CN114279929B - 几何未知微尺度矩形槽内气溶胶穿透效率确定方法 - Google Patents

几何未知微尺度矩形槽内气溶胶穿透效率确定方法 Download PDF

Info

Publication number
CN114279929B
CN114279929B CN202111587857.4A CN202111587857A CN114279929B CN 114279929 B CN114279929 B CN 114279929B CN 202111587857 A CN202111587857 A CN 202111587857A CN 114279929 B CN114279929 B CN 114279929B
Authority
CN
China
Prior art keywords
aerosol
rectangular groove
penetration
rectangular
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111587857.4A
Other languages
English (en)
Other versions
CN114279929A (zh
Inventor
佟立丽
王善普
曹学武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202111587857.4A priority Critical patent/CN114279929B/zh
Publication of CN114279929A publication Critical patent/CN114279929A/zh
Application granted granted Critical
Publication of CN114279929B publication Critical patent/CN114279929B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

一种几何未知微尺度矩形槽内气溶胶穿透效率确定方法,根据矩形槽的进出口压力平方差和泄漏流量的对应关系,利用线性回归方法获得矩形槽的流动特征尺寸,即微尺度矩形槽的流动特征高度,并基于斜率偏差的判断方法获得微尺度矩形槽的转捩雷诺数值;然后根据气溶胶穿透的粒子参数和载气流动状态,进行重力沉降、布朗扩散和湍流沉积的占优分析,估算获得微尺度矩形槽内气溶胶总穿透效率。本发明适用于估算几何尺寸未知的微通道内气溶胶穿透份额,根据几何尺寸未知矩形槽的流动特性,先获得通道流动特征尺寸和临界雷诺数,为气溶胶的沉积机制占优分析提供依据,最后获得气溶胶的总穿透效率。

Description

几何未知微尺度矩形槽内气溶胶穿透效率确定方法
技术领域
本发明涉及的是一种核辐射安全评估领域的技术,具体是一种适用于几何未知矩形槽内气溶胶穿透效率确定方法。
背景技术
由于微通道对气溶胶具有显著的去除效果,微通道内气溶胶穿透研究已成为核电厂安全壳放射性优化评估的重要方向之一。现有实验研究中,微通道的型式有毛细管、孔和矩形槽。其中,毛细管内径和孔直径可通过仪器直接测量获得,而对于装配形成的矩形槽,因结构复杂且槽高小,无法被准确地直接测量。因此,获取矩形槽的特征尺寸是评估其内气溶胶穿透效率的关键条件。同时,微尺度矩形槽内流动特性也是正确分析粒子穿透过程中占优沉积的重要前提。
发明内容
本发明针对现有技术存在的上述不足,提出一种几何未知微尺度矩形槽内气溶胶穿透效率确定方法,适用于估算几何尺寸未知的微通道内气溶胶穿透份额,根据几何尺寸未知矩形槽的流动特性,先获得通道流动特征尺寸和临界雷诺数,为气溶胶的沉积机制占优分析提供依据,最后获得气溶胶的总穿透效率。
本发明是通过以下技术方案实现的:
本发明涉及一种几何未知微尺度矩形槽内气溶胶穿透效率确定方法,根据矩形槽的进出口压力平方差和泄漏流量的对应关系,利用线性回归方法获得矩形槽的流动特征尺寸,即微尺度矩形槽的流动特征高度,并基于斜率偏差的判断方法获得微尺度矩形槽的转捩雷诺数值;然后根据气溶胶穿透的粒子参数和载气流动状态,进行重力沉降、布朗扩散和湍流沉积的占优分析,估算获得微尺度矩形槽内气溶胶总穿透效率。
所述的流动特征尺寸满足:其中:H、W和L为微尺度矩形槽的流动特征高度、宽度和长度,Qm为泄漏质量流量,Δ(p2)为矩形槽进出口压力平方差,Rg、T和μ分别是气溶胶载气的气体常数、温度和动力粘度。
所述的总穿透效率其中:PE为穿透效率,沿通道长度方向等距划分m段,Pj为第j段内的粒子穿透份额。
所述的穿透效率PE,当Stke≤1时PE=1;Stke为矩形槽入口处的粒子stoke数,表示为其中:ρp、d、Cc和/>分别为粒子的密度、粒径、滑移系数以及矩形槽入口速度。
所述的粒子穿透份额,当通道沿流动方向上的雷诺数Re大于转捩雷诺数Rec时, 否则/>其中:湍流、重力和布朗扩散作用下的气溶胶沉积速率分别为/>和/>Kth、v、T分别为热泳系数,气体运动粘度和气温,ρp、d、Cc和η分别为粒子的密度、粒径、滑移系数以及气体动力粘度,DB和H分别为粒子布朗扩散系数和矩形槽流动特征高度。
技术效果
与现有估算方法相比,根据几何尺寸未知矩形槽的流动特性,先获得通道流动尺寸和临界雷诺数,为气溶胶的沉积机制占优分析提供依据,最后可根据已有的沉积机制获得矩形槽内的气溶胶穿透效率。
附图说明
图1为通道内气溶胶沉积机制作用示意图;
图2为实施例流程示意图。
具体实施方式
如图2所示,为本实施例涉及的一种几何未知矩形槽内气溶胶穿透效率的确定方法,包括以下步骤:
步骤1)根据待测通道泄漏气体的流动特性,即泄漏流量与压力平方差的对应关系,获得该通道的流动特征尺寸和流态转捩点,具体包括:
1.1)根据基于流动特性实验的方式检测得到的n组的泄漏测试结果计算中间变量/>且1≤j<i≤n,其中:Δ(p2)为矩形槽进口和出口压力的平方差/>Qm为矩形槽在压差(Pin-Pout)下的泄漏质量流量,Δ(p2)i、Qm,i和Δ(p2)j、Qm,j分别为矩形槽在压差(Pin-Pout)i和(Pin-Pout)j下的进出口压力平方差和泄漏质量流量。
1.2)当在压差(Pin-Pout)C下首先出现时,则有转捩雷诺数/> 通过线性回归的方法,得到Re<Rec范围内泄漏流量与压力平方差的斜率/>根据层流流动条件下摩擦常数Cf·Re=const,矩形常数const=24,即层流流动时流量和压力平方差呈线性关系。
1.3)计算流动特征尺寸其中泄漏流量与压力平方差的斜率Rg、T和μ为气溶胶载气的气体常数、温度和动力粘度,L和W分别为矩形槽的长度和宽度。
步骤2)根据矩形槽几何尺寸和气溶胶泄漏条件,获得通道沿流动方向上的速度分布和雷诺数Re,具体为:
因气溶胶载气的可压缩性,速度分布表示为其中:x为沿矩形槽流动方向的位置,L和H为矩形槽的长度和高度,x=0时表示为进口,x=L时表示为出口,Pin和Pout分别为矩形槽进口和出口绝对压力。
微通道入口的粒子其中:/>为矩形槽入口流速,ρp和dp为粒子的密度和粒径,Cc为粒子滑移系数;当Stke>1,粒子穿透过程需要考虑通道入口的穿透效率PE,当Stke≤1,则不需要考虑通道入口的穿透效率,即PE=1。
因沿通道流动方向上流速变化大,会影响气溶胶穿透时间和湍流沉积速度,将通道沿长度方向等距划分m段,当Re>Rec,第j段内粒子穿透份额 否则/>其中:VT、VG和VB分别是湍流、重力和布朗扩散作用下的气溶胶沉积速率,分别为:/>和/>其中:Kth、ν、T分别为热泳系数,气体运动粘度和气温,:ρp、d、Cc和μ分别为粒子的密度、粒径、滑移系数以及气体动力粘度,DB和H分别为粒子布朗扩散系数和矩形槽流动特征高度。
通道的气溶胶总穿透效率其中:PE为穿透效率,沿通道长度方向等距划分m段,Pj为第j段内的粒子穿透份额。
综上,本发明可通过流动特性分析后获得矩形槽的流动特征高度,并根据关键参数,如粒子Stoke数和流动雷诺数Re,进行粒子沉积机制占优分析,最终获得出气溶胶在矩形槽内的穿透效率。
上述具体实施可由本领域技术人员在不背离本发明原理和宗旨的前提下以不同的方式对其进行局部调整,本发明的保护范围以权利要求书为准且不由上述具体实施所限,在其范围内的各个实现方案均受本发明之约束。

Claims (4)

1.一种微尺度矩形槽内气溶胶穿透效率确定方法,其特征在于,根据矩形槽的进出口压力平方差和泄漏流量的对应关系,利用线性回归方法获得矩形槽的流动特征尺寸,即微尺度矩形槽的流动特征高度,并基于斜率偏差的判断方法获得微尺度矩形槽的转捩雷诺数值;然后根据气溶胶穿透的粒子参数和载气流动状态,进行重力沉降、布朗扩散和湍流沉积的占优分析,估算获得微尺度矩形槽内气溶胶总穿透效率;
所述的总穿透效率其中:PE为入口穿透份额效率,沿通道长度方向等距划分m段,Pj为第j段内的粒子穿透份额。
2.根据权利要求1所述的微尺度矩形槽内气溶胶穿透效率确定方法,其特征是,所述的流动特征尺寸满足:其中:H、W和L为微尺度矩形槽的流动特征高度、宽度和长度,Qm为泄漏质量流量,Δ(p2)为矩形槽进出口压力平方差,Rg、T和μ分别是气溶胶载气的气体常数、温度和动力粘度。
3.根据权利要求1所述的微尺度矩形槽内气溶胶穿透效率确定方法,其特征是,所述的穿透效率PE,微通道入口的粒子其中:/>为矩形槽入口流速,ρp和dp为粒子的密度和粒径,Cc为粒子滑移系数;当Stke>1,粒子穿透过程需要考虑通道入口的穿透效率PE,Stke为矩形槽入口处的粒子stoke数;当Stke≤1,则不需要考虑通道入口的穿透效率,即PE=1。
4.根据权利要求1所述的微尺度矩形槽内气溶胶穿透效率确定方法,其特征是,所述的粒子穿透份额,当通道沿流动方向上的雷诺数Re大于转捩雷诺数Rec时, 否则/>其中:湍流、重力和布朗扩散作用下的气溶胶沉积速率分别为/>和/>Kth、ν、T分别为热泳系数,气体运动粘度和气温,ρp、d、Cc和η分别为粒子的密度、粒径、滑移系数以及气体动力粘度,DB和H分别为粒子布朗扩散系数和矩形槽流动特征高度。
CN202111587857.4A 2021-12-23 2021-12-23 几何未知微尺度矩形槽内气溶胶穿透效率确定方法 Active CN114279929B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111587857.4A CN114279929B (zh) 2021-12-23 2021-12-23 几何未知微尺度矩形槽内气溶胶穿透效率确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111587857.4A CN114279929B (zh) 2021-12-23 2021-12-23 几何未知微尺度矩形槽内气溶胶穿透效率确定方法

Publications (2)

Publication Number Publication Date
CN114279929A CN114279929A (zh) 2022-04-05
CN114279929B true CN114279929B (zh) 2024-01-12

Family

ID=80874352

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111587857.4A Active CN114279929B (zh) 2021-12-23 2021-12-23 几何未知微尺度矩形槽内气溶胶穿透效率确定方法

Country Status (1)

Country Link
CN (1) CN114279929B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101076718A (zh) * 2004-12-13 2007-11-21 奥斯特雷罗有限公司 对粒子和电磁辐射的探测、测量及控制
CN101482475A (zh) * 2008-01-11 2009-07-15 屈雪利 一种采集微通道中影响流动和传质因素相关参数的方法
CN101701897A (zh) * 2009-10-22 2010-05-05 清华大学 基于准单分散气溶胶的滤料计数效率检测系统及检测方法
CN104568686A (zh) * 2015-01-09 2015-04-29 中国计量学院 一种箱体内亚微米颗粒物沉积系数及平均凝并系数的测试系统及方法
CN108267390A (zh) * 2016-12-30 2018-07-10 中国石油天然气股份有限公司 一种含纳米孔隙储层的气体渗透率确定方法
CN110614003A (zh) * 2016-06-15 2019-12-27 高境 去除气溶胶中细颗粒物的方法和系统
CN110959112A (zh) * 2017-08-04 2020-04-03 赛博泰仪器有限公司 微流体颗粒分析装置
CN111276269A (zh) * 2020-03-16 2020-06-12 上海交通大学 验证贯穿件窄缝的气溶胶滞留效率的装置及方法
CN111460699A (zh) * 2020-02-13 2020-07-28 南京航空航天大学 平壁表面减阻功能微织构的设计方法
CN112881259A (zh) * 2021-01-18 2021-06-01 山东科技大学 一种基于稳态法测节理网络气-水相对渗透率的可视化装置及方法
CN113466104A (zh) * 2021-06-30 2021-10-01 上海交通大学 微通道内气溶胶穿透检测装置及方法
CN113490391A (zh) * 2021-05-27 2021-10-08 合肥通用机械研究院有限公司 电子冷却用矩形微通道单元一维温度分布计算方法和系统
CN113723020A (zh) * 2021-03-19 2021-11-30 南京长江都市建筑设计股份有限公司 基于数值模拟预测壁面沉积和壁面磨损量的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7022528B2 (en) * 2002-01-31 2006-04-04 Pion, Inc. Method and apparatus for improving in vitro measurement of membrane permeability of chemical compounds
US7476851B2 (en) * 2004-11-12 2009-01-13 Regents Of The University Of Minnesota Aerodynamic focusing of nanoparticle or cluster beams
FI20090232A0 (fi) * 2009-06-05 2009-06-05 Joonas Jalmari Vanhanen Aerosolipartikkeleiden detektoiminen
WO2016065465A1 (en) * 2014-10-31 2016-05-06 The University Of British Columbia Microfluidic-based real-time detector for fine particulate matter

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101076718A (zh) * 2004-12-13 2007-11-21 奥斯特雷罗有限公司 对粒子和电磁辐射的探测、测量及控制
CN101482475A (zh) * 2008-01-11 2009-07-15 屈雪利 一种采集微通道中影响流动和传质因素相关参数的方法
CN101701897A (zh) * 2009-10-22 2010-05-05 清华大学 基于准单分散气溶胶的滤料计数效率检测系统及检测方法
CN104568686A (zh) * 2015-01-09 2015-04-29 中国计量学院 一种箱体内亚微米颗粒物沉积系数及平均凝并系数的测试系统及方法
CN110614003A (zh) * 2016-06-15 2019-12-27 高境 去除气溶胶中细颗粒物的方法和系统
CN108267390A (zh) * 2016-12-30 2018-07-10 中国石油天然气股份有限公司 一种含纳米孔隙储层的气体渗透率确定方法
CN110959112A (zh) * 2017-08-04 2020-04-03 赛博泰仪器有限公司 微流体颗粒分析装置
CN111460699A (zh) * 2020-02-13 2020-07-28 南京航空航天大学 平壁表面减阻功能微织构的设计方法
CN111276269A (zh) * 2020-03-16 2020-06-12 上海交通大学 验证贯穿件窄缝的气溶胶滞留效率的装置及方法
CN112881259A (zh) * 2021-01-18 2021-06-01 山东科技大学 一种基于稳态法测节理网络气-水相对渗透率的可视化装置及方法
CN113723020A (zh) * 2021-03-19 2021-11-30 南京长江都市建筑设计股份有限公司 基于数值模拟预测壁面沉积和壁面磨损量的方法
CN113490391A (zh) * 2021-05-27 2021-10-08 合肥通用机械研究院有限公司 电子冷却用矩形微通道单元一维温度分布计算方法和系统
CN113466104A (zh) * 2021-06-30 2021-10-01 上海交通大学 微通道内气溶胶穿透检测装置及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Particle deposition in turbulent square duct flows;J Yao;M Fairweather;Journal of Physics: Conference Series;第318卷(第5期);无 *
Velocity measurements of dilute particulate suspension over and through a porous medium model;Haffner Eileen A.;Mirbod Parisa;Physics of Fluids;第32卷(第8期);无 *
湍流方管中颗粒分散和沉降行为的数值模拟;王艳芝等;工程热物理学报;第40卷(第04期);839-845 *

Also Published As

Publication number Publication date
CN114279929A (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
Kawashima et al. Determination of flow rate characteristics of pneumatic solenoid valves using an isothermal chamber
Murphy et al. Laterally converging flow. Part 1. Mean flow
Kreith et al. Pressure drop and flow characteristics of short capillary tubes at low Reynolds numbers
CN102353410A (zh) 一种利用示踪气体测量风道风量的方法及装置
Reza Razmavar et al. A simplified model for deposition and removal of soot particles in an exhaust gas recirculation cooler
CN114279929B (zh) 几何未知微尺度矩形槽内气溶胶穿透效率确定方法
Fester et al. Resistance coefficients for non-Newtonian flows in pipe fittings
CN108535325B (zh) 微管道内两相流的摩擦压降和相含率测量装置及方法
Hasan Turbulent Prandtl number and its use in prediction of heat transfer coefficient for liquids
Shinde et al. Modelling and simulation of venturi parameters in relation to geometries and discharge coefficient with computational fluid dynamics techniques
Zhang et al. Numerical and experimental study of compressible gas flow through a porous/fluid–coupled area
Karami et al. Analysis of roll wave characteristics under low liquid loading two‐phase flow conditions
Zhang et al. Klinkenberg permeability by pressure decay on tight rocks
CN113343607B (zh) 一种基于管壁液膜运动规律的携液临界气流速计算方法
Tao et al. No New Physics in Single-Phase Fluid Flow and Heat Transfer in Mini-and Micro-Channels: Is It a Conclusion?
Vimmr et al. Mathematical modelling and experimental investigation of gas flow in minichannels and microchannels
CN101726433B (zh) 一种机动车排气层流定比例取样装置
Al-Hameedawi Numerical investigation of thermal and hydraulic performance a twisted tube modified by usingcuo/waternanofluid
Chernov Design of a test stand for a centrifugal compressor
Haddad et al. Turbulence structures downstream of a localized injection in a fully developed channel flow
Nagler On practical gas and liquid leakage diameter analytic estimation for vacuum applications
Nagalakshmi et al. MHD visco-elastic fluid flow over a stretching sheet with suction/injection
Lee et al. Numerical anaylsyis and experimental verification of microchannel heat exchanger characteristics using porous media approach
Obaseki et al. Experimental Investigation and Performance Evaluation of the Installation Effects on the Venturi Flow Meter
John et al. Experimental analysis of poiseuille number in square microchannels

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant