CN114280141A - 一种兰姆波阵列器件及其大气环境微粒检测方法 - Google Patents

一种兰姆波阵列器件及其大气环境微粒检测方法 Download PDF

Info

Publication number
CN114280141A
CN114280141A CN202111624210.4A CN202111624210A CN114280141A CN 114280141 A CN114280141 A CN 114280141A CN 202111624210 A CN202111624210 A CN 202111624210A CN 114280141 A CN114280141 A CN 114280141A
Authority
CN
China
Prior art keywords
lamb wave
particles
detected
temperature
wave unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111624210.4A
Other languages
English (en)
Other versions
CN114280141B (zh
Inventor
杜晓松
方子龙
王洋
黄砚文
龙吟
许成成
黎威志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202111624210.4A priority Critical patent/CN114280141B/zh
Publication of CN114280141A publication Critical patent/CN114280141A/zh
Application granted granted Critical
Publication of CN114280141B publication Critical patent/CN114280141B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明公开了一种兰姆波阵列器件及其大气环境微粒检测方法,属于传感器技术领域,兰姆波阵列器件由多个具有负温度系数的兰姆波单元器件构成,各兰姆波单元器件上设有独立的加热器。方法包括先将各兰姆波单元器件分别加热至对应待测微粒的预热温度,预热温度略低于待测微粒的熔点温度;再对待测大气环境进行采样;最后对各兰姆波单元器件进行窄幅温度扫描,并依据温度扫描谱中有无反向小峰判定各单元器件是否检测到了对应微粒。本发明的传感器阵列能够同时检测多种微粒,并且各单元器件在工作时温度的扫描范围局限于目标微粒熔点上下不超过10℃的范围之内,不仅极大地缩短了检测时间,加快了检测进程,还能够提升微粒定性识别的准确性。

Description

一种兰姆波阵列器件及其大气环境微粒检测方法
技术领域
本发明涉及传感器技术领域,尤其涉及一种兰姆波阵列器件及其大气环境微粒检测方法。
背景技术
现有新型基于声表面波器件(SAW)的质量-温度双重敏感效应的大气微粒的定性识别方法中(ZL201810481168.7),采用的声表面波器件不仅没有敏感膜,而且传感信号的产生也不在待测物质(微粒/气体)吸附在器件表面的过程之中,而是在采样以后对器件进行加热的熔化蒸发过程中完成传感信号的采集,进而对大气微粒进行定性识别,然而此种方法仅适用于对具有固定熔点的微粒进行检测。进一步地,现有大气微粒的定性识别方法仅基于单一SAW器件对微粒类型进行识别,当需要对多种物质的微粒进行检测时,温度扫描的范围需要覆盖所有待测物质的熔点,温度范围可能太宽而导致检测时间过长。例如爆炸物就有很多种,熔点分别为:TNT(三硝基甲苯)80.9℃、PETN(季戊四醇四硝酸酯)141℃、RDX(环三亚甲基三硝胺,黑索金)204.1℃、HMX(1,3,5,7-四硝基-1,3,5,7-四氮杂环辛烷,奥克托今)246℃。筛查这四种爆炸物就需要温度至少须从约75℃开始扫描到250℃,幅宽高达175℃;假如采用5℃/s的速度进行扫描也需要25秒,难以满足安检等场合快速检测的需求。此外,同时对多种物质微粒进行检测时,微粒均通过一个SAW器件的表面进行采集,各微粒间存在交叠混合的问题,进而影响微粒熔点,大大增加了大气微粒的定性识别的错误率。
发明内容
本发明的目的在于克服现有技术对多种微粒进行检测时检测时间长、错误率高的问题,提供了一种兰姆波阵列器件及其大气环境微粒检测方法。
本发明的目的是通过以下技术方案来实现的:一种兰姆波阵列器件,其包括若干具有负温度系数的兰姆波单元器件,各兰姆波单元器件上设有加热器和温度传感器,用于独立调控各兰姆波单元器件的温度而不发生相互干扰;加热器用于先将各兰姆波单元器件分别加热至对应待测微粒的预热温度,预热温度低于待测微粒的熔点温度;对待测大气环境采样后,再对各兰姆波单元器件以惯性加热的方式进行窄幅升温扫描,以将各兰姆波单元器件分别加热至高于对应待测微粒熔点的温度。
在一示例中,所述各兰姆波单元器件之间设有隔热空气隙。
在一示例中,所述兰姆波阵列器件的阵列中心设有对流通气孔;兰姆波阵列器件上盖设有气帽,气帽侧面设有进气口。
在一示例中,所述加热器为铂电阻薄膜线条,绕设于兰姆波单元器件外周。
在一示例中,所述兰姆波阵列为拼合式阵列,由聚合物基台和粘贴在聚合物基台上的多个兰姆波单元器件构成;聚合物基台上开挖有切槽形成多个子平台,每个子平台粘贴一个兰姆波单元器件,子平台之间的切槽形成空气隙。
在一示例中,所述兰姆波阵列为单片集成式阵列,单片集成式阵列由悬板结构的兰姆波单元器件构成,兰姆波单元器件的膜片与基板之间仅有两处窄桥机械连接,其余部分皆断开形成空气隙。
需要进一步说明的是,上述兰姆波阵列器件各示例对应的技术特征可以相互组合或替换构成新的技术方案。
本发明还包括一种大气环境微粒检测方法,所述方法基于上述任一示例或多个示例组成形成的所述兰姆波阵列器件进行应用,所述方法包括定性检测步骤:
将各兰姆波单元器件分别加热至对应待测微粒的预热温度,预热温度略低于待测微粒的熔点温度;
对待测大气环境进行采样,使待测微粒附着于兰姆波阵列器件表面;
对各兰姆波单元器件以惯性加热的方式进行窄幅升温扫描,以将各兰姆波单元器件分别加热至略高于对应待测微粒熔点的温度;
记录窄幅升温扫描过程中各兰姆波单元器件的频率随时间变化曲线,若曲线呈单调平滑变化则表明未检测到对应的待测微粒,反之,若在单调平滑变化的大背景下有反向的突变小尖峰则表明检测到对应的待测微粒。
在一示例中,所述预热温度比待测微粒的熔点低3-5℃。
在一示例中,所述惯性加热扫描的温度幅宽不大于10℃。
在一示例中,所述方法还包括定量检测步骤:
在第一兰姆波单元器件上加载定量的待测微粒;
以第一兰姆波单元器件的频率随时间变化曲线的反向小峰的面积作为参考面积,根据参考面积计算其他待测微粒质量。
需要进一步说明的是,上述检测方法各示例对应的技术特征可以相互组合或替换构成新的技术方案。
与现有技术相比,本发明有益效果是:
1.在一示例中,各兰姆波单元器件均设有独立加热器,一方面能够将各兰姆波单元器件分别加热至对应的预热温度,缩短了检测时间;另一方面,通过预热可以将熔点低于预热温度的部分非目标检测微粒去除,进而实现待测微粒的有效采集,以此提升微粒定性识别的准确性。
2.在一示例中,通过隔热空气隙实现各兰姆波单元器件的独立温度控制。
3.在一示例中,通过对流通气孔使空气能够上下流动,从而达到良好的散热效果;进一步地,通过气帽上进气口配合对流通气孔,能够避免气流直冲兰姆波器件的膜片进而导致器件损坏。
4.在一示例中,各兰姆波单元器件各有一个独立的铂电阻薄膜加热器,实现了内置式加热,降低了功耗,减小了体积,提高了器件的集成度。
5.在一示例中,对于拼贴型兰姆波阵列器件,通过采用聚合物作为阵列器件的基台,并且聚合物基台上设有切槽将基台分割为多个彼此独立的子平台以设置兰姆波单元器件,利于将各兰姆波单元器件进行热隔离,以实现各兰姆波单元器件的独立温度控制。
6.在一示例中,对于单片集成的兰姆波阵列器件,单个兰姆波单元器件采用桥式悬板结构与周围的基板断开,即器件在机械振动隔离的同时,也具有热隔离的作用,从而便于各单元器件进行独立的温度控制而不发生温度串扰。
7.在一示例中,各兰姆波单元器件进行的惯性加热是从各自的预热温度开始,即从仅低于待测微粒的熔点3-4℃开始,升温6-8℃,达到高于待测微粒的熔点3-4℃结束,这样即使有高熔点的微粒落在低温度的单元器件上,升温的幅度很窄,达不到该高熔点微粒的熔点,不会导致非目标检测微粒的熔化而产生错误信号,以此进一步提升微粒定性识别的准确性。
8.在一示例中,通过液滴滴涂的方法实现了微量固体在兰姆波器件上的定量加载,并以此样品在惯性加热时所获得的反向小峰的面积为内标,实现了空气中采样样品的定量分析。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明,此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,在这些附图中使用相同的参考标号来表示相同或相似的部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为本发明实施例1中的兰姆波阵列器件俯视图;
图2为本发明实施例1中的兰姆波阵列器件剖面图;
图3为本发明的大气环境微粒检测方法流程图;
图4为本发明实施例1中兰姆波阵列器件对模拟雷场的空气进行检测的频率曲线图;
图5为本发明实施例1中兰姆波单元器件对液滴加载的1.5μgTNT的检测频率曲线图;
图6为本发明实施例2的兰姆波阵列器件俯视图。
图中:1-聚合物基台、11-切槽、12-第一通气孔、2-兰姆波单元器件、21-顶层硅、22-底层硅、23-叉指电极、24-反射栅、25-埋层二氧化硅、26-压电薄膜、27-铂电阻薄膜线条、28-空腔、29-膜片、210-SOI晶圆、3-气帽、31-进气口、4-PCB板、5-单片集成兰姆波阵列、51-空气隙、52-连接窄桥、53-第二通气孔。
具体实施方式
下面结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,属于“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系为基于附图所述的方向或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,属于“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,属于“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1基于拼合型兰姆波阵列器件对大气环境中爆炸物微粒的检测
1.1四周固支膜片型兰姆波单元器件的制备
在本实施例中采用四周固支膜片型兰姆波单元器件构建传感器阵列。具体地,兰姆波器件采用SOI晶圆210制作,如图2的局部放大图所示,由下至上依次包括5层材料:底层硅22、埋层二氧化硅25、顶层硅21、压电薄膜26和金属电极。其中前三层材料是SOI晶圆210,而第四层的压电薄膜26具体为AIN压电薄膜,直接沉积在SOI晶圆210上而无需图案化。至于第五层金属电极包含铂和金两种材料:金电极图案化处理形成叉指电极23和反射栅24,用以激励兰姆波信号;而铂图案化以后形成铂电阻线条,围绕在叉指电极23和反射栅24的外围,用作加热器及温度传感器,如图1所示,铂电阻薄膜线条27具有四个引线焊盘,处于头和尾的两个焊盘外接加热电源,稍内侧的另两个焊盘用于测量温度。其中,顶层硅21、压电薄膜26厚度均约为2μm,金电极和铂电极的厚度皆约为150nm。在SOI晶圆210的正面完成上述1层压电薄膜26的无图案化制备和2层金属电极的图案化制备以后,从SOI晶圆210的背面将叉指电极23所在位置对应的底层硅22及埋层二氧化硅25一并去除,形成具有空腔28的兰姆波的多层薄膜悬空结构(膜片29),悬空膜片29的面积约为4mm×1mm,至此,完成兰姆波器件制备的晶圆级加工。兰姆波只有在具有薄板结构的膜片29处方能被激励产生,而铂薄膜电阻线条27的尺寸约为7mm×1.5mm,见图2的放大图,它其实是位于膜片29四周的SOI基板的框架上,不处于减薄区。
在实施例1中,构成兰姆波膜片结构的两种材料Si和AIN的热导率分别高达148W/mK、320W/mK,比很多金属都高,因此铂电阻薄膜线条27(铂膜加热丝)呈不闭合“口”子形绕设于兰姆波单元器件2周围,能保证加热温度的大面积均匀性。但材料的良好导热性是一柄双刃剑,也带来了单元之间热串扰的问题,因为本实施例的兰姆波单元器件2具有四周固支的膜片29结构,膜片29和SOI晶圆210的框架之间没有任何隔热措施,因此在构建传感器阵列时,本实施例采用了将上述兰姆波单元器件2从SOI晶圆210上划片,安装至具有隔热功能的聚合物基台1的方法。
1.2拼合型兰姆波阵列器件的构建
在实施例1中,各兰姆波单元器件2设于聚合物基台1上,聚合物基台1上设有切槽11,用于隔离各兰姆波单元器件2。具体地,聚合物基台1材质为聚四氟乙烯(PTFE)或聚酰亚胺(PI)或双马来酰亚胺三嗪树脂(BT)中任意一种,本示例具体为聚四氟乙烯基台,厚度为40mm。对于如图2所示的2×2兰姆波阵列器件,在聚合物基台1正面制备十字形的垂直切槽11,切槽11深度为20mm,切槽11不切穿聚合物基台1,切槽11宽度0.5mm,形成4个彼此隔离的正方形子平台,单个的兰姆波器件切片后的尺寸约10mm×8mm,将其逐个粘贴在各正方形子平台上。进一步地,用于检测HMX微粒、温度最高的兰姆波器件D和用于检测TNT微粒、温度最低的兰姆波器件A位于对角线上。本示例中,通过切槽11将聚合物基台1分割为多个彼此独立的平台,即将各兰姆波器件进行隔离,当需要对兰姆波阵列器件各单元分别加热到不同的温度时,能够解决各兰姆波器件之间将由于Si、AIN导热性太好而难以实现热隔离的问题。
在实施例1中,如图2所示,聚合物基台1上开设有第一通气孔12即对流通气孔。本示例中,在聚合物基台1的中心即纵横切槽11的交叉处开设了一个直径3mm的第一通气孔12,使得切槽11内的空气可以通过该中心通气孔上下流动,从而达到良好的散热效果,保证切槽11的隔热性能。
在本示例中,兰姆波阵列器件还包括与聚合物基台1适配的气帽3,气帽3将整个兰姆波阵列器件全罩住,气帽3上设有进气口31。具体地,如图2所示,在气帽3侧面开设进气口31,在通气孔外接采样泵(图中未示出),并与扣在兰姆波阵列器件上的一个气帽3相配合,使得待测气体从气帽3侧面的进气口31流入,水平流过兰姆波器件后再转一个90°弯排出,避免气流直冲兰姆波器件的膜片29而导致器件损坏。
在本示例中,兰姆波阵列器件还包括PCB板4,PCB板4设于聚合物基台1上。具体地,PCB板4为定制板,呈回字形,中心开有12cm×12cm的方孔以便于安放传感器阵列。进一步地,为减少飞线的距离,每个兰姆波传感器(兰姆波器件)中的8个引线焊盘全部设计在单侧如图1所示,并在安装时使A、B两个传感器的焊盘朝上,C、D两个传感器的焊盘朝下。本示例的PCB板4上只包含兰姆波阵列器件电路,不包含温控电路模块,因此在本示例中,铂电阻薄膜线条27只用于进行加热。
1.3兰姆波阵列器件对大气环境爆炸物微粒的定性检测
本发明还包括一种大气环境微粒检测方法,该方法基于上述任一示例或多个示例组成形成的所述兰姆波阵列器件进行应用,如图3所示,包括以下步骤:
S1:将各兰姆波单元器件2分别加热至对应待测微粒的预热温度,预热温度略低于待测微粒的熔点温度;具体地,本步骤中需先明确每个兰姆波单元器件2的检测对象(待测微粒),进而预先获取四种待测微粒TNT、PETN、RDX、HMX的熔点温度。
S2:对待测大气环境进行采样,使待测微粒附着在兰姆波器件表面。
S3:断掉温控反馈,以一个比预热功率略高的恒定功率对各单元器件进行惯性加热,进行温度的窄幅扫描,将各单元的温度加热到高于各自预设目标对象熔点3-5℃;具体地,惯性加热扫描时,加热温度幅宽小于等于10℃。
S4:记录惯性加热扫描过程中各兰姆波单元器件2的频率随时间变化曲线,根据曲线的反向小峰获取微粒检测结果。具体地,若该曲线呈单调平滑下降则表明未检测到对应的微粒,反之,若在单调平滑下降的大背景下有反向的突变小尖峰则表明测到了对应的微粒。
具体地,本示例检测的对象是四种爆炸物:TNT、PETN、RDX、HMX微粒,设定单元器件A用于检测TNT微粒,单元器件B用于检测PETN微粒,单元器件C用于检测RDX微粒,单元器件D用于检测HMX微粒。本示例采用了稳态温度被动控温的方法,即首先确定兰姆波器件A、B、C、D的预热温度,它们正好比TNT、PETN、RDX、HMX的熔点低3-4℃,分别为约78℃、138℃、201℃和243℃。然后采用稳态温度被动控温的方法,测试出各阵列元在不同加热电压下的最终稳态加热温度,从而获得预热电压分别为12.3、18.6、23.9和27.7V;而电压分别在此基础上提高0.3-0.5V后就成了窄幅温度扫描电压,可将加热温度维持在高于熔点3-8℃。
进一步地,采用1台四通道可编程直流稳压电源,将其4个通道分别接入兰姆波器件A、B、C、D。每个通道都编制2段加热程序,第一段加热时间15分钟,加热电压为预热工作电压,第二段加热时间15秒,加热电压为窄幅温度扫描电压。完成上述准备工作后,即可进行阵列测试。测试时,启动加热程序,首先接通的是预热工作电压,预热一方面可以缩短检测时间,另一方面可以去除熔点低于预热温度的杂质。5分钟后预热温度稳定后,兰姆波器件利用采样泵抽气,抽取的大气环境是在实验室中模拟的雷场环境,本示例中将10毫克的TNT和10毫克的RDX粉末样分别充分研磨后,散布在5平方的实验室地板上而形成。对地板抽气15秒使得待测气体通过气帽3上的进气口31流入,经过兰姆波阵列器件中心的通气孔流出,使待测微粒(当然也包含其他高熔点物质的微粒)附着在兰姆波器件表面完成采样,保持不变,直至第30分钟后加热程序自动将预热电压切换为窄幅扫描电压,以一个比预热时略高的功率分别对各个兰姆波单元器件2进行惯性加热。由于加热的温度高于目标微粒的熔点,因此若器件表面捕获有目标微粒,目标微粒就会熔化,而非目标物质的微粒不会熔化(除非它们的熔点极为接近)。
器件在加热过程中,由于加热功率是恒定的,因此兰姆波器件的频率随温度的升高应该是单调下降的(所用的兰姆波传感器具有负的温度系数),然而在加热过程中一旦有微粒熔化这一吸热过程,对外电源的加热而言是一个反向的小微扰。同时,微粒在熔化过程中由固态变为液态,导致蒸发速度加快,由于质量敏感效应会导致兰姆波器件频率反向增大。利用兰姆波振荡电路采集各个兰姆波单元器件2的频率信号,通过观察下降的频率曲线上是否有突变小尖峰即可判断待测微粒是否存在。测试结果如图4所示,在对各个兰姆波单元器件2进行惯性加热时,兰姆波器件的频率总体上呈大幅下降的趋势,但在A、C两个兰姆波单元器件2上却产生明显的突变小尖峰,表明检测出TNT和RDX。
1.4兰姆波器件对大气环境爆炸物微粒的定量检测
在本示例中,本发明方法还包括大气环境微粒定量检测步骤:
S11:在第一兰姆波单元器件2上加载定量的待测微粒;
S12:以第一声兰姆单元器件的频率随时间变化曲线的反向小峰的面积作为参考面积,根据参考面积估算其他待测微粒质量。
具体地,以TNT检测为例,采用丙酮为溶剂配制5μg/μL的TNT溶液后,用移液枪将0.3μL的溶液滴在兰姆波单元器件2表面,丙酮在室温下快速挥发后,留在器件表面的固态物质就是1.5μg TNT,从而完成了微粒物质的定量加载。对其进行加热,所得传感器的信号如图5所示,因此,可以采用该图为定量依据,通过对比TNT小峰的面积估算出图4中捕获的TNT的量大概为500ng。
实施例2单片集成式兰姆波传感器阵列
在本示例中,如图6所示,单片集成兰姆波阵列5中兰姆波单元器件2为桥式悬板结构,悬板与SOI基板之间仅有两处窄桥机械连接,其余部分皆断开形成空气隙。悬板由SOI基板的顶层硅和沉积在其上的AIN压电薄膜构成。为便于激励兰姆波,悬板的结构须呈中心对称,加之从机械结构的牢固性考虑,在本示例中,采用了在矩形悬板长边中心引出窄桥与周围的SOI框架相连的方案。与实施例1的四周固支膜片型兰姆波单元器件2相比,二者的最大的区别是桥式悬板结构的器件四周几乎360°围满了空气隙51,并且铂膜加热器设置在空气隙51之内的悬空薄层结构(悬板结构)的最外周,因此加热时热量只能向悬板内部传,而难以通过悬板与SOI基板框架之间的窄桥52耗散出去,降低了无效的热容,这样不仅减低了功耗,能在更低的功率下加热到设定的温度,而且受热的体积更加局域化。因此,基于桥式悬板结构的兰姆波传感器能够直接设计成为单片集成式阵列,即在完成晶圆级加工以后,该种传感器是可以按阵列为单元进行划片,直接以阵列的形式直接应用于本发明的大气环境微粒检测方法之中。当然从上面的分析中可以看出,窄桥52是唯一的传热途径,也需防止不同单元器件的窄桥过于靠近而导致的热串扰。当然,这可以通过增大单元器件之间的间距来实现,但却增大了体积。在本示例中作为优选方案在构建单片集成式阵列时,以图6所示的2×2阵列为例,将处于对角线的B、C两个单元相对于A、D两个单元旋转了90°,使得上下两个器件的窄桥不再面面相对,而是变成窄桥正对相邻器件的空气隙的布局,最大限度地增大各单元连接窄桥52处的距离,达到更佳的隔热效果。
单片集成式阵列5中的各单元器件由于自带空气隙,不再需要通过聚合物基台1来设置隔热空气隙,仅需在定制的电路板上预留出阵列芯片的面积,直接安装在电路板4上。PCB上有一个通孔(图中未未画出),与阵列中心的第二通气孔53相连,以便于利用气泵通过紧扣在阵列前端的气帽3进行抽气采样。
当然作为一选项,本申请实施例1中所述大气环境微粒检测方法也可基于实施例2中单片集成式兰姆波传感器阵列进行实施。
本申请兰姆波阵列器件通过采用多个兰姆波传感器构成阵列以并行工作的方式,并且各个器件分别在各自的检测对象(待测微粒)的熔点上下不超过10℃的窄幅温度范围内进行升温扫描,与仅采用一个传感器串行工作的方法相比,扫描的温度范围大为缩小,不仅大幅度地减少了检测时间,加快了检测进程,而且窄幅的扫描温区保证了只有目标微粒的信号才能被采集,从而确保识别的准确性。而且,待测微粒的采集由一个单元器件表面增大为多个器件表面,减少了微粒交叠混合的可能性;即使有混合,但混合物通常的熔点会降低,从而落在兰姆波单元器件的预热温度之下,被加热去除而不能被有效收集。简言之,兰姆波阵列器件所采用的逼近熔点的预热温度以及温度窄幅扫描的工作模式,极大地减少了识别错误的发生几率(高熔点待测微粒对象的混合物的熔点落在低熔点待测微粒对象的窄幅扫描温度范围之内的概率很小)。此外,兰姆波传感器各单元器件上制作有一体化的加热器/温度传感器,即通过内置式局部加热的方法,大幅度地减少了外置式加热的无效热容,降低了功耗;而且传感器阵列还实现了与气路的集成,具有体积小,隔热性能好的技术效果。
以上具体实施方式是对本发明的详细说明,不能认定本发明的具体实施方式只局限于这些说明,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演和替代,都应当视为属于本发明的保护范围。

Claims (10)

1.一种兰姆波阵列器件,其特征在于:其包括若干具有负温度系数的兰姆波单元器件,各兰姆波单元器件上设有加热器,用于独立调控各兰姆波单元器件的温度而不发生相互干扰;加热器用于先将各兰姆波单元器件分别加热至对应待测微粒的预热温度,预热温度低于待测微粒的熔点温度;对待测大气环境采样后,再对各兰姆波单元器件以惯性加热的方式进行窄幅升温扫描,以将各兰姆波单元器件分别加热至高于对应待测微粒熔点的温度。
2.根据权利要求1所述的一种兰姆波阵列器件,其特征在于:所述各兰姆波单元器件之间设有隔热空气隙。
3.根据权利要求1所述的一种兰姆波阵列器件,其特征在于:所述兰姆波阵列器件的阵列中心设有对流通气孔;兰姆波阵列器件上盖设有气帽,气帽侧面设有进气口。
4.根据权利要求1所述的一种兰姆波阵列器件,其特征在于:所述加热器为铂电阻薄膜线条,绕设于兰姆波单元器件外周。
5.根据权利要求2所述的一种兰姆波阵列器件,其特征在于:所述兰姆波阵列为拼合式阵列,由聚合物基台和粘贴在聚合物基台上的多个兰姆波单元器件构成;聚合物基台上开挖有切槽以形成多个子平台,每个子平台粘贴一个兰姆波单元器件,子平台之间的切槽形成空气隙。
6.根据权利要求2所述的一种兰姆波阵列器件,其特征在于:所述兰姆波阵列为单片集成式阵列,单片集成式阵列由桥式悬板结构的兰姆波单元器件构成,兰姆波单元器件的膜片与基板之间仅有两处窄桥机械连接,其余部分皆断开形成空气隙。
7.一种大气环境微粒检测方法,其特征在于:所述方法基于上述权利要求1-6任一项所述兰姆波阵列器件进行应用,所述方法包括定性检测步骤:
将各兰姆波单元器件分别加热至对应待测微粒的预热温度,预热温度低于待测微粒的熔点温度;
对待测大气环境进行采样,使待测微粒附着于兰姆波阵列器件表面;
对各兰姆波单元器件以惯性加热的方式进行窄幅升温扫描,以将各兰姆波单元器件分别加热至高于对应待测微粒熔点的温度;
记录窄幅升温扫描过程中各兰姆波单元器件的频率随时间变化曲线,若曲线呈单调平滑变化则表明未检测到对应的待测微粒,反之,若在单调平滑变化的大背景下有反向的突变小尖峰则表明检测到对应的待测微粒。
8.根据权利要求7所述的一种大气环境微粒检测方法,其特征在于:所述预热温度比待测微粒的熔点低3-5℃。
9.根据权利要求7所述的一种大气环境微粒检测方法,其特征在于:所述惯性加热扫描的温度幅宽不大于10℃。
10.根据权利要求7所述的一种大气环境微粒检测方法,其特征在于:所述方法还包括定量检测步骤:
在第一兰姆波单元器件上加载定量的待测微粒;
以第一兰姆波单元器件的频率随时间变化曲线的反向小峰的面积作为参考面积,根据参考面积计算其他待测微粒质量。
CN202111624210.4A 2021-12-28 2021-12-28 一种兰姆波阵列器件及其大气环境微粒检测方法 Active CN114280141B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111624210.4A CN114280141B (zh) 2021-12-28 2021-12-28 一种兰姆波阵列器件及其大气环境微粒检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111624210.4A CN114280141B (zh) 2021-12-28 2021-12-28 一种兰姆波阵列器件及其大气环境微粒检测方法

Publications (2)

Publication Number Publication Date
CN114280141A true CN114280141A (zh) 2022-04-05
CN114280141B CN114280141B (zh) 2023-06-27

Family

ID=80877199

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111624210.4A Active CN114280141B (zh) 2021-12-28 2021-12-28 一种兰姆波阵列器件及其大气环境微粒检测方法

Country Status (1)

Country Link
CN (1) CN114280141B (zh)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224060A (ja) * 1984-04-21 1985-11-08 Sumitomo Metal Ind Ltd プロ−ブ回転型探傷装置のレベル変動補正方法及び装置
US5162618A (en) * 1990-11-16 1992-11-10 Exzec, Inc. Acoustic touch position sensor with first order lamb wave reflective arrays
US6385082B1 (en) * 2000-11-08 2002-05-07 International Business Machines Corp. Thermally-assisted magnetic random access memory (MRAM)
CN1474179A (zh) * 2003-07-19 2004-02-11 中国科学院合肥智能机械研究所 一种检测固态爆炸物微粒的方法
CN1525162A (zh) * 2003-09-16 2004-09-01 中国科学院合肥智能机械研究所 一种爆炸物探测器和制作方法
US20050061076A1 (en) * 2003-09-22 2005-03-24 Hyeung-Yun Kim Sensors and systems for structural health monitoring
JP2008054163A (ja) * 2006-08-28 2008-03-06 Seiko Epson Corp ラム波型高周波共振子
CN101493437A (zh) * 2009-01-21 2009-07-29 电子科技大学 一种具有电磁屏蔽功能的声表面波气体传感器阵列
CN201364325Y (zh) * 2009-01-21 2009-12-16 电子科技大学 一种具有电磁屏蔽功能的声表面波气体传感器阵列
CN102636564A (zh) * 2012-04-25 2012-08-15 电子科技大学 集成有加热器的声表面波气体传感器阵列及其制备方法
US20120234818A1 (en) * 2011-03-16 2012-09-20 Martin Tom A Monolithically applied heating elements on saw substrate
US20140009032A1 (en) * 2012-07-04 2014-01-09 Taiyo Yuden Co., Ltd. Lamb wave device and manufacturing method thereof
CN103575765A (zh) * 2013-10-14 2014-02-12 浙江大学 一种快速检测羊肉掺假的方法
US20150355084A1 (en) * 2012-12-19 2015-12-10 University Of California Optimizing analysis and identification of particulate matter
US20180101255A1 (en) * 2016-10-12 2018-04-12 The Board Of Trustees Of The Leland Stanford Junior University Methods for multi-touch ultrasonic touchscreens
CN108918353A (zh) * 2018-05-18 2018-11-30 电子科技大学 一种大气环境中微粒物质定性检测的方法
CN109632962A (zh) * 2018-12-20 2019-04-16 电子科技大学 任意扫描轨迹的非接触式兰姆波缺陷检测成像方法
CN110045019A (zh) * 2019-05-08 2019-07-23 南昌航空大学 一种薄板空气耦合超声兰姆波全聚焦成像检测方法
US20210043541A1 (en) * 2019-08-06 2021-02-11 Intel Corporation Thermal management in integrated circuit packages
US20210341424A1 (en) * 2020-04-30 2021-11-04 Silterra Malaysia Sdn. Bhd. Device for determining information of a substance in a matter

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224060A (ja) * 1984-04-21 1985-11-08 Sumitomo Metal Ind Ltd プロ−ブ回転型探傷装置のレベル変動補正方法及び装置
US5162618A (en) * 1990-11-16 1992-11-10 Exzec, Inc. Acoustic touch position sensor with first order lamb wave reflective arrays
US6385082B1 (en) * 2000-11-08 2002-05-07 International Business Machines Corp. Thermally-assisted magnetic random access memory (MRAM)
CN1474179A (zh) * 2003-07-19 2004-02-11 中国科学院合肥智能机械研究所 一种检测固态爆炸物微粒的方法
CN1525162A (zh) * 2003-09-16 2004-09-01 中国科学院合肥智能机械研究所 一种爆炸物探测器和制作方法
US20050061076A1 (en) * 2003-09-22 2005-03-24 Hyeung-Yun Kim Sensors and systems for structural health monitoring
JP2008054163A (ja) * 2006-08-28 2008-03-06 Seiko Epson Corp ラム波型高周波共振子
CN101493437A (zh) * 2009-01-21 2009-07-29 电子科技大学 一种具有电磁屏蔽功能的声表面波气体传感器阵列
CN201364325Y (zh) * 2009-01-21 2009-12-16 电子科技大学 一种具有电磁屏蔽功能的声表面波气体传感器阵列
US20120234818A1 (en) * 2011-03-16 2012-09-20 Martin Tom A Monolithically applied heating elements on saw substrate
CN102636564A (zh) * 2012-04-25 2012-08-15 电子科技大学 集成有加热器的声表面波气体传感器阵列及其制备方法
US20140009032A1 (en) * 2012-07-04 2014-01-09 Taiyo Yuden Co., Ltd. Lamb wave device and manufacturing method thereof
US20150355084A1 (en) * 2012-12-19 2015-12-10 University Of California Optimizing analysis and identification of particulate matter
CN103575765A (zh) * 2013-10-14 2014-02-12 浙江大学 一种快速检测羊肉掺假的方法
US20180101255A1 (en) * 2016-10-12 2018-04-12 The Board Of Trustees Of The Leland Stanford Junior University Methods for multi-touch ultrasonic touchscreens
CN108918353A (zh) * 2018-05-18 2018-11-30 电子科技大学 一种大气环境中微粒物质定性检测的方法
CN109632962A (zh) * 2018-12-20 2019-04-16 电子科技大学 任意扫描轨迹的非接触式兰姆波缺陷检测成像方法
CN110045019A (zh) * 2019-05-08 2019-07-23 南昌航空大学 一种薄板空气耦合超声兰姆波全聚焦成像检测方法
US20210043541A1 (en) * 2019-08-06 2021-02-11 Intel Corporation Thermal management in integrated circuit packages
US20210341424A1 (en) * 2020-04-30 2021-11-04 Silterra Malaysia Sdn. Bhd. Device for determining information of a substance in a matter

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
BIN LIU 等: "A Lamb Wave Wavenumber-Searching Method for a Linear PZT Sensor Array", vol. 19, no. 19, pages 4166 *
SUN, YA JIE 等: "Implement of Lamb Wave Using PZT Phased Arrays for Structural Health Monitoring", vol. 347, pages 36 *
WANG, Y 等: "INVOLVEMENT OF ENDOTHELIN-1 IN HYPOXIC PULMONARY VASOCONSTRICTION IN THE LAMB", vol. 482, no. 2, pages 421 - 434 *
YU L 等: "Lamb wave–based quantitative crack detection using a focusing array algorithm", vol. 24, no. 9, pages 1138 - 1152 *
刘钊 等: "超声兰姆波阵列检测系统", 新型工业化, vol. 3, no. 08, pages 10 - 15 *
刘麒: "兰姆波线性阵列板结构复合成像无损检测方法研究", 中国优秀硕士学位论文全文数据库工程科技Ⅰ辑, no. 01, pages 022 - 12 *
孙浩然: "基于主动Lamb波的复合材料层合板冲击损伤识别研究", 中国优秀硕士学位论文全文数据库工程科技Ⅰ辑, no. 02, pages 020 - 47 *
左螭: "空气耦合法布里-珀罗干涉型光纤超声传感器用于壁画病害检测分析", 中国优秀硕士学位论文全文数据库哲学与人文科学辑, no. 12, pages 097 - 12 *
张红川: "弯管中超声导波的模态分析及其缺陷检测", 中国优秀硕士学位论文全文数据库工程科技Ⅰ辑, no. 07, pages 022 - 6 *
肖松华: "基于MEMS微热板传感器的多组分呼吸诊断气体标志物检测系统设计研究", no. 7, pages 020 - 6 *
范佳伟 等: "铝板裂纹缺陷兰姆波阵列瞬时相位包络成像及补偿", 应用声学, vol. 38, no. 06, pages 993 - 998 *
龙吟: "声表面波痕量气体传感器敏感机理与特性研究", no. 1, pages 140 - 53 *

Also Published As

Publication number Publication date
CN114280141B (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
US4902138A (en) Measuring component concentration in a gas blend
CN1056447C (zh) 气敏器件及其制造方法
US6114658A (en) Device for the encapsulated reception of a material
US11022576B2 (en) Gas sensor with a gas permeable region
AU737757B2 (en) QCM sensor
US4988429A (en) Measuring cell for an electrochemical gas sensor
CN101710100B (zh) 低漂移化学传感器阵列的方法和装置
EP1841002A1 (en) Battery leakage detection system
KR102595005B1 (ko) 분석 가스의 농도 측정용 가스 센서
EP1830169B1 (en) Quartz sensor and sensing device
US20050254552A1 (en) Thermal sensing
US20070028667A1 (en) Electronic nose sensor array, sensor system including the same, method of manufacturing the same, and analysis method using the sensor system
JP6713259B2 (ja) センサチップ
EP2778667A1 (en) Multi-temperature CMOS gas sensor
CN109387548B (zh) 气体传感器
US4991424A (en) Integrated heatable sensor
JPH1114584A (ja) 液体分析用一体型キュベットを有したマイクロシステム
JP2014038092A (ja) テラヘルツ領域での電磁放射のボロメータ検出器およびそのような検出器を含むアレイ検出装置
JP2011203007A (ja) 検出センサ、物質検出システム
JP2749451B2 (ja) 表面弾性波構成素子からなるガスセンサ
EP3048443A1 (en) Multisensing multiparameter design using dynamic parallel resistances on sensing element substrate
JPH02503171A (ja) 一体型のセンサを有するインテリジェントインサート
CN114280141A (zh) 一种兰姆波阵列器件及其大气环境微粒检测方法
CN111964742B (zh) 一种mems流量传感芯片及其制造方法和流量传感器
US20020036507A1 (en) Method and arrangement for monitoring surfaces for the presence of dew

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant