the welding current is 300-550A, the arc voltage is 24-35V, and the welding speed is 35-75cm/min.
所述高锰奥氏体低温钢的钢板坡口型式为X型对称坡口、或为K型对称坡口;The steel plate groove type of the high-manganese austenitic low-temperature steel is an X-shaped symmetrical groove or a K-shaped symmetrical groove;
所述X型对称坡口:上坡口角度为30~45°,下坡口角度为0~15°,钝边为0~2mm,间隙为2~3mm;组对间隙为0~10mm,错边量为0~7mm。The X-shaped symmetrical groove: the upper groove angle is 30-45°, the lower groove angle is 0-15°, the blunt edge is 0-2mm, the gap is 2-3mm; The edge amount is 0 to 7mm.
所述K型对称坡口:上坡口角度为30~45°,下坡口角度为0°,钝边为0~2mm,间隙为2~3mm;组对间隙为0~10mm,错边量为0~7mm。The K-shaped symmetrical groove: the upper groove angle is 30-45°, the lower groove angle is 0°, the blunt edge is 0-2mm, the gap is 2-3mm; the pairing gap is 0-10mm, and the amount of misalignment 0 to 7mm.
所述高锰奥氏体低温钢的厚度为10~30mm。The thickness of the high manganese austenite low temperature steel is 10-30 mm.
由于采用上述技术方案,本发明与现有技术相比具有如下积极效果:Owing to adopting the above-mentioned technical scheme, the present invention has the following positive effects compared with the prior art:
本发明制备的高锰奥氏体低温钢埋弧横焊用实芯焊丝(以下简称埋弧横焊用实芯焊丝)的化学组分中的C、Mn、Ni、Cu均为奥氏体稳定元素,通过采用C为0.20~0.60wt%、Mn为20~32wt%、Ni为0.1~2wt%、Cu为0.55~1.00wt%的设计,保证在在-196℃时所形成焊缝金属仍为全奥氏体组织,且层错能为22.5~23.8mJ/m2,在低温受到外在力的作用时以孪晶为主要形变方式,从而保证了超低温时的综合力学性能,包括超低温冲击韧性、强度及延展性。C, Mn, Ni and Cu in the chemical components of the solid core welding wire for submerged arc horizontal welding of high manganese austenite low temperature steel prepared by the invention (hereinafter referred to as the solid core welding wire for submerged arc lateral welding) are all austenite stable Elements, by adopting the design of C is 0.20-0.60wt%, Mn is 20-32wt%, Ni is 0.1-2wt%, Cu is 0.55-1.00wt%, to ensure that the weld metal formed at -196 ℃ is still Full austenite structure and stacking fault energy of 22.5~23.8mJ/m 2 , twinning is the main deformation mode when subjected to external force at low temperature, thus ensuring comprehensive mechanical properties at ultra-low temperature, including ultra-low temperature impact toughness , strength and ductility.
本发明的埋弧横焊用实芯焊丝的化学组分中的Cr、Mo为主要的固溶强化的元素,通过采用Cr为0.1~1.8wt%和Mo为1.3~3.0wt%,两者综合作用得到的实芯焊丝焊接所形成的焊缝金属在室温时可达到400MPa以上的屈服强度。Cr and Mo in the chemical composition of the solid wire for submerged arc horizontal welding of the present invention are the main solid solution strengthening elements. The weld metal formed by the obtained solid wire welding can reach a yield strength of more than 400 MPa at room temperature.
本发明的埋弧横焊用实芯焊丝的化学组分中的W、Al及微量元素Nb+V+Ti+B+RE等,为主要的析出强化元素和改性夹杂物元素,通过采用W为0.5~1.9wt%、Al为0.5~2wt%和Nb+V+Ti+B+RE为0~0.5wt%的设计,在固溶强化的作用上,通过析出强化和改善夹杂物形貌,进一步提高了所形成焊缝金属在室温时屈服强度和抗拉强度,且不损伤低温时的延展性。W, Al and trace elements Nb+V+Ti+B+RE and the like in the chemical composition of the solid wire for submerged arc horizontal welding of the present invention are the main precipitation strengthening elements and modified inclusion elements. In the design of 0.5-1.9wt%, 0.5-2wt% Al, and 0-0.5wt% Nb+V+Ti+B+RE, in the role of solid solution strengthening, through precipitation strengthening and improving the morphology of inclusions, The yield strength and tensile strength of the formed weld metal at room temperature are further improved without impairing the ductility at low temperature.
本发明的埋弧横焊用实芯焊丝的化学组分中的Si元素,一方面起固溶强化的作用,另一方面起调节熔池中液态金属粘稠度的作用。焊缝金属中Si含量过高,提高了强度但是降低了超低温韧性;焊缝金属中Si含量过低,起不到调节熔池中液态金属粘稠度的作用。与高碱性烧结焊剂相配套,在气-渣联合保护条件下,从而保证焊缝金属具有良好的成型性。因此,本发明的埋弧横焊用实芯焊丝的化学组分中的Si为≤0.05wt%。The Si element in the chemical composition of the solid wire for submerged arc horizontal welding of the present invention plays the role of solid solution strengthening on the one hand, and regulating the viscosity of the liquid metal in the molten pool on the other hand. The Si content in the weld metal is too high, which increases the strength but reduces the ultra-low temperature toughness; the Si content in the weld metal is too low, which cannot adjust the viscosity of the liquid metal in the molten pool. Matching with high alkaline sintered flux, under the condition of combined gas-slag protection, the weld metal has good formability. Therefore, Si in the chemical composition of the solid wire for submerged arc horizontal welding of the present invention is ≤0.05wt%.
本发明中杂质元素硫与磷的存在,使焊缝金属产生液化裂纹与再热裂纹,故严格控制硫、磷元素的含量:P≤0.002wt%和S≤0.001wt%。通过净化钢水,将焊丝的P和S含量降到最低,避免因P、S偏聚而产生热裂纹倾向,保证了良好的焊缝金属质量。The existence of impurity elements sulfur and phosphorus in the present invention causes liquefaction cracks and reheat cracks in the weld metal, so the content of sulfur and phosphorus elements is strictly controlled: P≤0.002wt% and S≤0.001wt%. By purifying molten steel, the content of P and S in the welding wire is minimized, avoiding the tendency of hot cracks due to the segregation of P and S, and ensuring good weld metal quality.
本发明采用BaO-MgO-CaF2-Al2O3-REO型的高碱性烧结焊剂,在气-渣联合保护条件下,在焊接过程中不产生焊接烟尘,对焊工的健康起到保护作用,焊缝金属成型良好。采用常规的埋弧横焊焊机,以实芯焊丝作为电极,可快速熔化,既可提高焊接效率,也可实现全自动焊接。The invention adopts BaO-MgO-CaF 2 -Al 2 O 3 -REO type high-alkaline sintering flux, under the condition of gas-slag combined protection, no welding fume is generated during welding, and the health of the welder is protected. , the weld metal is well formed. Using a conventional submerged arc horizontal welding machine, with solid wire as the electrode, it can be melted quickly, which can not only improve the welding efficiency, but also realize fully automatic welding.
本发明所制备的埋弧横焊用实芯焊丝,用于高锰奥氏体低温钢的焊接,焊缝金属形成全奥氏体组织,不仅保证优良的超低温韧性,-196℃时冲击功Akv为68~75J;亦保证了足够的强度:屈服强度为410~440MPa,抗拉强度为670~690MPa,延伸率A为40~43%,实现了-196℃工作温度时的高锰奥氏体低温钢的力学性能要求和超低温韧性的要求。The solid core welding wire for submerged arc horizontal welding prepared by the invention is used for the welding of high manganese austenite low temperature steel, and the weld metal forms a full austenite structure, which not only ensures excellent ultra-low temperature toughness, but also has an impact energy A at -196°C. kv is 68~75J; sufficient strength is also ensured: the yield strength is 410~440MPa, the tensile strength is 670~690MPa, and the elongation A is 40~43%, realizing the high manganese austenite at the working temperature of -196℃. Mechanical properties requirements and ultra-low temperature toughness requirements of bulk low temperature steel.
本发明用于横焊位置焊接,具有能全自动焊接、焊接效率高、无焊接烟尘、焊缝金属成型好和力学性能优良的特点;所形成的焊缝金属低温韧性优良以及强度与高锰奥氏体低温钢相匹配,焊接接头具有强度高和优良的超低温韧性的力学性能;本发明满足用于-196℃工作温度的LNG贮罐的强度和超低温韧性的技术要求。The invention is used for horizontal welding position welding, and has the characteristics of fully automatic welding, high welding efficiency, no welding fume, good welding seam metal forming and excellent mechanical properties; The welded joint has high strength and excellent mechanical properties of ultra-low temperature toughness; the invention meets the technical requirements of strength and ultra-low temperature toughness for LNG storage tanks with a working temperature of -196°C.
具体实施方式Detailed ways
下面结合具体实施方式对本发明作进一步描述,并非对本其保护范围的限制。The present invention will be further described below with reference to the specific embodiments, which are not intended to limit the protection scope of the present invention.
为避免重复,先将本具体实施方式有关工艺统一描述如下,实施例中不再赘述:In order to avoid repetition, the relevant processes of this specific embodiment are first described uniformly as follows, and are not repeated in the examples:
所述高锰奥氏体低温钢埋弧横焊用实芯焊丝的制备方法是:按照所述的埋弧横焊的实芯焊丝的化学组分冶炼,锻造,轧制,热处理,拉拔,表面处理和层绕,制得高锰奥氏体低温钢埋弧横焊用实芯焊丝。The preparation method of the solid core welding wire for submerged arc horizontal welding of high manganese austenite low temperature steel is: smelting, forging, rolling, heat treatment, drawing according to the chemical composition of the solid core welding wire of the submerged arc horizontal welding, Surface treatment and layer winding are carried out to obtain a solid core welding wire for submerged arc horizontal welding of high manganese austenitic low temperature steel.
所述高锰奥氏体低温钢埋弧横焊用实芯焊丝的配套焊剂为BaO-MgO-CaF2-Al2O3-REO型的高碱性烧结焊剂。The matching flux of the solid core welding wire for submerged arc horizontal welding of high manganese austenite low temperature steel is BaO-MgO-CaF 2 -Al 2 O 3 -REO type high alkaline sintering flux.
实施例1Example 1
一种高锰奥氏体低温钢埋弧横焊用实芯焊丝及其焊接工艺。A solid core welding wire for submerged arc horizontal welding of high manganese austenitic low temperature steel and a welding process thereof.
本实施例所述用埋弧横焊用实芯焊丝的化学组分是:C为0.20~0.28wt%;Si为0.02~0.03wt%;Mn为20~24wt%;Ni为1.3~2wt%;Cr为1.2~1.8wt%;Cu为0.55~0.75wt%;W为1.2~1.6wt%;Mo为1.3~1.9wt%;Al为1.5~2.0wt%;Nb+V+Ti+B+RE为0.25~0.5wt%;P≤0.002wt%;S≤0.001wt%;余量为Fe和不可避免的杂质。The chemical composition of the solid wire for submerged arc horizontal welding in this embodiment is: C is 0.20-0.28wt%; Si is 0.02-0.03wt%; Mn is 20-24wt%; Ni is 1.3-2wt%; Cr is 1.2-1.8wt%; Cu is 0.55-0.75wt%; W is 1.2-1.6wt%; Mo is 1.3-1.9wt%; Al is 1.5-2.0wt%; Nb+V+Ti+B+RE is 0.25~0.5wt%; P≤0.002wt%; S≤0.001wt%; the balance is Fe and inevitable impurities.
所述高锰奥氏体钢用的埋弧横焊焊丝直径为2.0mm。The diameter of the submerged arc horizontal welding wire for the high manganese austenitic steel is 2.0 mm.
本实施例所述高锰奥氏体低温钢埋弧横焊用实芯焊丝的焊接工艺依次为打底焊、填充焊和盖面焊:The welding process of the solid wire for submerged arc horizontal welding of high-manganese austenitic low-temperature steel described in this embodiment is bottom welding, filler welding and cover welding in sequence:
所述打底焊的焊接工艺:焊接电流为310~330A,电弧电压为22~24V,焊接速度为30~32cm/min。The welding process of the bottom welding: the welding current is 310-330A, the arc voltage is 22-24V, and the welding speed is 30-32cm/min.
所述填充焊的焊接工艺:焊接电流为320~350A,电弧电压为24~26V,焊接速度为35~37cm/min。The welding process of the filler welding: the welding current is 320-350A, the arc voltage is 24-26V, and the welding speed is 35-37cm/min.
所述盖面焊的焊接工艺:焊接电流为300~310A,电弧电压为24~26V,焊接速度为35~37cm/min。The welding process of the cover welding: the welding current is 300-310A, the arc voltage is 24-26V, and the welding speed is 35-37cm/min.
所述高锰奥氏体低温钢钢板的厚度为10mm。The thickness of the high manganese austenitic low temperature steel plate is 10mm.
所述高锰奥氏体低温钢的化学组分是:C为0.45wt%,Si为0.10wt%,Mn为28wt%,N为0.05wt%,P为0.004wt%,S为0.003wt%。所述25Mn超低温钢的力学性能是:屈服强度为475MPa,抗拉强度为810MPa,延伸率A为41%;-196℃时冲击功Akv为75J。The chemical composition of the high manganese austenite low temperature steel is: C is 0.45wt%, Si is 0.10wt%, Mn is 28wt%, N is 0.05wt%, P is 0.004wt%, and S is 0.003wt%. The mechanical properties of the 25Mn ultra-low temperature steel are: yield strength is 475MPa, tensile strength is 810MPa, elongation A is 41%; impact energy A kv at -196°C is 75J.
本实施例采用的坡口型式为K型对称坡口:上坡口角度为30~40°,下坡口角度为0°,钝边为0mm,间隙为2~2.5mm;组对间隙为0mm,错边量为0mm。The groove type used in this embodiment is a K-shaped symmetrical groove: the upper groove angle is 30-40°, the lower groove angle is 0°, the blunt edge is 0mm, the gap is 2-2.5mm; the pairing gap is 0mm , the misalignment is 0mm.
对本实施例焊后的焊缝金属显微组织及力学性能进行检测分析:焊缝金属为全奥氏体组织,焊缝金属成型良好;焊缝金属的屈服强度为421~440MPa,抗拉强度为673~690MPa,伸长率A=40~42%,-196℃时冲击功平均值Akv=69~73J。The microstructure and mechanical properties of the weld metal after welding in this example are detected and analyzed: the weld metal is a full austenite structure, and the weld metal is well formed; the yield strength of the weld metal is 421-440MPa, and the tensile strength is 673~690MPa, elongation A=40~42%, average value of impact energy A kv =69~73J at -196℃.
实施例2Example 2
一种高锰奥氏体低温钢埋弧横焊用实芯焊丝及其焊接工艺。A solid core welding wire for submerged arc horizontal welding of high manganese austenitic low temperature steel and a welding process thereof.
本具体实施方式所述埋弧横焊用实芯焊丝的化学组分是:C为0.41~0.60wt%;Si为0.03~0.05wt%;Mn为29~32wt%;Ni为0.1~0.8wt%;Cr为0.1~0.7wt%;Cu为0.75~0.80wt%;W为1.6~1.9wt%;Mo为1.9~2.4wt%;Al为1.0~1.5wt%;Nb+V+Ti+B+RE为≤0.1wt%;P≤0.002wt%;S≤0.001wt%;余量为Fe和不可避免的杂质。The chemical composition of the solid core welding wire for submerged arc horizontal welding in this specific embodiment is: C is 0.41-0.60wt%; Si is 0.03-0.05wt%; Mn is 29-32wt%; Ni is 0.1-0.8wt% ; Cr is 0.1-0.7wt%; Cu is 0.75-0.80wt%; W is 1.6-1.9wt%; Mo is 1.9-2.4wt%; Al is 1.0-1.5wt%; Nb+V+Ti+B+RE is ≤0.1wt%; P≤0.002wt%; S≤0.001wt%; the balance is Fe and inevitable impurities.
所述高锰奥氏体钢埋弧横焊焊丝直径为2.5mm。The diameter of the high manganese austenitic steel submerged arc horizontal welding wire is 2.5 mm.
本实施例所述高锰奥氏体低温钢埋弧横焊用实芯焊丝的焊接工艺依次为打底焊、填充焊和盖面焊:The welding process of the solid wire for submerged arc horizontal welding of high-manganese austenitic low-temperature steel described in this embodiment is bottom welding, filler welding and cover welding in sequence:
所述打底焊的焊接工艺:焊接电流为410~420A,电弧电压为28~29V,焊接速度为41~43cm/min;The welding process of the bottom welding: the welding current is 410-420A, the arc voltage is 28-29V, and the welding speed is 41-43cm/min;
所述填充焊的焊接工艺:焊接电流为450~470A,电弧电压为30~32V,焊接速度为50~52cm/min;The welding process of the filler welding: the welding current is 450-470A, the arc voltage is 30-32V, and the welding speed is 50-52cm/min;
所述盖面焊的焊接工艺如下:焊接电流为440~460A,电弧电压为30~32V,焊接速度为50~52cm/min。The welding process of the cover welding is as follows: the welding current is 440-460A, the arc voltage is 30-32V, and the welding speed is 50-52cm/min.
所述高锰奥氏体低温钢钢板的规格为20mm。The specification of the high manganese austenitic low temperature steel plate is 20mm.
所述高锰奥氏体低温钢的化学组分是:C为0.45wt%,Si为0.10wt%,Mn为28wt%,N为0.05wt%,P为0.004wt%,S为0.003wt%。所述25Mn超低温钢的力学性能是:屈服强度为475MPa,抗拉强度为810MPa,延伸率A为41%;-196℃时冲击功Akv为75J。The chemical composition of the high manganese austenite low temperature steel is: C is 0.45wt%, Si is 0.10wt%, Mn is 28wt%, N is 0.05wt%, P is 0.004wt%, and S is 0.003wt%. The mechanical properties of the 25Mn ultra-low temperature steel are: yield strength is 475MPa, tensile strength is 810MPa, elongation A is 41%; impact energy A kv at -196°C is 75J.
本实施例采用的坡口型式为K型对称坡口:上坡口角度为40~45°,下坡口角度为0°,钝边为0.5~2mm,间隙为2.5~3mm;组对间隙为1~10mm,错边量为1~7mm。The groove type used in this embodiment is a K-shaped symmetrical groove: the upper groove angle is 40-45°, the lower groove angle is 0°, the blunt edge is 0.5-2mm, and the gap is 2.5-3mm; 1 to 10mm, and the amount of misalignment is 1 to 7mm.
对本实施例焊后的焊缝金属显微组织及力学性能进行检测分析:焊缝金属为全奥氏体组织,焊缝金属成型良好;焊缝金属的屈服强度为410~425MPa,抗拉强度为682~688MPa,伸长率A=40~41%,-196℃时冲击功平均值Akv=69~72J。The microstructure and mechanical properties of the weld metal after welding in this example are detected and analyzed: the weld metal is a full austenite structure, and the weld metal is well formed; the yield strength of the weld metal is 410-425MPa, and the tensile strength is 682~688MPa, elongation A=40~41%, average value of impact energy A kv =69~72J at -196℃.
实施例3Example 3
一种高锰奥氏体低温钢埋弧横焊用实芯焊丝及其焊接工艺。A solid core welding wire for submerged arc horizontal welding of high manganese austenitic low temperature steel and a welding process thereof.
本具体实施方式埋弧横焊用实芯焊丝的化学组分是:C为0.20~0.60wt%;Si为≤0.05wt%;Mn为20~32wt%;Ni为0.1~2wt%;Cr为0.1~1.8wt%;Cu为0.55~1.00wt%;W为0.5~1.9wt%;Mo为1.3~3.0wt%;Al为0.5~2wt%;Nb+V+Ti+B+RE为≤0.5wt%;P≤0.002wt%;S≤0.001wt%;余量为Fe和不可避免的杂质。The chemical composition of the solid wire for submerged arc horizontal welding in this specific embodiment is: C is 0.20-0.60wt%; Si is ≤0.05wt%; Mn is 20-32wt%; Ni is 0.1-2wt%; Cr is 0.1 ~1.8wt%; Cu: 0.55-1.00wt%; W: 0.5-1.9wt%; Mo: 1.3-3.0wt%; Al: 0.5-2wt%; Nb+V+Ti+B+RE: ≤0.5wt% ; P≤0.002wt%; S≤0.001wt%; the balance is Fe and inevitable impurities.
所述高锰奥氏体钢埋弧横焊焊丝直径为3.2mm。The diameter of the high manganese austenitic steel submerged arc horizontal welding wire is 3.2 mm.
本实施例所述高锰奥氏体低温钢埋弧横焊用实芯焊丝的焊接工艺依次为打底焊、填充焊和盖面焊:The welding process of the solid wire for submerged arc horizontal welding of high-manganese austenitic low-temperature steel described in this embodiment is bottom welding, filler welding and cover welding in sequence:
所述打底焊的焊接工艺:焊接电流为460~470A,电弧电压为32~34V,焊接速度为50~55cm/min;The welding process of the bottom welding: the welding current is 460-470A, the arc voltage is 32-34V, and the welding speed is 50-55cm/min;
所述填充焊的焊接工艺:焊接电流为520~550A,电弧电压为33~35V,焊接速度为62~65cm/min;The welding process of the filler welding: the welding current is 520-550A, the arc voltage is 33-35V, and the welding speed is 62-65cm/min;
所述盖面焊的焊接工艺:焊接电流为520~550A,电弧电压为34~35V,焊接速度为73~75cm/min。The welding process of the cover welding: the welding current is 520-550A, the arc voltage is 34-35V, and the welding speed is 73-75cm/min.
所述高锰奥氏体低温钢钢板的厚度为30mm。The thickness of the high manganese austenitic low temperature steel plate is 30mm.
所述高锰奥氏体低温钢的化学组分是:C为0.45wt%,Si为0.10wt%,Mn为28wt%,N为0.05wt%,P为0.004wt%,S为0.003wt%。所述25Mn超低温钢的力学性能是:屈服强度为475MPa,抗拉强度为810MPa,延伸率A为41%;-196℃时冲击功Akv为75J。The chemical composition of the high manganese austenite low temperature steel is: C is 0.45wt%, Si is 0.10wt%, Mn is 28wt%, N is 0.05wt%, P is 0.004wt%, and S is 0.003wt%. The mechanical properties of the 25Mn ultra-low temperature steel are: yield strength is 475MPa, tensile strength is 810MPa, elongation A is 41%; impact energy A kv at -196°C is 75J.
本实施例采用的坡口型式为X型对称坡口,上坡口角度为30~45°,下坡口角度为0或5~15°,钝边为0或1~2mm,间隙为2~3mm;组对间隙为0或2~10mm,错边量为0或1~7mm。The groove type used in this embodiment is an X-shaped symmetrical groove, the upper groove angle is 30 to 45°, the lower groove angle is 0 or 5 to 15°, the blunt edge is 0 or 1 to 2 mm, and the gap is 2 to 2 mm. 3mm; the gap between groups is 0 or 2~10mm, and the amount of misalignment is 0 or 1~7mm.
对本实施例焊后的焊缝金属显微组织及力学性能进行检测分析:焊缝金属为全奥氏体组织,焊缝金属成型良好;焊缝金属的屈服强度为412~420MPa,抗拉强度为670~685MPa,伸长率A=40~41%,-196℃时冲击功平均值Akv=70~75J。The microstructure and mechanical properties of the weld metal after welding in this example are detected and analyzed: the weld metal is a full austenite structure, and the weld metal is well formed; the yield strength of the weld metal is 412-420MPa, and the tensile strength is 670~685MPa, elongation A=40~41%, average value of impact energy A kv =70~75J at -196℃.
本具体实施方式与现有技术相比具有如下积极效果:Compared with the prior art, this specific embodiment has the following positive effects:
本具体实施方式制备的高锰奥氏体低温钢埋弧横焊用实芯焊丝(以下简称埋弧横焊用实芯焊丝)的化学组分中的C、Mn、Ni、Cu均为奥氏体稳定元素,通过采用C为0.20~0.60wt%、Mn为20~32wt%、Ni为0.1~2wt%、Cu为0.55~1.00wt%的设计,保证在在-196℃时所形成焊缝金属仍为全奥氏体组织,且层错能为22.5~23.8mJ/m2,在低温受到外在力的作用时以孪晶为主要形变方式,从而保证了超低温时的综合力学性能,包括超低温冲击韧性、强度及延展性。C, Mn, Ni, and Cu in the chemical components of the solid welding wire for submerged arc horizontal welding of high-manganese austenitic low-temperature steel (hereinafter referred to as the solid welding wire for submerged arc horizontal welding) prepared in this specific embodiment are all austenite The bulk stabilizing element, by adopting the design of C is 0.20-0.60wt%, Mn is 20-32wt%, Ni is 0.1-2wt%, and Cu is 0.55-1.00wt%, to ensure that the weld metal formed at -196 ℃ It is still full austenite structure, and the stacking fault energy is 22.5-23.8mJ/m 2 , and twinning is the main deformation mode when subjected to external force at low temperature, thus ensuring the comprehensive mechanical properties at ultra-low temperature, including ultra-low temperature Impact toughness, strength and ductility.
本具体实施方式的埋弧横焊用实芯焊丝的化学组分中的Cr、Mo为主要的固溶强化的元素,通过采用Cr为0.1~1.8wt%和Mo为1.3~3.0wt%,两者综合作用得到的实芯焊丝焊接所形成的焊缝金属在室温时可达到400MPa以上的屈服强度。Cr and Mo in the chemical composition of the solid wire for submerged arc horizontal welding of the present embodiment are the main solid solution strengthening elements. The weld metal formed by the solid wire welding obtained by the combined action of the two can reach a yield strength of more than 400MPa at room temperature.
本具体实施方式的埋弧横焊用实芯焊丝的化学组分中的W、Al及微量元素Nb+V+Ti+B+RE等,为主要的析出强化元素和改性夹杂物元素,通过采用W为0.5~1.9wt%、Al为0.5~2wt%和Nb+V+Ti+B+RE为0~0.5wt%的设计,在固溶强化的作用上,通过析出强化和改善夹杂物形貌,进一步提高了所形成焊缝金属在室温时屈服强度和抗拉强度,且不损伤低温时的延展性。W, Al and trace elements Nb+V+Ti+B+RE, etc. in the chemical composition of the solid wire for submerged arc horizontal welding of the present embodiment are the main precipitation strengthening elements and modified inclusion elements, and are The design of W is 0.5-1.9wt%, Al is 0.5-2wt%, and Nb+V+Ti+B+RE is 0-0.5wt%, in the role of solid solution strengthening, through precipitation strengthening and improving the shape of inclusions It can further improve the yield strength and tensile strength of the formed weld metal at room temperature without damaging the ductility at low temperature.
本具体实施方式的埋弧横焊用实芯焊丝的化学组分中的Si元素,一方面起固溶强化的作用,另一方面起调节熔池中液态金属粘稠度的作用。焊缝金属中Si含量过高,提高了强度但是降低了超低温韧性;焊缝金属中Si含量过低,起不到调节熔池中液态金属粘稠度的作用。与高碱性烧结焊剂相配套,在气-渣联合保护条件下,从而保证焊缝金属具有良好的成型性。因此,本具体实施方式的埋弧横焊用实芯焊丝的化学组分中的Si为≤0.05wt%。The Si element in the chemical composition of the solid core welding wire for submerged arc horizontal welding of the present embodiment plays a role of solid solution strengthening on the one hand, and regulating the viscosity of the liquid metal in the molten pool on the other hand. The Si content in the weld metal is too high, which increases the strength but reduces the ultra-low temperature toughness; the Si content in the weld metal is too low, which cannot adjust the viscosity of the liquid metal in the molten pool. Matching with high alkaline sintered flux, under the condition of combined gas-slag protection, the weld metal has good formability. Therefore, Si in the chemical composition of the solid wire for submerged arc horizontal welding of the present embodiment is ≤0.05wt%.
本具体实施方式中杂质元素硫与磷的存在,使焊缝金属产生液化裂纹与再热裂纹,故严格控制硫、磷元素的含量:P≤0.002wt%和S≤0.001wt%。通过净化钢水,将焊丝的P和S含量降到最低,避免因P、S偏聚而产生热裂纹倾向,保证了良好的焊缝金属质量。The existence of impurity elements sulfur and phosphorus in this specific embodiment causes liquefaction cracks and reheat cracks in the weld metal, so the content of sulfur and phosphorus elements is strictly controlled: P≤0.002wt% and S≤0.001wt%. By purifying molten steel, the content of P and S in the welding wire is reduced to a minimum, avoiding the tendency of hot cracks due to the segregation of P and S, and ensuring good weld metal quality.
本具体实施方式采用BaO-MgO-CaF2-Al2O3-REO型的高碱性烧结焊剂,在气-渣联合保护条件下,在焊接过程中不产生焊接烟尘,对焊工的健康起到保护作用,焊缝金属成型良好。采用常规的埋弧横焊焊机,以实芯焊丝作为电极,可快速熔化,既可提高焊接效率,也可实现全自动焊接。In this specific embodiment, BaO-MgO-CaF 2 -Al 2 O 3 -REO type high-alkaline sintered flux is used. Under the condition of combined gas-slag protection, no welding fume is generated during the welding process, which is beneficial to the health of the welder. Protection, weld metal well formed. Using a conventional submerged arc horizontal welding machine, with solid wire as the electrode, it can be melted quickly, which can not only improve the welding efficiency, but also realize fully automatic welding.
本具体实施方式所制备的埋弧横焊用实芯焊丝,用于高锰奥氏体低温钢的焊接,焊缝金属形成全奥氏体组织,不仅保证优良的超低温韧性,-196℃时冲击功Akv为68~75J;亦保证了足够的强度:屈服强度为410~440MPa,抗拉强度为670~690MPa,延伸率A为40~43%,实现了-196℃工作温度时的高锰奥氏体低温钢的力学性能要求和超低温韧性的要求。The solid core welding wire for submerged arc horizontal welding prepared by this specific embodiment is used for welding high manganese austenitic low temperature steel, and the weld metal forms a full austenite structure, which not only ensures excellent ultra-low temperature toughness, but also has an impact at -196°C. The power A kv is 68~75J; it also guarantees sufficient strength: the yield strength is 410~440MPa, the tensile strength is 670~690MPa, and the elongation A is 40~43%, realizing the high manganese at -196℃ working temperature Mechanical property requirements and ultra-low temperature toughness requirements of austenitic low temperature steels.
本具体实施方式用于横焊位置焊接,具有能全自动焊接、焊接效率高、无焊接烟尘、焊缝金属成型好和力学性能优良的特点;所形成的焊缝金属低温韧性优良、强度与高锰奥氏体低温钢相匹配,焊接接头具有强度高和优良的超低温韧性的力学性能;本具体实施方式满足用于-196℃工作温度的LNG贮罐的强度和超低温韧性的技术要求。This specific embodiment is used for horizontal welding position welding, and has the characteristics of fully automatic welding, high welding efficiency, no welding fume, good weld metal formation and excellent mechanical properties; the formed weld metal has excellent low temperature toughness, high strength and high strength. Matched with manganese austenitic low temperature steel, the welded joint has the mechanical properties of high strength and excellent ultra-low temperature toughness; this specific embodiment meets the technical requirements of strength and ultra-low temperature toughness for LNG storage tanks with a working temperature of -196°C.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210114162.2A CN114289931A (en) | 2022-01-30 | 2022-01-30 | Solid welding wire for submerged arc transverse welding of high-manganese austenitic low-temperature steel and welding process thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210114162.2A CN114289931A (en) | 2022-01-30 | 2022-01-30 | Solid welding wire for submerged arc transverse welding of high-manganese austenitic low-temperature steel and welding process thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114289931A true CN114289931A (en) | 2022-04-08 |
Family
ID=80977682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210114162.2A Pending CN114289931A (en) | 2022-01-30 | 2022-01-30 | Solid welding wire for submerged arc transverse welding of high-manganese austenitic low-temperature steel and welding process thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114289931A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114799430A (en) * | 2022-04-18 | 2022-07-29 | 恒谦科技(广州)有限公司 | Welding method of low-temperature high-manganese steel butt joint |
CN115121990A (en) * | 2022-07-20 | 2022-09-30 | 陕西化建工程有限责任公司 | Nickel-saving welding wire for Incoloy825 and preparation method and welding method thereof |
CN115647650A (en) * | 2022-11-04 | 2023-01-31 | 哈尔滨威尔焊接有限责任公司 | Low-temperature high-manganese steel submerged arc transverse welding wire and flux for LNG ship, preparation method of welding wire and welding method |
WO2023241611A1 (en) * | 2022-06-14 | 2023-12-21 | 宝山钢铁股份有限公司 | Low-nickel high-manganese austenite wear-resistant steel welding wire rod and welding wire |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN87102741A (en) * | 1987-04-16 | 1988-06-08 | 自贡市中国电焊条厂 | High Alkalinity Sintered Flux |
CN102218622A (en) * | 2011-06-03 | 2011-10-19 | 甘肃省机械科学研究院 | High-manganese steel surfacing solid-core welding wire and manufacturing method thereof |
JP2014091135A (en) * | 2012-11-01 | 2014-05-19 | Kobe Steel Ltd | Bonded flux for submerged arc welding |
CN107052618A (en) * | 2017-03-28 | 2017-08-18 | 武汉科技大学 | The potassium steel of LNG basins is prepared with full-automatic submerged arc welding solid core welding wire |
CN107186382A (en) * | 2017-06-09 | 2017-09-22 | 南京钢铁股份有限公司 | A kind of high manganese ultralow temperature steel welding wire and its welding procedure |
CN111805120A (en) * | 2020-07-31 | 2020-10-23 | 天津市永昌焊丝有限公司 | Consumable electrode solid welding wire for welding extremely-low-temperature austenite high-manganese steel |
CN112171109A (en) * | 2020-09-21 | 2021-01-05 | 武汉科技大学 | A fully automatic submerged arc welding solid wire for nickel-saving high manganese low temperature steel |
CN112518083A (en) * | 2020-10-23 | 2021-03-19 | 南京钢铁股份有限公司 | Submerged-arc welding method for high-manganese austenitic steel K-shaped groove at low temperature |
CN112566750A (en) * | 2018-08-23 | 2021-03-26 | 杰富意钢铁株式会社 | Solid wire for gas metal arc welding |
CN112846464A (en) * | 2021-01-04 | 2021-05-28 | 南京钢铁股份有限公司 | Submerged-arc welding method for high-manganese austenitic steel used at low temperature |
-
2022
- 2022-01-30 CN CN202210114162.2A patent/CN114289931A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN87102741A (en) * | 1987-04-16 | 1988-06-08 | 自贡市中国电焊条厂 | High Alkalinity Sintered Flux |
CN102218622A (en) * | 2011-06-03 | 2011-10-19 | 甘肃省机械科学研究院 | High-manganese steel surfacing solid-core welding wire and manufacturing method thereof |
JP2014091135A (en) * | 2012-11-01 | 2014-05-19 | Kobe Steel Ltd | Bonded flux for submerged arc welding |
CN107052618A (en) * | 2017-03-28 | 2017-08-18 | 武汉科技大学 | The potassium steel of LNG basins is prepared with full-automatic submerged arc welding solid core welding wire |
CN107186382A (en) * | 2017-06-09 | 2017-09-22 | 南京钢铁股份有限公司 | A kind of high manganese ultralow temperature steel welding wire and its welding procedure |
CN112566750A (en) * | 2018-08-23 | 2021-03-26 | 杰富意钢铁株式会社 | Solid wire for gas metal arc welding |
US20210323101A1 (en) * | 2018-08-23 | 2021-10-21 | Jfe Steel Corporation | Solid wire for gas metal arc welding |
CN111805120A (en) * | 2020-07-31 | 2020-10-23 | 天津市永昌焊丝有限公司 | Consumable electrode solid welding wire for welding extremely-low-temperature austenite high-manganese steel |
CN112171109A (en) * | 2020-09-21 | 2021-01-05 | 武汉科技大学 | A fully automatic submerged arc welding solid wire for nickel-saving high manganese low temperature steel |
CN112518083A (en) * | 2020-10-23 | 2021-03-19 | 南京钢铁股份有限公司 | Submerged-arc welding method for high-manganese austenitic steel K-shaped groove at low temperature |
CN112846464A (en) * | 2021-01-04 | 2021-05-28 | 南京钢铁股份有限公司 | Submerged-arc welding method for high-manganese austenitic steel used at low temperature |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114799430A (en) * | 2022-04-18 | 2022-07-29 | 恒谦科技(广州)有限公司 | Welding method of low-temperature high-manganese steel butt joint |
CN114799430B (en) * | 2022-04-18 | 2023-11-03 | 恒谦科技(广州)有限公司 | Welding method of low-temperature high-manganese steel butt joint |
WO2023241611A1 (en) * | 2022-06-14 | 2023-12-21 | 宝山钢铁股份有限公司 | Low-nickel high-manganese austenite wear-resistant steel welding wire rod and welding wire |
CN115121990A (en) * | 2022-07-20 | 2022-09-30 | 陕西化建工程有限责任公司 | Nickel-saving welding wire for Incoloy825 and preparation method and welding method thereof |
CN115121990B (en) * | 2022-07-20 | 2024-03-19 | 陕西化建工程有限责任公司 | Nickel-saving welding wire for Incoloy825 and preparation method and welding method thereof |
CN115647650A (en) * | 2022-11-04 | 2023-01-31 | 哈尔滨威尔焊接有限责任公司 | Low-temperature high-manganese steel submerged arc transverse welding wire and flux for LNG ship, preparation method of welding wire and welding method |
CN115647650B (en) * | 2022-11-04 | 2025-01-24 | 哈尔滨威尔焊接有限责任公司 | A low-temperature high-manganese steel submerged arc horizontal welding wire, flux and preparation method and welding method thereof for LNG ships |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114289931A (en) | Solid welding wire for submerged arc transverse welding of high-manganese austenitic low-temperature steel and welding process thereof | |
CN114289929A (en) | MIG welding solid wire for high manganese austenitic low temperature steel and its welding process | |
CN101234457A (en) | High-strength high ductility gas protecting welding stick | |
CN101652492A (en) | High strength welded steelpipe and manufacture method thereof with welding metal of excelling in low-temperature cracking resistance | |
CN109530964B (en) | A high-efficiency submerged arc welding metal powder-cored flux-cored wire suitable for ultra-low temperature and high manganese steel | |
CN112171109A (en) | A fully automatic submerged arc welding solid wire for nickel-saving high manganese low temperature steel | |
CN103451561B (en) | Weather-resistant steel plate capable of being welded at high heat input and production method thereof | |
CN105234584A (en) | Gas shield solid welding wire for high corrosion resistance type weathering resistant steel | |
CN102310299A (en) | Submerged-arc welding flux-cored wire suitable for high heat input welding | |
CN112894197A (en) | Manual arc welding electrode for ultralow-temperature high-manganese steel | |
CN112894198A (en) | Self-protection flux-cored wire for ultralow-temperature high-manganese steel | |
CN109623199B (en) | A metal powder-cored flux-cored welding wire for ultra-low temperature and high manganese steel | |
CN101633085B (en) | Stainless steel welding wire and technology for welding same | |
CN108907504A (en) | A kind of metal powder-cored wire and welding method suitable for ultralow temperature potassium steel | |
CN101837525B (en) | Welding rod of arc welding in large heat input welding | |
CN103464930A (en) | Welding wire and welding flux for 9Ni low-temperature steel submerged arc welding as well as application of welding wire and welding flux | |
CN102233493B (en) | Submerged-arc welding wire for high-intensity low-temperature steel | |
CN114248040B (en) | High-strength anti-crack metal powder cored flux-cored wire for engineering machinery | |
CN114669911A (en) | Flux-cored gas-shielded welding wire for 9% Ni storage tank steel and preparation and use methods thereof | |
CN101658983B (en) | High-toughness gas protective welding wire for large-linear energy welding low-alloy steel | |
CN1321777C (en) | Niobium-titanium-boron microalloy high-strength gas protecting welding wire | |
CN112894199A (en) | Consumable electrode gas shielded welding flux-cored wire for ultralow-temperature high manganese steel | |
CN109321851A (en) | A yield strength 690MPa grade steel plate capable of withstanding large line energy welding and its manufacturing method | |
CN114289930A (en) | Laser-arc hybrid welding solid wire and welding process for high manganese austenitic low temperature steel | |
CN113787279B (en) | Gas shielded welding process for Ti high-strength steel in thin specification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220408 |
|
RJ01 | Rejection of invention patent application after publication |