CN114280707B - 一种全偏振介质超构透镜及其使用方法 - Google Patents
一种全偏振介质超构透镜及其使用方法 Download PDFInfo
- Publication number
- CN114280707B CN114280707B CN202210203502.9A CN202210203502A CN114280707B CN 114280707 B CN114280707 B CN 114280707B CN 202210203502 A CN202210203502 A CN 202210203502A CN 114280707 B CN114280707 B CN 114280707B
- Authority
- CN
- China
- Prior art keywords
- micro
- nano
- lens
- protrusions
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000010287 polarization Effects 0.000 claims abstract description 64
- 239000002086 nanomaterial Substances 0.000 claims abstract description 46
- 239000000758 substrate Substances 0.000 claims abstract description 24
- 239000013598 vector Substances 0.000 claims description 21
- 238000003384 imaging method Methods 0.000 claims description 14
- 230000003287 optical effect Effects 0.000 claims description 13
- 230000004044 response Effects 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 5
- 238000009877 rendering Methods 0.000 claims description 5
- 230000009467 reduction Effects 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract description 8
- 230000033228 biological regulation Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 230000005684 electric field Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910002665 PbTe Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Polarising Elements (AREA)
Abstract
本申请属于纳米光学技术领域,公开了一种全偏振介质超构透镜及其使用方法,全偏振介质超构透镜包括衬底和亚波长微纳结构;亚波长微纳结构包括在纵向方向上以预设顺序交替排布的多行第一微纳凸起物、多行第二微纳凸起物和多行第三微纳凸起物;所有第一微纳凸起物组成第一微纳结构组,且可使x向偏振光和y向偏振光分别聚焦在同一焦平面上的两个位置点上;所有第二微纳凸起物组成第二微纳结构组,且可使45°偏振光和135°偏振光分别聚焦在焦平面上的两个位置点上;所有第三微纳凸起物组成第三微纳结构组,且可使左旋圆偏振光和右旋圆偏振光分别聚焦在焦平面上的两个位置点上;可同时对多种偏振态的光分别进行聚焦,且聚焦效率高,聚焦效果好。
Description
技术领域
本申请涉及纳米光学技术领域,具体而言,涉及一种全偏振介质超构透镜及其使用方法。
背景技术
基于目标与背景偏振特性差异的实时全偏振成像技术可以有效减小背景干扰、增强图像对比度、提高信噪比,且支持动态目标探测,可广阔应用于通讯、安防、遥感、医疗等诸多领域。然而,光波偏振态的完整信息包括多个偏振态信号,传统实时偏振成像装置比如典型分孔径偏振成像光学系统由众多分光、起偏、检偏光学元件及其配合的机械元件组成,装备复杂且体积较大。通过在探测器表面加工微型偏振器阵列,有效降低了装置的复杂度,但存在成本高昂、像元串扰、探测效率较低等问题。
目前,一种由亚波长尺寸和间隔的结构在二维平面内排列而成的超构表面被提出用来调控电磁波参量,通过合理地设计结构的形状、尺寸、位置和方向,超构表面可以实现光的相位、振幅、偏振和频率所有参量的任意调控,再加上超构表面超薄、超平的特点,将传统光学元件重新设计成轻薄化、多功能的新型元件,有望为减小光学系统复杂性给出新方案。
一般地,当需要把入射光按不同偏振态实现横向分离并分别聚焦在同一个焦平面上时,通常是把多个小超构透镜拼接为一个大超构透镜,各个小超构透镜分别用于对不同偏振态的入射光进行聚焦,当整个超构透镜的口径一定时,各个偏振态光线的聚焦区域的面积较小,各聚焦区域只能对落入本区域的入射光中的具有对应偏振态的部分起聚焦作用,被聚焦的光的能量在入射光总能量中的占比较低(即聚焦效率低),聚焦效果较差。
发明内容
本申请的目的在于提供一种全偏振介质超构透镜及其使用方法,可同时对多种偏振态的入射光分别进行聚焦,且聚焦效率高,聚焦效果好。
第一方面,本申请提供了一种全偏振介质超构透镜,包括衬底和设置在所述衬底上的亚波长微纳结构;所述亚波长微纳结构包括多行第一微纳凸起物、多行第二微纳凸起物和多行第三微纳凸起物;多行所述第一微纳凸起物、多行第二微纳凸起物和多行第三微纳凸起物在纵向方向上以预设顺序交替排布;每行所述第一微纳凸起物包括多个沿横向方向间隔排布的所述第一微纳凸起物,每行所述第二微纳凸起物包括多个沿横向方向间隔排布的所述第二微纳凸起物,每行所述第三微纳凸起物包括多个沿横向方向间隔排布的所述第三微纳凸起物;
所有所述第一微纳凸起物组成第一微纳结构组,所述第一微纳结构组可使同时入射的x向偏振光和y向偏振光分别聚焦在同一焦平面上的两个位置点上;
所有所述第二微纳凸起物组成第二微纳结构组,所述第二微纳结构组可使同时入射的45°偏振光和135°偏振光分别聚焦在所述焦平面上的两个位置点上;
所有所述第三微纳凸起物组成第三微纳结构组,所述第三微纳结构组可使同时入射的左旋圆偏振光和右旋圆偏振光分别聚焦在所述焦平面上的两个位置点上。
该全偏振介质超构透镜,由于第一微纳凸起物、第二微纳凸起物和第三微纳凸起物各自分多行排布,且各行第一微纳凸起物、各行第二微纳凸起物和各行第三微纳凸起物之间在纵向方向上以预设顺序交替排布,使第一微纳凸起物、第二微纳凸起物和第三微纳凸起物均在整个衬底上均匀分布,使得第一微纳结构组、第二微纳结构组和第三微纳结构组分别相当于一个口径与衬底口径基本相同的超构透镜,与现有技术的用小超构透镜拼接成大超构透镜相比,各个偏振态光线的聚焦区域的面积更大,聚焦效率更高,聚焦效果更好。
优选地,任意相邻的两行所述第一微纳凸起物之间有且仅有一行所述第二微纳凸起物和一行所述第三微纳凸起物;任意相邻的两行所述第二微纳凸起物之间有且仅有一行所述第一微纳凸起物和一行所述第三微纳凸起物;任意相邻的两行所述第三微纳凸起物之间有且仅有一行所述第二微纳凸起物和一行所述第一微纳凸起物。
从而,可提高第一微纳凸起物、第二微纳凸起物和第三微纳凸起物的分布均匀性,当该全偏振介质超构透镜被用于进行成像时,有利于提高成像质量。
优选地,所述第一微纳凸起物、所述第二微纳凸起物和所述第三微纳凸起物的高度一致。
从而,无需根据不同的微纳凸起物的高度采取不同的工艺参数进行制备,降低制备难度。
优选地,所述第一微纳凸起物、所述第二微纳凸起物和所述第三微纳凸起物的高度均为亚波长尺寸,且所述第一微纳凸起物、所述第二微纳凸起物和所述第三微纳凸起物的相位和振幅响应符合光学谐振规律。从而,由于微纳凸起物的高度均为亚波长高度,微纳凸起物的深宽比较低,降低了制备难度。
优选地,所述第一微纳凸起物和所述第二微纳凸起物的横截面均具有镜面对称性和C2对称性;所述第三微纳凸起物的横截面具有手性和C2对称性。
优选地,所述全偏振介质超构透镜对于各种偏振态的入射光的相位分布满足:
其中,为所述全偏振介质超构透镜对于第种偏振态的入射光形成的相位延迟,为入射光的入射点在所述全偏振介质超构透镜的表面坐标系下的位置向量,为第种
偏振态的入射光的焦点在所述全偏振介质超构透镜上的投影点的位置向量,为入射光的
波长,为所述全偏振介质超构透镜的孔径半径,为所述全偏振介质超构透镜的焦距。
第二方面,本申请提供了一种全偏振介质超构透镜使用方法,用于对入射光进行偏振检测,把图像传感器设置于前文项所述的全偏振介质超构透镜的所述焦平面处,使所述入射光从所述全偏振介质超构透镜背向所述焦平面的一侧垂直地射向所述全偏振介质超构透镜,根据所述图像传感器采集到的各焦点的光强,采用以下公式计算所述入射光的斯托克斯矢量,根据所述斯托克斯矢量确定所述入射光的偏振状态:
其中,为所述斯托克斯矢量,、、、分别为所述斯托克斯矢量的四个分
量,为x向偏振光的焦点的光强,为y向偏振光的焦点的光强,为45°偏振光的焦点的
光强,为135°偏振光的焦点的光强,为右旋圆偏振光的焦点的光强,为左旋圆偏振
光的焦点的光强。
第三方面,本申请提供了一种全偏振介质超构透镜使用方法,用于获取物体的全偏振图像,把图像传感器设置于前文所述的全偏振介质超构透镜背向所述物体的一侧,使所述全偏振介质超构透镜与所述图像传感器的距离满足物像公式,由所述图像传感器采集六个偏振的第一图像,对六个所述第一图像进行标定操作得到所述物体的全偏振图像。
第四方面,一种全偏振介质超构透镜使用方法,用于非偏振物体的光场成像,把前文所述的全偏振介质超构透镜设置在一个凸透镜的后焦面处,并在所述全偏振介质超构透镜后方的所述焦平面处设置一个图像传感器,其中,所述凸透镜的焦距大于所述全偏振介质超构透镜的焦距;使多个被测物体位于所述凸透镜的前方,由所述图像传感器采集所述被测物体的原始图像后,通过图像重构和渲染算法还原得到分别聚焦于各所述被测物体的图像。
有益效果:
本申请提供的全偏振介质超构透镜及其使用方法,不同偏振态的光波经过第一微纳凸起物组、第二微纳凸起物组和第三微纳凸起物组的作用可分别聚焦在同一焦平面上的不同位置点上;由于第一微纳凸起物、第二微纳凸起物和第三微纳凸起物各自分多行排布,且各行第一微纳凸起物、各行第二微纳凸起物和各行第三微纳凸起物之间在纵向方向上以预设顺序交替排布,使第一微纳凸起物、第二微纳凸起物和第三微纳凸起物均在整个衬底上均匀分布,使得第一微纳结构组、第二微纳结构组和第三微纳结构组分别相当于一个口径与衬底口径基本相同的超构透镜,与现有技术的用小超构透镜拼接成大超构透镜相比,各个偏振态光线的聚焦区域的面积更大,聚焦效率更高,聚焦效果更好。
本申请的其他特征和优点将在随后的说明书阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请了解。
附图说明
图1为本申请实施例提供的全偏振介质超构透镜的结构示意图。
图2为图1中的S部分的放大图。
图3为第一微纳凸起物的横截面示意图。
图4为第二微纳凸起物的横截面示意图。
图5为第三微纳凸起物的横截面示意图。
图6为本申请实施例提供的全偏振介质超构透镜的使用状态示意图。
图7为实施例二中的全偏振介质超构透镜的使用状态示意图。
图8为实施例三中的光路图。
标号说明:1、衬底;2、第一微纳凸起物;3、第二微纳凸起物;4、第三微纳凸起物;90、焦平面;100、全偏振介质超构透镜;101、凸透镜;102、图像传感器;103、第一物体;104、第二物体。
具体实施方式
下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本申请的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
请参照图1-图5,本申请一些实施例中的一种全偏振介质超构透镜,包括衬底1和设置在衬底1上的亚波长微纳结构;亚波长微纳结构包括多行第一微纳凸起物2、多行第二微纳凸起物3和多行第三微纳凸起物4;多行第一微纳凸起物2、多行第二微纳凸起物3和多行第三微纳凸起物4在纵向方向上以预设顺序(实际的顺序可根据实际需要设置,此处不对其进行限定)交替排布;每行第一微纳凸起物2包括多个沿横向方向间隔排布的第一微纳凸起物2,每行第二微纳凸起物3包括多个沿横向方向间隔排布的第二微纳凸起物3,每行第三微纳凸起物4包括多个沿横向方向间隔排布的第三微纳凸起物4;
所有第一微纳凸起物2组成第一微纳结构组,第一微纳结构组可使同时入射的x向偏振光和y向偏振光分别聚焦在同一焦平面90(见图6)上的两个位置点上(例如图6中的H点和V点);
所有第二微纳凸起物3组成第二微纳结构组,第二微纳结构组可使同时入射的45°偏振光和135°偏振光分别聚焦在该焦平面90上的两个位置点上(该两个位置点与x向偏振光和y向偏振光的焦点位置点不同,例如图6中的D点和A点);
所有第三微纳凸起物4组成第三微纳结构组,第三微纳结构组可使同时入射的左旋圆偏振光和右旋圆偏振光分别聚焦在该焦平面90上的两个位置点上(该两个位置点与x向偏振光、y向偏振光、45°偏振光和135°偏振光的焦点位置点不同,例如图6中的R点和L点)。
需要说明的是,x向是指x轴方向,y向是指y轴方向,x轴和y轴是设置在衬底1表面的二维坐标系(以下称之为表面坐标系)的两个坐标轴,该二维坐标系的原点一般设置在衬底1中心处(但不限于此),横向和纵向是衬底1表面所在平面上的两个相互垂直的方向,一般地,横向可与x轴方向相同,纵向可与y轴方向相同,但不限于此。
该全偏振介质超构透镜,不同偏振态的光波经过第一微纳凸起物组、第二微纳凸起物组和第三微纳凸起物组的作用可分别聚焦在同一焦平面90上的不同位置点上;由于第一微纳凸起物2、第二微纳凸起物3和第三微纳凸起物4各自分多行排布,且各行第一微纳凸起物2、各行第二微纳凸起物3和各行第三微纳凸起物4之间在纵向方向上以预设顺序交替排布,使第一微纳凸起物2、第二微纳凸起物3和第三微纳凸起物4均在整个衬底1上均匀分布,使得第一微纳结构组、第二微纳结构组和第三微纳结构组分别相当于一个口径与衬底1口径基本相同的超构透镜,与现有技术的用小超构透镜拼接成大超构透镜的结构相比,各个偏振态光线的聚焦区域的面积更大,聚焦效率更高,聚焦效果更好。
在一些优选实施方式中,见图2,任意相邻的两行第一微纳凸起物2之间有且仅有一行第二微纳凸起物3和一行第三微纳凸起物4;任意相邻的两行第二微纳凸起物3之间有且仅有一行第一微纳凸起物2和一行第三微纳凸起物4;任意相邻的两行第三微纳凸起物4之间有且仅有一行第二微纳凸起物3和一行第一微纳凸起物2。即,任意相邻的三行微纳凸起物中均包括一行第一微纳凸起物2、一行第二微纳凸起物3和一行第三微纳凸起物4。从而,可提高第一微纳凸起物、第二微纳凸起物和第三微纳凸起物的分布均匀性,当该全偏振介质超构透镜被用于进行成像时,有利于提高成像质量。
在实际应用中,多行第一微纳凸起物2、多行第二微纳凸起物3和多行第三微纳凸起物4在纵向方向上交替排布的方式不限于此,例如也可以以n(n为大于1的正整数,可根据实际需要设置,例如2、3等)行第一微纳凸起物2为一个第一单元、以n行第二微纳凸起物3为一个第二单元、以n行第三微纳凸起物4为一个第三单元,多个第一单元、多个第二单元和多个第三单元在纵向方向上交替排布,其中,任意相邻的两个第一单元之间有且仅有一个第二单元和一个第三单元;任意相邻的两个第二单元之间有且仅有一个第一单元和一个第三单元;任意相邻的两个第三单元之间有且仅有一个第二单元和一个第一单元。
其中,衬底1的具体形状可根据实际需要设置,例如图1中,衬底1为圆形,在图1中,只画出了局部区域(S部分)的微纳凸起物,但实际上微纳凸起物布满衬底1的其中一个侧面(在实际应用中,也可不布满整个侧面)。需要说明的是,衬底1上仅一个侧面设置有微纳凸起物,在使用时,入射光一般是从衬底1的没有微纳凸起物的一侧入射,再从设置有微纳凸起物的一侧出射。
在本实施例中,第一微纳凸起物2、第二微纳凸起物3和第三微纳凸起物4的高度一致。其中,微纳凸起物的高度是指垂直于衬底1的方向上的尺寸。从而,无需根据不同的微纳凸起物的高度采取不同的工艺参数进行制备,降低制备难度。实际上,第一微纳凸起物2、第二微纳凸起物3和第三微纳凸起物4的高度也可不一致,但是,在制备时,需要分别针对不同高度的微纳凸起物调整工艺参数,且通常需要按不同的高度分批进行微纳凸起物的制备(例如,第一微纳凸起物2、第二微纳凸起物3和第三微纳凸起物4的高度均不相同,则先制备第一微纳凸起物2,调整工艺参数后再制备第二微纳凸起物3,再次调整工艺参数后制备第三微纳凸起物4),工艺步骤繁琐,制备成本较高。
在本实施例中,第一微纳凸起物2、第二微纳凸起物3和第三微纳凸起物4的高度均为亚波长尺寸(即高度小于目标波长,目标波长是指目标入射光的波长),且第一微纳凸起物2、第二微纳凸起物3和第三微纳凸起物4的相位和振幅响应符合光学谐振规律(例如米氏谐振或类FP共振)。从而,该全偏振介质超构透镜是通过光学谐振实现对光的波面调控的,而目前,现有的大部分超构透镜是通过波导传播模型实现对光的波面调控的,通过波导传播模型实现对光的波面调控一般需要微纳凸起物具有较大的高度(从而微纳凸起物为微纳柱),与之相比,本实施例的微纳凸起物的高度更小,使整个亚波长微纳结构的厚度明显小于目标波长,可有效降低材料成本,且微纳凸起物的深宽比较低,可降低制备难度;而且,现有技术的这种通过波导传播模型实现对光的波面调控的结构,同一微纳凸起物只能控制一个偏振,而本申请通过光学谐振实现对光的波面调控,同一微纳凸起物可控制两个偏振,进一步提高了各个偏振态光线的聚焦区域的面积,从而进一步提高聚焦效果。
其中,第一微纳凸起物2、第二微纳凸起物3和第三微纳凸起物4的高度可根据实际
的目标波长设置,例如,若目标入射光是某波段的红外光,则可根据该波段的红外光的波长
设置该高度。优选地,第一微纳凸起物2、第二微纳凸起物3和第三微纳凸起物4的高度均为,为目标波长;在该高度范围内,具有较好的聚焦效果。
具体地,第一微纳凸起物2和第二微纳凸起物3的横截面(该横截面垂直于高度方向)均具有镜面对称性(即关于一位于该横截面内的对称轴线对称)和C2对称性(即该横截面绕一对称中心旋转180°后与原来的横截面重合);第三微纳凸起物4的横截面具有手性(即该横截面不能与自身的镜像相重合)和C2对称性。目前,超构透镜主要通过控制对称结构的取向空间分布规律引入结构相位实现对圆偏振光的波面调控,但由于结构相位对两个圆偏振分量的共轭性,一个圆偏振分量的聚焦总伴随另一个圆偏振光的发散,尽管可采用两组结构分别实现对左旋和右旋圆偏振光的聚焦,其聚焦效率理论上不高于50%。本实施例采用手性结构中光学谐振的偏振转换,可通过一组结构同时实现左旋和右旋圆偏振的聚焦,聚焦效率可高于50%。
进一步地,第一微纳凸起物2的横截面的对称轴线沿x轴方向或y轴方向延伸;第二微纳凸起物3的对称轴线与x轴方向的夹角为45°或135°。
在一些具体实施例中,见图3-5,第一微纳凸起物2的横截面为矩形;第二微纳凸起物3的横截面为矩形;第三微纳凸起物4的横截面为由两个尺寸相同的矩形部分地贴合而成的“Z”形。实际应用中,第一微纳凸起物2和第二微纳凸起物3的横截面不限于是矩形,只需要同时具有镜面对称性和C2对称性即可,例如还可以为椭圆形。第三微纳凸起物的形状不限于“Z”形,同时具备手性特征和C2对称性即可,例如还可以为闪电形。
对于横截面为矩形的第一微纳凸起物2和第二微纳凸起物3,在高度一定的情况下,可通过调节宽度w和长度l的具体大小来调节其谐振引起的光波的相移,从而实现对光的波面的调控;对于横截面为“Z”形的第三微纳凸起物4,在高度一定的情况下,可通过调节第一长度l1,第二长度l2和错位长度d的具体大小来调节其谐振引起的光波的相移,从而实现对光的波面的调控。
其中,该全偏振介质超构透镜对于各种偏振态的入射光(垂直入射时)的相位分布满足:
其中,为全偏振介质超构透镜对于第种偏振态的入射光形成的相位延迟(总
共有六种偏振态,分别为x向偏振态、y向偏振态、45°偏振态、135°偏振态、左旋圆偏振态和
右旋圆偏振态),为入射光的入射点在全偏振介质超构透镜的表面坐标系下的位置向量,为第种偏振态的入射光的焦点在全偏振介质超构透镜上的投影点的位置向量,为入
射光的波长,为全偏振介质超构透镜的孔径半径,为全偏振介质超构透镜的焦距。
其中,圆偏振的相位调控通过圆偏振之间的偏振转换实现。所有第三微纳凸起物4组成第三微纳结构组具有以下特性:
左旋圆偏振光入射后,转换成右旋圆偏振光并聚焦;右旋圆偏振光入射后到超构透镜后,转换成左旋圆偏振光并聚焦;圆偏振表象下的琼斯矩阵为:
;其中,为琼斯矩阵,为左旋圆偏振转换为右旋圆偏振
时引入的额外相位,为右旋圆偏振转换为左旋圆偏振时引入的额外相位,为右旋圆
偏振非偏振转换成分的相位,为左旋圆偏振非偏振转换成分的相位;此处的是虚数的
单位;
其中,
为极化张量,为入射电场x分量激发极化响应x分量的极化率,为入射电
场y分量激发极化响应y分量的极化率,为电场y分量产生极化响应x分量的极化率分量,为电场x分量产生极化响应y分量的极化率分量,为谐振引起的相移;其中,和不为零,和由第三微纳凸起物4的横截面尺寸决定(对于横截面为“Z”形的第三微
纳凸起物4,由第一长度l1,第二长度l2和错位长度d决定)。
从而,当不为零时,,即结构对左旋圆偏振和右旋圆偏振的相位调控
不存在共轭限制,在第三微纳凸起物4高度固定的情况下,通过调整其横截面形状和尺寸,
可以同时调节和,从而通过一组结构(第三微纳结构组)可同时调控左旋圆偏振光和
右旋圆偏振光的相位分布,实现两种圆偏振入射光的分离和聚焦。
其中,亚波长微纳结构的材料选用在目标波长具备高折射率和低损耗的介质材料,当目标入射光是可见光波段的光波时,亚波长微纳结构(第一微纳凸起物2、第二微纳凸起物3和第三微纳凸起物4)可由TiO2、Si、GaN或Si3N4等制成,当目标入射光是红外波段的光波时,亚波长微纳结构可由Si、Ge、PbTe、ZnSe或CaF等制成。
实施例一
本实施例提供了一种全偏振介质超构透镜使用方法,用于对入射光进行偏振检测,把图像传感器设置于上述的全偏振介质超构透镜的焦平面90处,使入射光从全偏振介质超构透镜背向焦平面90的一侧垂直地射向全偏振介质超构透镜(从没有微纳凸起物的一侧入射),根据图像传感器采集到的各焦点的光强,采用以下公式计算入射光的斯托克斯矢量,根据斯托克斯矢量确定入射光的偏振状态:
其中,为斯托克斯矢量,、、、分别为斯托克斯矢量的四个分量,为x
向偏振光的焦点的光强,为y向偏振光的焦点的光强,为45°偏振光的焦点的光强,
为135°偏振光的焦点的光强,为右旋圆偏振光的焦点的光强,为左旋圆偏振光的焦点
的光强。
实施例二
本实施例提供了一种全偏振介质超构透镜使用方法,用于获取物体的全偏振图像,把图像传感器设置于上述全偏振介质超构透镜背向物体(例如图7中,左侧的树是需要获取其全偏振图像的物体)的一侧,使全偏振介质超构透镜与图像传感器的距离满足物像公式,由图像传感器采集六个偏振的第一图像,对六个第一图像进行标定操作得到物体的全偏振图像。
其中,物像公式为:
其中,对六个第一图像进行标定操作得到物体的全偏振图的过程为现有技术,此处不对其进行详述。
实施例三
参考图8,本实施例提供了一种全偏振介质超构透镜使用方法,用于非偏振物体(即发射光或反射光为非偏振光的物体)的光场成像,把上述的全偏振介质超构透镜100设置在一个凸透镜101的后焦面处(此处,后是指背向被测物体方向),并在全偏振介质超构透镜100后方的焦平面处设置一个图像传感器102,其中,凸透镜101的焦距大于(一般是远大于)全偏振介质超构透镜100的焦距;使多个被测物体(例如图8中的第一物体103和第二物体104)位于凸透镜101的前方,由图像传感器102采集被测物体的原始图像后,通过图像重构和渲染算法还原得到分别聚焦于各被测物体的图像(具体的通过图像重构和渲染算法还原得到分别聚焦于各被测物体的图像为现有技术,此处不对其进行详述)。
在图8中,第一物体103和第二物体104与凸透镜101之间的距离分别为和,凸
透镜101和全偏振介质超构透镜100的焦距分别为和,且,第一物体103和第
二物体104各自的光线经凸透镜101后穿过全偏振介质超构透镜100被各微纳结构组进行多
焦点聚焦,并被图像传感器102记录,得到包含多维光场信息的原始图像,通过图像重构和
渲染算法可以还原得到分别聚焦于各被测物体的图像,从而实现数字变焦功能。
普通用于偏振成像的超构透镜,每个微纳柱阵列相当于一个等效透镜,该等效透镜的口径小,其边缘与图像传感器的像元阵列边缘对准精度要求高,而该全偏振介质超构透镜100中的每个等效透镜口径(每个微纳结构组相当于一个等效透镜)与普通用于偏振的超构透镜的等效透镜相比增大至6倍,不仅降低了对准精度要求,还增大了角分辨率,有利于获得更高的成像质量。
综上所述,该全偏振介质超构透镜具有以下优点:
1.具有超轻薄的特点,不同偏振态的光波经过单一孔径的超构透镜可实现焦点的分离,并聚焦于同一个焦平面上;
2.仅通过单一孔径即可实现偏振检测、偏振成像、光场成像等由传统复杂光学系统实现的功能;
3.组成超构表面的微纳结构的厚度明显小于目标波长,可有效降低材料成本,微纳凸起物具有较低的深宽比,可降低制备难度;
4.应用于光场成像时,单一孔径的超构透镜代替透镜阵列,角分辨率更高,且与图像传感器集成的对准精度要求更低,降低集成难度。
以上所述仅为本申请的实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (8)
1.一种全偏振介质超构透镜,包括衬底和设置在所述衬底上的亚波长微纳结构;其特征在于,所述亚波长微纳结构包括多行第一微纳凸起物、多行第二微纳凸起物和多行第三微纳凸起物;所述多行第一微纳凸起物、多行第二微纳凸起物和多行第三微纳凸起物在纵向方向上以预设顺序交替排布;每行所述第一微纳凸起物包括多个沿横向方向间隔排布的所述第一微纳凸起物,每行所述第二微纳凸起物包括多个沿横向方向间隔排布的所述第二微纳凸起物,每行所述第三微纳凸起物包括多个沿横向方向间隔排布的所述第三微纳凸起物;
所有所述第一微纳凸起物组成第一微纳结构组,所述第一微纳结构组可使同时入射的x向偏振光和y向偏振光分别聚焦在同一焦平面上的两个位置点上;
所有所述第二微纳凸起物组成第二微纳结构组,所述第二微纳结构组可使同时入射的45°偏振光和135°偏振光分别聚焦在所述焦平面上的两个位置点上;
所有所述第三微纳凸起物组成第三微纳结构组,所述第三微纳结构组可使同时入射的左旋圆偏振光和右旋圆偏振光分别聚焦在所述焦平面上的两个位置点上;
所述第一微纳凸起物、所述第二微纳凸起物和所述第三微纳凸起物的高度均为亚波长尺寸,且所述第一微纳凸起物、所述第二微纳凸起物和所述第三微纳凸起物的相位和振幅响应符合光学谐振规律;同一微纳凸起物可对两种偏振光进行波面调控;
所述第一微纳凸起物和所述第二微纳凸起物的横截面均具有镜面对称性和C2对称性;所述第三微纳凸起物的横截面具有手性和C2对称性。
2.根据权利要求1所述的全偏振介质超构透镜,其特征在于,任意相邻的两行所述第一微纳凸起物之间有且仅有一行所述第二微纳凸起物和一行所述第三微纳凸起物;任意相邻的两行所述第二微纳凸起物之间有且仅有一行所述第一微纳凸起物和一行所述第三微纳凸起物;任意相邻的两行所述第三微纳凸起物之间有且仅有一行所述第二微纳凸起物和一行所述第一微纳凸起物。
3.根据权利要求1所述的全偏振介质超构透镜,其特征在于,所述第一微纳凸起物、所述第二微纳凸起物和所述第三微纳凸起物的高度一致。
6.一种全偏振介质超构透镜使用方法,用于对入射光进行偏振检测,其特征在于,把图像传感器设置于权利要求1-5任一项所述的全偏振介质超构透镜的所述焦平面处,使所述入射光从所述全偏振介质超构透镜背向所述焦平面的一侧垂直地射向所述全偏振介质超构透镜,根据所述图像传感器采集到的各焦点的光强,采用以下公式计算所述入射光的斯托克斯矢量,根据所述斯托克斯矢量确定所述入射光的偏振状态:
7.一种全偏振介质超构透镜使用方法,用于获取物体的全偏振图像,其特征在于,把图像传感器设置于权利要求1-5任一项所述的全偏振介质超构透镜背向所述物体的一侧,使所述全偏振介质超构透镜与所述图像传感器的距离满足物像公式,由所述图像传感器采集六个偏振的第一图像,对六个所述第一图像进行标定操作得到所述物体的全偏振图像。
8.一种全偏振介质超构透镜使用方法,用于非偏振物体的光场成像,其特征在于,把权利要求1-5任一项所述的全偏振介质超构透镜设置在一个凸透镜的后焦面处,并在所述全偏振介质超构透镜后方的所述焦平面处设置一个图像传感器,其中,所述凸透镜的焦距大于所述全偏振介质超构透镜的焦距;使多个被测物体位于所述凸透镜的前方,由所述图像传感器采集所述被测物体的原始图像后,通过图像重构和渲染算法还原得到分别聚焦于各所述被测物体的图像。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210203502.9A CN114280707B (zh) | 2022-03-03 | 2022-03-03 | 一种全偏振介质超构透镜及其使用方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210203502.9A CN114280707B (zh) | 2022-03-03 | 2022-03-03 | 一种全偏振介质超构透镜及其使用方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114280707A CN114280707A (zh) | 2022-04-05 |
CN114280707B true CN114280707B (zh) | 2022-06-03 |
Family
ID=80881938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210203502.9A Active CN114280707B (zh) | 2022-03-03 | 2022-03-03 | 一种全偏振介质超构透镜及其使用方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114280707B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114791670B (zh) * | 2022-05-13 | 2023-10-24 | 华中科技大学 | 一种基于超表面的偏振成像透镜、设计方法及检测系统 |
CN115327684B (zh) * | 2022-10-13 | 2023-01-31 | 季华实验室 | 超构透镜,三维成像系统、方法、电子设备及存储介质 |
CN116539165A (zh) * | 2023-04-12 | 2023-08-04 | 信扬科技(佛山)有限公司 | 热成像装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108761585B (zh) * | 2018-05-17 | 2021-04-27 | 桂林电子科技大学 | 一种基于介质超表面构造多焦点透镜的方法 |
CN109270606B (zh) * | 2018-10-08 | 2021-12-03 | 桂林电子科技大学 | 一种基于介质和石墨烯构造动态多焦点超透镜的方法 |
CN112596232A (zh) * | 2020-12-15 | 2021-04-02 | 无锡光隐科技发展有限公司 | 一种基于偏振无关透镜的红外光场成像装置及制备方法 |
CN114063202B (zh) * | 2021-12-06 | 2022-12-06 | 清华大学深圳国际研究生院 | 可由任意偏振态调控的多功能超构透镜及其制作方法 |
-
2022
- 2022-03-03 CN CN202210203502.9A patent/CN114280707B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN114280707A (zh) | 2022-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114280707B (zh) | 一种全偏振介质超构透镜及其使用方法 | |
Gao et al. | Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction | |
US9891305B2 (en) | Chip-scale star tracker | |
US8238026B1 (en) | Polarization-sensitive infrared image sensor including a plurality of optical fibers | |
CN110954966B (zh) | 基于超透镜阵列的平面光电探测系统 | |
CN102331303B (zh) | 一种基于光栅的相位差波前传感器 | |
JP6164212B2 (ja) | 撮像光学系、撮像装置 | |
CN104931141B (zh) | 一种全斯托克斯参量的白光双Sagnac偏振成像方法 | |
US20240344889A1 (en) | Thermal imaging device | |
CN109597160B (zh) | 一种基于v形光学天线超构表面的解复用器件及其工作方法 | |
CN209182525U (zh) | 毫米波太赫兹成像设备 | |
CN110631994A (zh) | 动量空间光学相位测量系统 | |
CN114527559B (zh) | 基于单轴晶体的相衬显微模块、设备及方法 | |
Zhou et al. | Three-dimensional optical techniques using Dammann gratings | |
TWI857558B (zh) | 熱成像裝置 | |
CN212460095U (zh) | 超透镜组和超成像装置 | |
Li et al. | Distributed long-wave infrared array camera based on fiber image bundle | |
US20240310422A1 (en) | Quantum electromagnetic field sensor | |
US20220139990A1 (en) | Polarimetric imaging camera | |
JP2008158535A (ja) | 撮像装置 | |
WO2021087012A1 (en) | Machine learning based regression of complex coefficients of a linear combination of spatial modes from multimode optical fiber | |
CN116086309A (zh) | 二维波前传感系统及其数据处理方法 | |
CN116046165A (zh) | 一种衍射偏振成像系统 | |
RU2503922C2 (ru) | Изображающий микроэллипсометр | |
Siano et al. | A monolithic interferometer for high-sensitive strictly-local detection of orbital angular momentum states of light |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |