CN114262713A - Application of E41 gene in regulation and control of plant embryonic development - Google Patents

Application of E41 gene in regulation and control of plant embryonic development Download PDF

Info

Publication number
CN114262713A
CN114262713A CN202210127737.4A CN202210127737A CN114262713A CN 114262713 A CN114262713 A CN 114262713A CN 202210127737 A CN202210127737 A CN 202210127737A CN 114262713 A CN114262713 A CN 114262713A
Authority
CN
China
Prior art keywords
gene
plant
embryonic development
artificial sequence
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210127737.4A
Other languages
Chinese (zh)
Other versions
CN114262713B (en
Inventor
潘荣辉
张钰婵
李未然
阿赫塔尔德拉拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZJU Hangzhou Global Scientific and Technological Innovation Center
Original Assignee
ZJU Hangzhou Global Scientific and Technological Innovation Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZJU Hangzhou Global Scientific and Technological Innovation Center filed Critical ZJU Hangzhou Global Scientific and Technological Innovation Center
Priority to CN202210127737.4A priority Critical patent/CN114262713B/en
Publication of CN114262713A publication Critical patent/CN114262713A/en
Priority to PCT/CN2022/128563 priority patent/WO2023151322A1/en
Application granted granted Critical
Publication of CN114262713B publication Critical patent/CN114262713B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/08Fruits
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/20Brassicaceae, e.g. canola, broccoli or rucola
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/82Solanaceae, e.g. pepper, tobacco, potato, tomato or eggplant
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Botany (AREA)
  • Physiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention discloses application of an E41 gene and an E41 gene encoding protein in regulation and control of plant embryonic development, and belongs to the technical field of plant genetic engineering, wherein the nucleotide sequence of the E41 gene is shown as any one of SEQ ID No. 1-5, and the amino acid sequence of the E41 gene encoding protein is shown as any one of SEQ ID No. 6-9. The invention discloses the influence of plant peroxisome neoprotein coded by E41 gene on embryonic development for the first time, and the lethal character of homozygous mutant is caused by mutation of E41 gene; the invention provides new gene resources and theoretical guidance for deepening peroxisome function research and application of characters such as plant embryonic development and the like.

Description

Application of E41 gene in regulation and control of plant embryonic development
Technical Field
The invention relates to the technical field of plant genetic engineering, in particular to application of a peroxisome gene E41 in regulation and control of plant embryonic development.
Background
Peroxisomes are small, ubiquitous organelles in eukaryotic cells, consisting of a single membrane coating. Although peroxisome is small in size and simple in structure, it has high diversity in morphology, protein content, metabolism and the like, can respond to various signals, and plays an important role in growth and development of animals and plants.
Plant peroxisomes contain at least 200 proteins, which are involved in a wide range of physiological functions, including phytohormone biosynthesis, lipid catabolism, reactive oxygen metabolism, etc. (Pan and Hu, 2018). Mutant analysis shows that peroxisomes play a key role in plant propagation, seed development, seed germination and seedling morphogenesis, however, the potential mechanism of peroxisomes still needs to be fully elucidated.
Beta-oxidation is one of the major metabolic functions of plant peroxisomes and is critical for seed development. Arabidopsis mutants severely deficient in beta-oxidation, such as the aim1 mfp2 double mutant of two multifunctional proteins and the acx3 acx4 double mutant of acyl-CoA oxidase, exhibit a trait of stunted embryonic development (Rylott et al, 2006; Rylott et al, 2003; Khan et al, 2012). In addition, arabidopsis and barley RNA interference (RNAi) lines of the transporter CTS of fatty acids into peroxisomes produce small seeds (mendiiodo et al, 2014). In the peroxisome biogenesis mutant, the metabolic function of peroxisome cannot be normally exerted, and the seed development is influenced. Arabidopsis peroxidase protein mutants pex19a, pex19b, pex2, pex10, pex12, pex26/apem9/dayu, pex5-10pex7-2 and pex5-1 pex7-2 mutants are all embryonic lethal, with the embryos shrinking when the heart-shaped embryonic stage is arrested and/or matured (McDonnell et al, 2016; Hu et al, 2002; Sparks et al, 2003; Fan et al, 2005; Li et al, 2014; Bartel, 2010). The T-DNA insertion mutants AtPEX16 and sse1 seeds died after drying and shrinking (Lin et al, 1999).
In many other cases, it is unclear how peroxisome gene mutations lead to certain developmental defect molecular mechanisms, particularly those involved in embryonic development. The search and analysis of the functions of the novel peroxisome proteins contribute to the deepening of the understanding of peroxisomes, the improvement of the understanding of eukaryote biology and metabolism, and the improvement of crop quality, yield and stress resistance.
Disclosure of Invention
The invention provides application of the E41 gene in regulation and control of plant embryonic development, can be used for improving the quality of crops, and provides new gene resources and theoretical guidance for deepening the research on the functions of peroxisomes and the research and application of characters such as plant embryonic development and the like.
The specific technical scheme is as follows:
the invention provides an application of an E41 gene in regulation and control of plant embryonic development, wherein a nucleotide sequence of the E41 gene is shown as any one of SEQ ID No. 1-5.
The invention also provides an application of the E41 protein in regulating and controlling plant embryonic development, wherein the E41 protein is obtained by encoding the nucleotide sequence shown by any one of SEQ ID NO. 1-5.
Wherein the nucleotide sequence shown in SEQ ID NO.1 is a genome full-length sequence of the E41 gene, and the sequence length is 3393 bp; the nucleotide sequences shown in SEQ ID No. 2-5 are nucleotide sequences of different spliceosome coding regions of the E41 gene, and the sequence lengths are 2981bp, 2997bp, 2983bp and 2802bp in sequence; the length of the encoded amino acid sequence is 803aa, 766aa, 604aa and 570aa in sequence.
The invention finds a gene capable of influencing the embryonic development of plants through research, is named as E41, and determines that the protein coded by the gene is positioned in peroxisome through subcellular localization analysis. Furthermore, T-DNA insertion in Arabidopsis thalianaPrepared byE41 gene mutant plants, heterozygous mutants can only be obtained, and wild type and heterozygous in progeny plants correspond to 1: 2 separation ratio. Compared with the wild type, the hybrid mutant has the defects that partial seed development is influenced and the phenotype of shriveling and dry shrinkage is generated. The E41 gene is shown to be a coding gene of plant peroxisome new protein, which can affect the development of plant seeds.
The protein can promote the embryonic development of plants, and the reduction or loss of the activity of the protein can influence the embryonic development of seeds, so that viable seeds cannot be obtained.
Further, the plant is a dicot. Still further, the plant is arabidopsis thaliana.
The plant embryo abnormal development caused by E41 gene deletion shows that the tender seed is white transparent, after maturation, it is shriveled and has no vitality, and the progeny can not obtain the plant of homozygous mutant. The research of the invention shows that the E41 gene is introduced into the plant with abnormal embryonic development to obtain the transgenic plant with normal embryonic development.
The E41 gene provided by the invention has potential application value in crop breeding.
In scientific research, a model plant with embryo dysplasia needs to be constructed, and based on the characteristic that E41 gene function loss causes the embryo dysplasia of the plant, the invention provides the application of the gene in constructing an embryo dysplasia plant model. Specifically, the expression of the plant E41 gene is reduced or not expressed by using a genetic engineering technology.
Further, the application comprises the following steps:
(1) the deletion or the expression quantity reduction of the E41 gene is caused by utilizing gene mutation, gene knockout, gene interference or gene silencing technology, so that a plant model with embryonic dysplasia is constructed.
(2) Introducing the E41 gene into a receptor plant, and culturing to obtain a transgenic plant with acquired function; the recipient plant is a plant with abnormal embryonic development caused by deletion of the E41 gene.
Still further, the plant is arabidopsis thaliana. The constructed arabidopsis thaliana with abnormal embryo development is slow in embryo development or incapable of forming embryo, and gradually shrinks and shrinks along with the maturation of the silique.
Compared with the prior art, the invention has the following beneficial effects:
(1) the invention discloses the influence of plant peroxisome neoprotein coded by E41 gene on embryonic development for the first time, and the lethal character of homozygous mutant caused by mutation of E41 gene.
(2) The invention provides new gene resources and theoretical guidance for deepening peroxisome function research and application of characters such as plant embryonic development and the like.
Drawings
FIG. 1 is a map of the localization of tobacco transient expression subcellular;
wherein CFP-PTS1 is a peroxisome marker, E41-YFP, YFP-E41, mVenus-E41.2, mVenus-E41.3 and mVenus-E41.4 are respectively E41 main spliceosome proteins fused at the N end and the C end of YFP fluorescent protein and other three spliceosome proteins of E41 fused at the C end of mVenus fluorescent protein; bar 10 μ M.
FIG. 2 is a schematic diagram showing the position of insertion of mutant T-DNA;
wherein white boxes represent UTR regions, black boxes represent exon regions, and black lines represent intron regions.
FIG. 3 shows the seed traits of mutants e41-1 and e 41-2;
wherein, A is the shape of the seeds in the young siliques, and the arrows indicate abnormal white transparent seeds and slightly shrunken seeds; B. c, showing the shape of the seeds in the maturation process, wherein the arrow indicates the abnormal development and the early yellowing and shrinking seeds; d, the graph is the mature seed form, and arrows indicate shrivelled abnormal seeds; bar is 1 mm.
FIG. 4 is a schematic diagram of the structure of a complementary vector;
wherein, A is E41 genome sequence driven by endogenous promoter; the B picture is the sequence of the E41 coding region driven by the endogenous promoter.
FIG. 5 shows the T-DNA insertion detection and genotype identification of positive seedlings;
wherein, A picture is the insertion detection result of T-DNA of a complementary strain of an E41 coding region sequence vector and a complementary strain of an E41 genome sequence vector which are started by an endogenous promoter; and B is the genotype identification result.
Detailed Description
In order to make the technical solution of the present invention better understood by those skilled in the art, the following technical solution of the present invention is clearly and completely described with reference to the specific embodiments. It is to be understood that the following detailed description is exemplary, and is intended to cover only some embodiments, but not all embodiments, of the invention.
All other embodiments, which can be obtained by a person skilled in the art without any inventive step based on the embodiments of the present invention, shall fall within the scope of protection of the present invention.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs. The experimental materials used in the examples of the present invention are all conventional experimental materials in the art, and are commercially available. Experimental procedures without specification of details were carried out according to the conventional experimental procedures or according to the instructions recommended by the supplier.
Example 1
1. Construction of E41 gene subcellular localization vector
The pCAMBIA1300-YFP vector with the YFP fluorescent protein label is obtained by modifying the pCAMBIA1300 vector. A primer is designed according to a CDS sequence of a main spliceosome (shown as SEQ ID NO.2) of the E41 gene, and the CDS sequence is amplified by taking arabidopsis cDNA as a template. The amplified fragment is ligated to the N-or C-terminus of YFP. The primers used were E41-Y-F and E41-Y-R, Y-E41-F and Y-E41-R, respectively.
The primer sequence is as follows:
E41-Y-F:5’-cacgggggactctagaATGGCGAGAAAAGCTAACAATAGTTTTTTC-3’;
E41-Y-R:5’-cttgctcaccattgttggatccCCGAGTCGAGCAGCCAACTGGTTC-3’;
Y-E41-F:5’-gtacaagagatctgcgtcgactATGGCGAGAAAAGCTAACAATAGTTTTTTC-3’;
Y-E41-R:5’-cgatcggggaaattcgagctcTCAGAGTCGAGCAGCCAACTGGTTC-3’;
in addition, pEarleyGate100 vector with mVenus fluorescent protein tag is obtained by modifying pEarleyGate100 vector. Designing a primer according to a CDS sequence of a non-main spliceosome (SEQ ID NO.3, SEQ ID NO.4 and SEQ ID NO.5) of the E41 gene, and amplifying the CDS sequence by taking arabidopsis cDNA as a template; connecting the amplified fragment to the C end of YFP; the primers are V-E41.2-F and Y-E41.2-R, V-E41.2-F and Y-E41.3-R, V-E41.4-F and Y-E41.4-R, respectively.
The primer sequence is as follows:
V-E41.2-F:5’-GACGAGCTGTACAAGtctagaATGGCGAGAAAAGCTAACAATAG-3’;
Y-E41.2-R:5’-GGTCTTAATTAACTCTCTAGATCATAAGATATGGCAACACC-3’;
V-E41.3-R:5’-GGTCTTAATTAACTCTCTAGATCAAGGATACAAAAACATGGTTGATGCAACC-3’;
V-E41.4-F:5’-GACGAGCTGTACAAGtctagaATGATTCTTCATTTGATTGAGTGGG-3’;
V-E41.4-R:5’-GGTCTTAATTAACTCTCTAGATCAGAGTCGAGCAGCCAACTGGTTC-3’。
the PCR reaction conditions are as follows:
95 deg.C for 3 min; 95 deg.C, 15sec, 58 deg.C, 15min, 72 deg.C, 2min, 24sec, 35 cycles; 72 ℃ for 5 min.
The two fragments were recovered by agarose gel electrophoresis.
For a carrier fused at the C end of the gene by YFP, XbaI and BamHI are used for double enzyme digestion of pCAMBIA1300-YFP carrier, and a target fragment and a linear carrier are connected by a homologous recombination method to obtain a 35S-E41-YFP recombinant carrier; and for the carrier of YFP fusion at the N end of the gene, carrying out double digestion on the pCAMBIA1300-YFP carrier by SalI and SacI, and connecting a target fragment and a linearized carrier by using a homologous recombination method to obtain a 35S-YFP-E41 recombinant carrier. For the vector fused at the N end of the gene mVenus, XbaI is used for cutting pEarleyGate100-mVenus vector, and a target fragment and a linearized vector are connected by a homologous recombination method to obtain three recombinant vectors of mVenus-E41.2, mVenus-E41.3 and mVenus-E41.4 respectively.
Mu.l of the recombinant product was taken and transformed into E.coli DH 5. alpha. by freeze-thaw method, and the transformed product was spread on LB medium resistant to kanamycin (50. mu.g/ml). Cultured overnight at 37 ℃ and the single clone was picked up to extract the plasmid. And the constructed vector is stored for later use after sequencing verification.
2. Subcellular localization experiments
Agrobacterium was transformed with the sequenced vector obtained in example 1 by methods according to the kit instructions.
Injecting the fusion expression vector into the Nicotiana benthamiana leaf by an agrobacterium infiltration method, simultaneously injecting a 35S-CFP-SKL vector as peroxisome control, and observing a fluorescence signal by using a laser confocal microscope after 48 hours.
The results of the experiment are shown in FIG. 1. YFP protein fusion is positioned at the N-terminal (the peroxisome positioning signal peptide PTS1 of E41 protein is not blocked) or the C-terminal (YFP blocks the peroxisome positioning signal peptide) of the main spliceosome protein and is positioned to peroxisome; the mVenus protein is fused at the N-terminal of the E41 non-major spliceosome protein and is positioned to peroxisomes. All the above results indicate that E41 is a peroxisomal protein.
Example 2
1. Identification of T-DNA insertion mutants
Two T-DNA insertion-causing E41 mutants were purchased from Arabidopsis Biological Resource Center (ABRC, https:// ABRC. osu. edu /), designated E41-1 and E41-2, respectively, and the T-DNA insertion positions are shown in FIG. 2.
The mutant genotype identification is carried out by a three-primer method. Primers were designed by the T-DNA primer design website (http:// signal. salk. edu/tdnaprimers.2. html). The primers designed for the website are respectively marked as e41-1-LP and e41-1-RP, e41-2-LP and e 41-2-RP. The LB primer is LBb1.3 provided by the website.
The primer sequence is as follows:
e41-1-LP:5’-TACCAGTCACGTGAATCGTTG-3’;
e41-1-RP:5’-ACTCTTCTTCCAAAAGCCTGC-3’;
e41-2-LP:5’-GCAGACTTGTTTACGCAAAGG-3’;
e41-2-RP:5’-GCAGACTTGTTTACGCAAAGG-3’;
LBb1.3:5’-ATTTTGCCGATTTCGGAAC-3’;
the PCR reaction conditions are as follows:
95 deg.C for 3 min; 95 deg.C, 15sec, 58 deg.C, 15min, 72 deg.C, 15sec, 32 cycles; 72 ℃ for 5 min.
The mutant progeny cannot obtain homozygous mutants.
And (3) carrying out genotype identification on the heterozygous mutant progeny, and analyzing that the genotype separation ratio of the progeny wild type and the heterozygous mutant accords with 1: 2 (table 1), suggesting that deletion of the E41 protein affects the development of homozygous mutant progeny.
TABLE 1 Caliper test of suitability of segregating populations of heterozygous mutant progeny
Figure BDA0003501209210000061
Note: chi shape2 0.05(1)=3.84
2. Character analysis of T-DNA insertion mutant
As shown in fig. 3, the siliques during development of the wild type and the mutant were opened and dysplastic seeds were observed in the mutant. The abnormal seeds are white and transparent when young and tender, and gradually shriveled along with the mature seeds of the siliques, and the abnormal seeds with small weight exist in the seeds during final harvest.
Example 3
1.E41 complementary vector construction and genetic transformation experiments
In order to verify that the character deletion of the T-DNA mutant line which cannot obtain homozygous offspring is caused by the fact that E41 gene mutant offspring seeds cannot develop smoothly, but is not caused by unknown T-DNA insertion, a vector for endogenously expressing E41 is constructed for complementation. The complementary vector is schematically shown in FIG. 4.
The vector for endogenously expressing E41 consists of an endogenous promoter (SEQ ID NO.10) for promoting an E41 genome sequence (SEQ ID NO.1) and an endogenous promoter (SEQ ID NO.6) for promoting an E41 coding region sequence (SEQ ID NO. 2). The promoter of E41 is amplified by primers E41-pro-F and E41-pro-R, the recovered target fragment is connected with pCAMBIA1300-YFP vector which is double digested by HindIII and XbaI, after escherichia coli DH5 alpha competence is transformed, single colony is selected to extract plasmid. The constructed vector is stored for later use after sequencing verification and is marked as pCAMBIA 1300-pro-YFP.
The genome DNA of arabidopsis thaliana is taken as a template, the genome sequence of E41 is amplified by using primers E41-g-F and E41-g-R, the recovered target fragment is connected with a pCAMBIA1300-pro-YFP vector which is subjected to double enzyme digestion by XbaI and SalI, and after the escherichia coli DH5 alpha is transformed, a single colony is picked to extract a plasmid. The constructed vector is stored for later use after sequencing verification and is marked as pCAMBIA 1300-pro-genomic.
The reverse transcription cDNA of arabidopsis thaliana is taken as a template, a coding region sequence (SEQ ID NO.2) of E41 is amplified by primers E41-c-F and E41-c-R, a recovered target fragment is connected with a pCAMBIA1300-pro-YFP vector which is subjected to double enzyme digestion by XbaI and SalI, and after escherichia coli DH5 alpha competence is transformed, a single colony is picked to extract a plasmid. The constructed vector is stored for later use after sequencing verification and is marked as pCAMBIA 1300-pro-cDNA.
The vector with correct sequencing is transformed into agrobacterium by referring to the method of the kit instruction.
Agrobacterium is transferred into e41-1 mutant by inflorescence infection method to obtain T0 generation transgenic seed.
The PCR reaction conditions are as follows: 95 deg.C for 3 min; 95 deg.C, 15sec, 58 deg.C, 15min, 72 deg.C, 15sec, 32 cycles; 72 ℃ for 5 min.
The primer sequence is as follows:
E41-pro-F:5’-acgacggccagtgccaagcttaacttcaaatttaatgaggcctcctc-3’;
E41-pro-R:5’-accattgttggatcctctagaggatccctttaatacaactaattcag-3’;
E41-g-F:5’-gtattaaagggatcctctagaATGGCGAGAAAAGCTAACAATAG-3’;
E41-g-R:5’-ggccgctacactcgagtcgaccctgattcgtttcttaccctttcaa-3’;
E41-c-F:5’-gtattaaagggatcctctagaATGGCGAGAAAAGCTAACAATAG-3’;
E41-c-R:5’-ggccgctacactcgagtcgaccctgattcgtttcttaccctttcaa-3’。
2. screening and identification of complementary transgenic positive seedlings
Transgenic seeds of T0 generation were selected by sowing in 1/2MS medium containing hygromycin (50. mu.g/ml) resistance, cultured under normal light for about 1 week, and positive seedlings were observed and selected. The resistant seedlings are transplanted into nutrient soil, and the positive seedlings are subjected to T-DNA insertion detection by using primers T1-F and T1-R. The positive seedlings complemented by the endogenous promoter vector were genotyped with primers Ne41-1-LP, Ne41-1-RP, LBb1.3.
The primer sequence is as follows:
T1-F:5’-AACAGAAAAGTGGCGCAAGC-3’;
T1-R:5’-atcgcaagaccggcaacagga-3’;
Ne41-1-LP:5’-cccctgtgtttcctatgctgcttg-3’;
Ne41-1-RP:5’-TTGGAGATTACGCCTGTCATC-3’;
the PCR reaction conditions are as follows:
95 deg.C for 3 min; 95 deg.C, 15sec, 58 deg.C, 15min, 72 deg.C, 15sec, 32 cycles; 72 ℃ for 5 min.
The results are shown in FIG. 5, where homozygous T-DNA insertion mutants with successful complementation were selected, indicating that mutant silique dysplasia is caused by the deletion of E41.
The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention, and various modifications and changes may be made by those skilled in the art. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the protection scope of the present invention.
Sequence listing
<110> Hangzhou international scientific center of Zhejiang university
Application of <120> E41 gene in regulation and control of plant embryonic development
<160> 30
<170> SIPOSequenceListing 1.0
<210> 1
<211> 3393
<212> DNA
<213> Arabidopsis thaliana (Arabidopsis thaliana)
<400> 1
gtttatcctt aaccacaaaa caaacgtcac aactccgtca ccgcaaacta ggcagattat 60
ctggttttcc ggcggtttct cgttatctac gagagagtga gagaggaaat acctcggggt 120
gaactcgctg cgtagccaaa gcctcttcaa ttttgctctt ttgttcaatt ccgtcgctta 180
attatctggt tttgcgtatt ttgaagagtc agtttgacga atttatgctg aaatttcgtt 240
ctttctctgt ttatctttca gcgacgattt ttctgggttt ttcagttttg gatcaatcca 300
taatctgtcg tgattagggt tttatacctt gatgaggatt tactgaatta gttgtattaa 360
agatggcgag aaaagctaac aatagttttt tccttgaaga atggttaagg actgtgagtg 420
gaagtagtgt ctctggtgat ctagtgaagc aaaattctgc tccatctgct aggtcgatta 480
ttcaagcatg gtctgagatt cgtgaatctc ttcaaaacca aaactttgat tcacgttacc 540
ttcaagcttt gagagctttg gttagctctg agtccactat ccatgttgca gatccccaag 600
caaagctact tatttctata ctagcttttc aagatgtatc tcttccgtct gagtcttaca 660
cacttgttct cagactactc tatgtgtgga ttaggaaagc atttcgaccg tctcaagcac 720
ttgttggtgt agcggttcag gccattcgtg gcgttgttga tgacaggcgt aatctccaac 780
cagccttagt agcgcagagt gttctggttt ctggtgcgtt tgcgtgtgtt ccttctctgt 840
caggagacgt gaaagtctta tgcttggaat tgttatgcag gcttttggaa gaagagtact 900
ctttagtggg atctcaagaa gaacttgttc ctgtagtgct tgcaggaatt gggtatgctt 960
tatcttcttc gttggatgtt cattacgtca gactattgga tttattgttt ggcatttggt 1020
taaaagacga gggtcctcgt ggcactgtca cttacggtct gatgattctt catttgattg 1080
agtgggttgt gtcaggttat atgcggtcta attctatcaa caagatgtct ctttttgcga 1140
acgaggtact agagacttct aaggaaaagt atgctgtttt cgctgtcttc atggcagcag 1200
ctggggtagt gagagcttcc acggcaggat tcagtagtgg tgcacagagt ttggagattt 1260
ctaaactaag aaattcagct gaaaagcgaa tagaatttgt agctcaaatt ttagtttcta 1320
atggtaatgt tgttacactt ccaaccacac agagagaagg tcccctgttg aagtgctttg 1380
ctattgcatt ggctcgatgt gggtctgttt cttcctctgc tcctctgctt ttgtgtctca 1440
cttctgcatt gttaactcag gtatttcctt taggccagat atatgaatca ttttgcaatg 1500
cttttggcaa agagcctatt ggaccaagac tcatttgggt cagggagcat ctttctgatg 1560
ttcttttcaa ggaatcaggg gccatatctg gggctttctg caatcaatat tcatcagcaa 1620
gtgaagagaa caagtatatt gtggagaata tgatttggga tttctgtcaa aatctctact 1680
tacagcaccg tcaaattgct atgttgcttt gtggtataga agatacattg cttggagaca 1740
tcgagaaaat tgcagaatca tctttcctta tggttgtcgt ctttgcgcta gctgttacga 1800
aacaatggct aaaaccaata gtgtctaaag aaagaaaaat ggtgacatca gttaagatat 1860
tagtttcgtt ctcctgtgta gagtatttca ggcatattcg tttacctgaa tacatggaga 1920
caattagaga ggtgatttca tgtgtccagg agaatgatgc tccttgtgtt tcatttgtag 1980
agtccattcc tgcctatgat agcttgacga atccgaaagg tttgagaaat cacttgtttc 2040
tgcaatttcc atatcacaat tttctgttgg ctattacatt aataagcttt ggaatctctc 2100
tttttttttt tttttttttt cttgttctgc agacttgttt acgcaaagga taaaatatga 2160
atggtcaaga gatgatgtgc agacatctcg aatattgttt tatcttcgag taatcccaac 2220
ttgcatcgga cggttatctg cttctgcctt caggggagtg gttgcatcaa ccatgttttt 2280
gtatccttga gaaaagatcg agaagtcttt tactctgttt tacttaacta cgagtactaa 2340
actatctttc ctattcctta acaattctgt gactagatat attggacatc ctaacagaaa 2400
agtggcgcaa gcatctcata cgttgttggc agcatttctc tcttcagcaa aagaatcaga 2460
ggaggacgaa cgaactcaat tcaaagaaca acttgttttc tattacatgc aacgatcttt 2520
ggaggtaact aagcaaaaaa agaatatgaa tgttacgtag ctctttttct gtttatttct 2580
tatctctaat gtatatggtt ggttgaaata actgcaggtt taccctgaga tcacaccttt 2640
tgaaggttta gcttccggcg ttgcaacctt ggtccagcat ctacctgcgg gaagtcctgc 2700
tatattttat tctgttcata gccttgttga gaaggcttct acatttagca ccgaatcatt 2760
gcaaggcaga aagtctgatc ctggtaatca gattcttgag ttgcttttgc gacttgtctc 2820
tttggttgat atacaagtaa gtttcttttt tggtcatctc catctacttg agctactaga 2880
aaatggttac tgtgctcata cgttaatgtt ctctccgtct ttgtatacat ttttgttttg 2940
gtttaggtgt tgccatatct tatgaagtca ttggcacagc tagttataaa gttaccaaaa 3000
gaaagacaga acgttgtgct tggtgaattg tatggtcaag tggctgagtc agacgatgtg 3060
attcgcaagc cttctttggt ctcttggcta cagtcactga actacttatg ttctaataac 3120
cgtactgaag ttttagcttc tggatcaacg atagacactt cgaaccagtt ggctgctcga 3180
ctctagggat ctcctcatag tttacaaaca tgtgaaatag aataaagttt gtatgacttg 3240
tatcatggaa ttatgttgaa aagaattata aattaacatc atctccattt tttgatcagt 3300
agccaaaaat agtcaatcct gttaaatgtg ttgcggttta aatttatttg gttacgaaga 3360
agaaccggat tgaaagggta agaaacgaat cag 3393
<210> 2
<211> 2981
<212> DNA
<213> Arabidopsis thaliana (Arabidopsis thaliana)
<400> 2
gtttatcctt aaccacaaaa caaacgtcac aactccgtca ccgcaaacta ggcagattat 60
ctggttttcc ggcggtttct cgttatctac gagagagtga gagaggaaat acctcggggt 120
gaactcgctg cgtagccaaa gcctcttcaa ttttgctctt ttgttcaatt ccgtcgctta 180
attatctggt tttgcgtatt ttgaagagtc agtttgacga atttatgctg aaatttcgtt 240
ctttctctgt ttatctttca gcgacgattt ttctgggttt ttcagttttg gatcaatcca 300
taatctgtcg tgattagggt tttatacctt gatgaggatt tactgaatta gttgtattaa 360
agatggcgag aaaagctaac aatagttttt tccttgaaga atggttaagg actgtgagtg 420
gaagtagtgt ctctggtgat ctagtgaagc aaaattctgc tccatctgct aggtcgatta 480
ttcaagcatg gtctgagatt cgtgaatctc ttcaaaacca aaactttgat tcacgttacc 540
ttcaagcttt gagagctttg gttagctctg agtccactat ccatgttgca gatccccaag 600
caaagctact tatttctata ctagcttttc aagatgtatc tcttccgtct gagtcttaca 660
cacttgttct cagactactc tatgtgtgga ttaggaaagc atttcgaccg tctcaagcac 720
ttgttggtgt agcggttcag gccattcgtg gcgttgttga tgacaggcgt aatctccaac 780
cagccttagt agcgcagagt gttctggttt ctggtgcgtt tgcgtgtgtt ccttctctgt 840
caggagacgt gaaagtctta tgcttggaat tgttatgcag gcttttggaa gaagagtact 900
ctttagtggg atctcaagaa gaacttgttc ctgtagtgct tgcaggaatt gggtatgctt 960
tatcttcttc gttggatgtt cattacgtca gactattgga tttattgttt ggcatttggt 1020
taaaagacga gggtcctcgt ggcactgtca cttacggtct gatgattctt catttgattg 1080
agtgggttgt gtcaggttat atgcggtcta attctatcaa caagatgtct ctttttgcga 1140
acgaggtact agagacttct aaggaaaagt atgctgtttt cgctgtcttc atggcagcag 1200
ctggggtagt gagagcttcc acggcaggat tcagtagtgg tgcacagagt ttggagattt 1260
ctaaactaag aaattcagct gaaaagcgaa tagaatttgt agctcaaatt ttagtttcta 1320
atggtaatgt tgttacactt ccaaccacac agagagaagg tcccctgttg aagtgctttg 1380
ctattgcatt ggctcgatgt gggtctgttt cttcctctgc tcctctgctt ttgtgtctca 1440
cttctgcatt gttaactcag gtatttcctt taggccagat atatgaatca ttttgcaatg 1500
cttttggcaa agagcctatt ggaccaagac tcatttgggt cagggagcat ctttctgatg 1560
ttcttttcaa ggaatcaggg gccatatctg gggctttctg caatcaatat tcatcagcaa 1620
gtgaagagaa caagtatatt gtggagaata tgatttggga tttctgtcaa aatctctact 1680
tacagcaccg tcaaattgct atgttgcttt gtggtataga agatacattg cttggagaca 1740
tcgagaaaat tgcagaatca tctttcctta tggttgtcgt ctttgcgcta gctgttacga 1800
aacaatggct aaaaccaata gtgtctaaag aaagaaaaat ggtgacatca gttaagatat 1860
tagtttcgtt ctcctgtgta gagtatttca ggcatattcg tttacctgaa tacatggaga 1920
caattagaga ggtgatttca tgtgtccagg agaatgatgc tccttgtgtt tcatttgtag 1980
agtccattcc tgcctatgat agcttgacga atccgaaaga cttgtttacg caaaggataa 2040
aatatgaatg gtcaagagat gatgtgcaga catctcgaat attgttttat cttcgagtaa 2100
tcccaacttg catcggacgg ttatctgctt ctgccttcag gggagtggtt gcatcaacca 2160
tgtttttata tattggacat cctaacagaa aagtggcgca agcatctcat acgttgttgg 2220
cagcatttct ctcttcagca aaagaatcag aggaggacga acgaactcaa ttcaaagaac 2280
aacttgtttt ctattacatg caacgatctt tggaggttta ccctgagatc acaccttttg 2340
aaggtttagc ttccggcgtt gcaaccttgg tccagcatct acctgcggga agtcctgcta 2400
tattttattc tgttcatagc cttgttgaga aggcttctac atttagcacc gaatcattgc 2460
aaggcagaaa gtctgatcct ggtaatcaga ttcttgagtt gcttttgcga cttgtctctt 2520
tggttgatat acaagtgttg ccatatctta tgaagtcatt ggcacagcta gttataaagt 2580
taccaaaaga aagacagaac gttgtgcttg gtgaattgta tggtcaagtg gctgagtcag 2640
acgatgtgat tcgcaagcct tctttggtct cttggctaca gtcactgaac tacttatgtt 2700
ctaataaccg tactgaagtt ttagcttctg gatcaacgat agacacttcg aaccagttgg 2760
ctgctcgact ctagggatct cctcatagtt tacaaacatg tgaaatagaa taaagtttgt 2820
atgacttgta tcatggaatt atgttgaaaa gaattataaa ttaacatcat ctccattttt 2880
tgatcagtag ccaaaaatag tcaatcctgt taaatgtgtt gcggtttaaa tttatttggt 2940
tacgaagaag aaccggattg aaagggtaag aaacgaatca g 2981
<210> 3
<211> 2997
<212> DNA
<213> Arabidopsis thaliana (Arabidopsis thaliana)
<400> 3
ttatccttaa ccacaaaaca aacgtcacaa ctccgtcacc gcaaactagg cagattatct 60
ggttttccgg cggtttctcg ttatctacga gagagtgaga gaggaaatac ctcggggtga 120
actcgctgcg tagccaaagc ctcttcaatt ttgctctttt gttcaattcc gtcgcttaat 180
tatctggttt tgcgtatttt gaagagtcag tttgacgaat ttatgctgaa atttcgttct 240
ttctctgttt atctttcagc gacgattttt ctgggttttt cagttttgga tcaatccata 300
atctgtcgtg attagggttt tataccttga tgaggattta ctgaattagt tgtattaaag 360
atggcgagaa aagctaacaa tagttttttc cttgaagaat ggttaaggac tgtgagtgga 420
agtagtgtct ctggtgatct agtgaagcaa aattctgctc catctgctag gtcgattatt 480
caagcatggt ctgagattcg tgaatctctt caaaaccaaa actttgattc acgttacctt 540
caagctttga gagctttggt tagctctgag tccactatcc atgttgcaga tccccaagca 600
aagctactta tttctatact agcttttcaa gatgtatctc ttccgtctga gtcttacaca 660
cttgttctca gactactcta tgtgtggatt aggaaagcat ttcgaccgtc tcaagcactt 720
gttggtgtag cggttcaggc cattcgtggc gttgttgatg acaggcgtaa tctccaacca 780
gccttagtag cgcagagtgt tctggtttct ggtgcgtttg cgtgtgttcc ttctctgtca 840
ggagacgtga aagtcttatg cttggaattg ttatgcaggc ttttggaaga agagtactct 900
ttagtgggat ctcaagaaga acttgttcct gtagtgcttg caggaattgg gtatgcttta 960
tcttcttcgt tggatgttca ttacgtcaga ctattggatt tattgtttgg catttggtta 1020
aaagacgagg gtcctcgtgg cactgtcact tacggtctga tgattcttca tttgattgag 1080
tgggttgtgt caggttatat gcggtctaat tctatcaaca agatgtctct ttttgcgaac 1140
gaggtactag agacttctaa ggaaaagtat gctgttttcg ctgtcttcat ggcagcagct 1200
ggggtagtga gagcttccac ggcaggattc agtagtggtg cacagagttt ggagatttct 1260
aaactaagaa attcagctga aaagcgaata gaatttgtag ctcaaatttt agtttctaat 1320
ggtaatgttg ttacacttcc aaccacacag agagaaggtc ccctgttgaa gtgctttgct 1380
attgcattgg ctcgatgtgg gtctgtttct tcctctgctc ctctgctttt gtgtctcact 1440
tctgcattgt taactcaggt atttccttta ggccagatat atgaatcatt ttgcaatgct 1500
tttggcaaag agcctattgg accaagactc atttgggtca gggagcatct ttctgatgtt 1560
cttttcaagg aatcaggggc catatctggg gctttctgca atcaatattc atcagcaagt 1620
gaagagaaca agtatattgt ggagaatatg atttgggatt tctgtcaaaa tctctactta 1680
cagcaccgtc aaattgctat gttgctttgt ggtatagaag atacattgct tggagacatc 1740
gagaaaattg cagaatcatc tttccttatg gttgtcgtct ttgcgctagc tgttacgaaa 1800
caatggctaa aaccaatagt gtctaaagaa agaaaaatgg tgacatcagt taagatatta 1860
gtttcgttct cctgtgtaga gtatttcagg catattcgtt tacctgaata catggagaca 1920
attagagagg tgatttcatg tgtccaggag aatgatgctc cttgtgtttc atttgtagag 1980
tccattcctg cctatgatag cttgacgaat ccgaaagact tgtttacgca aaggataaaa 2040
tatgaatggt caagagatga tgtgcagaca tctcgaatat tgttttatct tcgagtaatc 2100
ccaacttgca tcggacggtt atctgcttct gccttcaggg gagtggttgc atcaaccatg 2160
tttttatata ttggacatcc taacagaaaa gtggcgcaag catctcatac gttgttggca 2220
gcatttctct cttcagcaaa agaatcagag gaggacgaac gaactcaatt caaagaacaa 2280
cttgttttct attacatgca acgatctttg gaggtttacc ctgagatcac accttttgaa 2340
ggtttagctt ccggcgttgc aaccttggtc cagcatctac ctgcgggaag tcctgctata 2400
ttttattctg ttcatagcct tgttgagaag gcttctacat ttagcaccga atcattgcaa 2460
ggcagaaagt ctgatcctgg taatcagatt cttgagttgc ttttgcgact tgtctctttg 2520
gttgatatac aagtaagttt cttttttggt catctccatc tacttgagct actagaaaat 2580
ggttactgtg ctcatacgtt aatgttctct ccgtctttgt atacattttt gttttggttt 2640
aggtgttgcc atatcttatg aagtcattgg cacagctagt tataaagtta ccaaaagaaa 2700
gacagaacgt tgtgcttggt gaattgtatg gtcaagtggc tgagtcagac gatgtgattc 2760
gcaagccttc tttggtctct tggctacagt cactgaacta cttatgttct aataaccgta 2820
ctgaagtttt agcttctgga tcaacgatag acacttcgaa ccagttggct gctcgactct 2880
agggatctcc tcatagttta caaacatgtg aaatagaata aagtttgtat gacttgtatc 2940
atggaattat gttgaaaaga attataaatt aacatcatct ccattttttg atcagta 2997
<210> 4
<211> 2983
<212> DNA
<213> Arabidopsis thaliana (Arabidopsis thaliana)
<400> 4
ttatccttaa ccacaaaaca aacgtcacaa ctccgtcacc gcaaactagg cagattatct 60
ggttttccgg cggtttctcg ttatctacga gagagtgaga gaggaaatac ctcggggtga 120
actcgctgcg tagccaaagc ctcttcaatt ttgctctttt gttcaattcc gtcgcttaat 180
tatctggttt tgcgtatttt gaagagtcag tttgacgaat ttatgctgaa atttcgttct 240
ttctctgttt atctttcagc gacgattttt ctgggttttt cagttttgga tcaatccata 300
atctgtcgtg attagggttt tataccttga tgaggattta ctgaattagt tgtattaaag 360
atggcgagaa aagctaacaa tagttttttc cttgaagaat ggttaaggac tgtgagtgga 420
agtagtgtct ctggtgatct agtgaagcaa aattctgctc catctgctag gtcgattatt 480
caagcatggt ctgagattcg tgaatctctt caaaaccaaa actttgattc acgttacctt 540
caagctttga gagctttggt tagctctgag tccactatcc atgttgcaga tccccaagca 600
aagctactta tttctatact agcttttcaa gatgtatctc ttccgtctga gtcttacaca 660
cttgttctca gactactcta tgtgtggatt aggaaagcat ttcgaccgtc tcaagcactt 720
gttggtgtag cggttcaggc cattcgtggc gttgttgatg acaggcgtaa tctccaacca 780
gccttagtag cgcagagtgt tctggtttct ggtgcgtttg cgtgtgttcc ttctctgtca 840
ggagacgtga aagtcttatg cttggaattg ttatgcaggc ttttggaaga agagtactct 900
ttagtgggat ctcaagaaga acttgttcct gtagtgcttg caggaattgg gtatgcttta 960
tcttcttcgt tggatgttca ttacgtcaga ctattggatt tattgtttgg catttggtta 1020
aaagacgagg gtcctcgtgg cactgtcact tacggtctga tgattcttca tttgattgag 1080
tgggttgtgt caggttatat gcggtctaat tctatcaaca agatgtctct ttttgcgaac 1140
gaggtactag agacttctaa ggaaaagtat gctgttttcg ctgtcttcat ggcagcagct 1200
ggggtagtga gagcttccac ggcaggattc agtagtggtg cacagagttt ggagatttct 1260
aaactaagaa attcagctga aaagcgaata gaatttgtag ctcaaatttt agtttctaat 1320
ggtaatgttg ttacacttcc aaccacacag agagaaggtc ccctgttgaa gtgctttgct 1380
attgcattgg ctcgatgtgg gtctgtttct tcctctgctc ctctgctttt gtgtctcact 1440
tctgcattgt taactcaggt atttccttta ggccagatat atgaatcatt ttgcaatgct 1500
tttggcaaag agcctattgg accaagactc atttgggtca gggagcatct ttctgatgtt 1560
cttttcaagg aatcaggggc catatctggg gctttctgca atcaatattc atcagcaagt 1620
gaagagaaca agtatattgt ggagaatatg atttgggatt tctgtcaaaa tctctactta 1680
cagcaccgtc aaattgctat gttgctttgt ggtatagaag atacattgct tggagacatc 1740
gagaaaattg cagaatcatc tttccttatg gttgtcgtct ttgcgctagc tgttacgaaa 1800
caatggctaa aaccaatagt gtctaaagaa agaaaaatgg tgacatcagt taagatatta 1860
gtttcgttct cctgtgtaga gtatttcagg catattcgtt tacctgaata catggagaca 1920
attagagagg tgatttcatg tgtccaggag aatgatgctc cttgtgtttc atttgtagag 1980
tccattcctg cctatgatag cttgacgaat ccgaaagact tgtttacgca aaggataaaa 2040
tatgaatggt caagagatga tgtgcagaca tctcgaatat tgttttatct tcgagtaatc 2100
ccaacttgca tcggacggtt atctgcttct gccttcaggg gagtggttgc atcaaccatg 2160
tttttgtatc cttgagaaaa gatcgagaag tcttttactc tgttttactt aactacgagt 2220
actaaactat ctttcctatt ccttaacaat tctgtgacta gatatattgg acatcctaac 2280
agaaaagtgg cgcaagcatc tcatacgttg ttggcagcat ttctctcttc agcaaaagaa 2340
tcagaggagg acgaacgaac tcaattcaaa gaacaacttg ttttctatta catgcaacga 2400
tctttggagg tttaccctga gatcacacct tttgaaggtt tagcttccgg cgttgcaacc 2460
ttggtccagc atctacctgc gggaagtcct gctatatttt attctgttca tagccttgtt 2520
gagaaggctt ctacatttag caccgaatca ttgcaaggca gaaagtctga tcctggtaat 2580
cagattcttg agttgctttt gcgacttgtc tctttggttg atatacaagt gttgccatat 2640
cttatgaagt cattggcaca gctagttata aagttaccaa aagaaagaca gaacgttgtg 2700
cttggtgaat tgtatggtca agtggctgag tcagacgatg tgattcgcaa gccttctttg 2760
gtctcttggc tacagtcact gaactactta tgttctaata accgtactga agttttagct 2820
tctggatcaa cgatagacac ttcgaaccag ttggctgctc gactctaggg atctcctcat 2880
agtttacaaa catgtgaaat agaataaagt ttgtatgact tgtatcatgg aattatgttg 2940
aaaagaatta taaattaaca tcatctccat tttttgatca gta 2983
<210> 5
<211> 2802
<212> DNA
<213> Arabidopsis thaliana (Arabidopsis thaliana)
<400> 5
caaacgtcac aactccgtca ccgcaaacta ggcagattat ctggttttcc ggcggtttct 60
cgttatctac gagagagtga gagaggaaat acctcggggt gaactcgctg cgtagccaaa 120
gcctcttcaa ttttgctctt ttgttcaatt ccgtcgctta attatctggt tttgcgtatt 180
ttgaagagtc agtttgacga atttatgctg aaatttcgtt ctttctctgt ttatctttca 240
gcgacgattt ttctgggttt ttcagttttg gatcaatcca taatctgtcg tgattagggt 300
tttatacctt gatgaggatt tactgaatta gttgtattaa agatggcgag aaaagctaac 360
aatagttttt tccttgaaga atggttaagg actgtgagtg gaagtagtgt ctctggtgat 420
ctagtgaagc aaaattctgc tccatctgct aggtcgatta ttcaagcatg gtctgagatt 480
cgtgaatctc ttcaaaacca aaactttgat tcacgttacc ttcaagcttt gagagctttg 540
gttagctctg agtccactat ccatgttgca gatccccaag caaagctact tatttctata 600
ctagcttttc aagatgtatc tcttccgtct gagtcttaca cacttgttct cagactactc 660
tatgtgtgga ttaggaaagc atttcgaccg tctcaagcac ttgttggtgt agcggttcag 720
gccattcgtg gcgttgttga tgacaggcgt aatctccaac cagccttagt agcgcagagt 780
gttctggttt ctggcttttg gaagaagagt actctttagt gggatctcaa gaagaacttg 840
ttcctgtagt gcttgcagga attgggtatg ctttatcttc ttcgttggat gttcattacg 900
tcagactatt ggatttattg tttggcattt ggttaaaaga cgagggtcct cgtggcactg 960
tcacttacgg tctgatgatt cttcatttga ttgagtgggt tgtgtcaggt tatatgcggt 1020
ctaattctat caacaagatg tctctttttg cgaacgaggt actagagact tctaaggaaa 1080
agtatgctgt tttcgctgtc ttcatggcag cagctggggt agtgagagct tccacggcag 1140
gattcagtag tggtgcacag agtttggaga tttctaaact aagaaattca gctgaaaagc 1200
gaatagaatt tgtagctcaa attttagttt ctaatggtaa tgttgttaca cttccaacca 1260
cacagagaga aggtcccctg ttgaagtgct ttgctattgc attggctcga tgtgggtctg 1320
tttcttcctc tgctcctctg cttttgtgtc tcacttctgc attgttaact caggtatttc 1380
ctttaggcca gatatatgaa tcattttgca atgcttttgg caaagagcct attggaccaa 1440
gactcatttg ggtcagggag catctttctg atgttctttt caaggaatca ggggccatat 1500
ctggggcttt ctgcaatcaa tattcatcag caagtgaaga gaacaagtat attgtggaga 1560
atatgatttg ggatttctgt caaaatctct acttacagca ccgtcaaatt gctatgttgc 1620
tttgtggtat agaagataca ttgcttggag acatcgagaa aattgcagaa tcatctttcc 1680
ttatggttgt cgtctttgcg ctagctgtta cgaaacaatg gctaaaacca atagtgtcta 1740
aagaaagaaa aatggtgaca tcagttaaga tattagtttc gttctcctgt gtagagtatt 1800
tcaggcatat tcgtttacct gaatacatgg agacaattag agaggtgatt tcatgtgtcc 1860
aggagaatga tgctccttgt gtttcatttg tagagtccat tcctgcctat gatagcttga 1920
cgaatccgaa agacttgttt acgcaaagga taaaatatga atggtcaaga gatgatgtgc 1980
agacatctcg aatattgttt tatcttcgag taatcccaac ttgcatcgga cggttatctg 2040
cttctgcctt caggggagtg gttgcatcaa ccatgttttt atatattgga catcctaaca 2100
gaaaagtggc gcaagcatct catacgttgt tggcagcatt tctctcttca gcaaaagaat 2160
cagaggagga cgaacgaact caattcaaag aacaacttgt tttctattac atgcaacgat 2220
ctttggaggt ttaccctgag atcacacctt ttgaaggttt agcttccggc gttgcaacct 2280
tggtccagca tctacctgcg ggaagtcctg ctatatttta ttctgttcat agccttgttg 2340
agaaggcttc tacatttagc accgaatcat tgcaaggcag aaagtctgat cctggtaatc 2400
agattcttga gttgcttttg cgacttgtct ctttggttga tatacaagtg ttgccatatc 2460
ttatgaagtc attggcacag ctagttataa agttaccaaa agaaagacag aacgttgtgc 2520
ttggtgaatt gtatggtcaa gtggctgagt cagacgatgt gattcgcaag ccttctttgg 2580
tctcttggct acagtcactg aactacttat gttctaataa ccgtactgaa gttttagctt 2640
ctggatcaac gatagacact tcgaaccagt tggctgctcg actctaggga tctcctcata 2700
gtttacaaac atgtgaaata gaataaagtt tgtatgactt gtatcatgga attatgttga 2760
aaagaattat aaattaacat catctccatt ttttgatcag ta 2802
<210> 6
<211> 1500
<212> DNA
<213> Arabidopsis thaliana (Arabidopsis thaliana)
<400> 6
aacttcaaat ttaatgaggc ctcctcttcc ttgaacgcaa aggaagtttc ttcgttggaa 60
aacgctgtct ccaattcaca tctctctctt tctctttccc tctgtacaca catacgtata 120
cgtatatata ttaacactat atttcattta tgtcttcgat ggtcctatga tctttaatct 180
ccatggcgac gactagagtc tcacatgtct tagggtttct tctatggatc tctcttctca 240
tcttcgtctc catagggttg tttggcaatt tcagctccaa acccataaac ccttttcctt 300
ctccggttat taccttgccg gccctttact accggccggg aagaagagct ttggcggtga 360
aaacgtttga cttcacaccg ttcttgaaag atcttcgccg gagtaatcat cggaaagctt 420
tgccggcggg aggatccgag attgacccga gatatggcgt tgaaaaacga ctcgtcccat 480
ctggtccaaa ccccttgcac cactgatttg tcttcttaat ttttgcttta agttttcttt 540
attttttcaa agatatagta aaacacgtat attttactaa tactagaaga ttaattcata 600
agatattagc taatattctt tcttggtatg tatatgtctt gaattattta ttcttctttg 660
tcatgtgatt tatttttttt cacttctggt gtaatgatgt aatttactca tctttttatt 720
ctttcttcat ttgatactaa tcgttgtaat aataaagcat catgtaagca gaaataaaag 780
aaaagatcat gtacacattt gtttaaatgc caaaaaagaa gttagcacca cagtaatcta 840
tactagtttt cgattaagaa gtgtttgtta agggaaagag aaattaaatt agcttcgatg 900
ttaccagtca cgtgaatcgt tgacttaatt agtttccttt tccaggtttt gtgcaaaact 960
ttttctgaat tttgtgggaa gtagacaacg aggaaatgag ctcatgtgat ttcgaaacct 1020
gcaattacag tttgtttacg tattatgttg acctcattga agttgaaaaa gacatttaac 1080
aattctgtag ctggtttact aaccgtgcgg ttttatctcc ggttttctgg tttatttggt 1140
ttatccttaa ccacaaaaca aacgtcacaa ctccgtcacc gcaaactagg cagattatct 1200
ggttttccgg cggtttctcg ttatctacga gagagtgaga gaggaaatac ctcggggtga 1260
actcgctgcg tagccaaagc ctcttcaatt ttgctctttt gttcaattcc gtcgcttaat 1320
tatctggttt tgcgtatttt gaagagtcag tttgacgaat ttatgctgaa atttcgttct 1380
ttctctgttt atctttcagc gacgattttt ctgggttttt cagttttgga tcaatccata 1440
atctgtcgtg attagggttt tataccttga tgaggattta ctgaattagt tgtattaaag 1500
<210> 7
<211> 46
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
cacgggggac tctagaatgg cgagaaaagc taacaatagt tttttc 46
<210> 8
<211> 46
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
cttgctcacc attgttggat ccccgagtcg agcagccaac tggttc 46
<210> 9
<211> 52
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
gtacaagaga tctgcgtcga ctatggcgag aaaagctaac aatagttttt tc 52
<210> 10
<211> 46
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
cgatcgggga aattcgagct ctcagagtcg agcagccaac tggttc 46
<210> 11
<211> 44
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
gacgagctgt acaagtctag aatggcgaga aaagctaaca atag 44
<210> 12
<211> 41
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 12
ggtcttaatt aactctctag atcataagat atggcaacac c 41
<210> 13
<211> 52
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
ggtcttaatt aactctctag atcaaggata caaaaacatg gttgatgcaa cc 52
<210> 14
<211> 46
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 14
gacgagctgt acaagtctag aatgattctt catttgattg agtggg 46
<210> 15
<211> 46
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 15
ggtcttaatt aactctctag atcagagtcg agcagccaac tggttc 46
<210> 16
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 16
taccagtcac gtgaatcgtt g 21
<210> 17
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 17
actcttcttc caaaagcctg c 21
<210> 18
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 18
gcagacttgt ttacgcaaag g 21
<210> 19
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 19
gcagacttgt ttacgcaaag g 21
<210> 20
<211> 19
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 20
attttgccga tttcggaac 19
<210> 21
<211> 47
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 21
acgacggcca gtgccaagct taacttcaaa tttaatgagg cctcctc 47
<210> 22
<211> 47
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 22
accattgttg gatcctctag aggatccctt taatacaact aattcag 47
<210> 23
<211> 44
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 23
gtattaaagg gatcctctag aatggcgaga aaagctaaca atag 44
<210> 24
<211> 46
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 24
ggccgctaca ctcgagtcga ccctgattcg tttcttaccc tttcaa 46
<210> 25
<211> 44
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 25
gtattaaagg gatcctctag aatggcgaga aaagctaaca atag 44
<210> 26
<211> 46
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 26
ggccgctaca ctcgagtcga ccctgattcg tttcttaccc tttcaa 46
<210> 27
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 27
aacagaaaag tggcgcaagc 20
<210> 28
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 28
atcgcaagac cggcaacagg a 21
<210> 29
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 29
cccctgtgtt tcctatgctg cttg 24
<210> 30
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 30
ttggagatta cgcctgtcat c 21

Claims (6)

  1. The application of the E41 gene in regulating and controlling the plant embryonic development is characterized in that the nucleotide sequence of the E41 gene is shown as any one of SEQ ID NO. 1-5.
  2. The application of the E41 protein in regulation and control of plant embryonic development is characterized in that the E41 protein is obtained by encoding a nucleotide sequence shown by any one of SEQ ID NO. 1-5.
  3. 3. The use of any one of claims 1 or 2, wherein the plant is a dicot.
  4. 4. Use according to claim 3, wherein the plant is Arabidopsis thaliana.
  5. 5. The use of any of claims 1 or 2, wherein the route of application comprises:
    (1) utilizing gene mutation, gene knockout, gene interference or gene silencing technology to cause deletion or reduction of expression quantity of the E41 gene, thereby constructing a plant model with abnormal embryonic development;
    (2) introducing the E41 gene into a receptor plant, and culturing to obtain a transgenic plant with acquired function; the recipient plant is a plant with abnormal embryonic development caused by deletion of the E41 gene.
  6. 6. The use of claim 5, wherein the plant is Arabidopsis thaliana.
CN202210127737.4A 2022-02-11 2022-02-11 Application of E41 gene in regulating and controlling plant embryo development Active CN114262713B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210127737.4A CN114262713B (en) 2022-02-11 2022-02-11 Application of E41 gene in regulating and controlling plant embryo development
PCT/CN2022/128563 WO2023151322A1 (en) 2022-02-11 2022-10-31 Application of e41 gene in regulation and control of plant embryonic development

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210127737.4A CN114262713B (en) 2022-02-11 2022-02-11 Application of E41 gene in regulating and controlling plant embryo development

Publications (2)

Publication Number Publication Date
CN114262713A true CN114262713A (en) 2022-04-01
CN114262713B CN114262713B (en) 2023-09-15

Family

ID=80833672

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210127737.4A Active CN114262713B (en) 2022-02-11 2022-02-11 Application of E41 gene in regulating and controlling plant embryo development

Country Status (2)

Country Link
CN (1) CN114262713B (en)
WO (1) WO2023151322A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023151322A1 (en) * 2022-02-11 2023-08-17 浙江大学杭州国际科创中心 Application of e41 gene in regulation and control of plant embryonic development

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110078816A1 (en) * 2009-09-28 2011-03-31 Goodwin Brian B Methods of reducing plant stress
CN103403169A (en) * 2011-02-24 2013-11-20 衣阿华州立大学研究基金公司 Materials and method for modifying a biochemical component in a plant

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106146633B (en) * 2015-04-14 2019-08-02 北京大学 The application of EPFL1 albumen and its encoding gene in plant fertility
CN114262713B (en) * 2022-02-11 2023-09-15 浙江大学杭州国际科创中心 Application of E41 gene in regulating and controlling plant embryo development

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110078816A1 (en) * 2009-09-28 2011-03-31 Goodwin Brian B Methods of reducing plant stress
CN103403169A (en) * 2011-02-24 2013-11-20 衣阿华州立大学研究基金公司 Materials and method for modifying a biochemical component in a plant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THEOLOGIS,A. ET AL.: "Arabidopsis thaliana obscurin-like protein (AT1G73970), mRNA NCBI Reference Sequence: NM_106056.5", Retrieved from the Internet <URL:https://www.ncbi.nlm.nih.gov/nuccore/1063692621?sat=51&satkey=36731914> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023151322A1 (en) * 2022-02-11 2023-08-17 浙江大学杭州国际科创中心 Application of e41 gene in regulation and control of plant embryonic development

Also Published As

Publication number Publication date
WO2023151322A1 (en) 2023-08-17
CN114262713B (en) 2023-09-15

Similar Documents

Publication Publication Date Title
US20090192305A1 (en) Ap2 transcription factors for modifying plant traits
WO2019038417A1 (en) Methods for increasing grain yield
CN110218810B (en) Promoter for regulating and controlling maize tassel configuration, molecular marker and application thereof
CN111087457A (en) Protein NGR5 for improving nitrogen utilization rate and crop yield, and coding gene and application thereof
CN114410651A (en) Corn gray leaf spot resistance related protein and coding gene and application thereof
CN110592134A (en) Application of SDG40 gene or coding protein thereof
CN112175973B (en) Rice disease spot control gene SPL36 and application thereof
CN114262713B (en) Application of E41 gene in regulating and controlling plant embryo development
CN109797158B (en) Application of gene OsNTL3 in improvement of rice high-temperature resistance and obtained rice high-temperature resistance gene
CN114657157B (en) Application of ZmD protein in regulation of corn plant height
CN114958867B (en) Corn ear grain weight and yield regulation gene KWE2, coded protein, functional marker, expression vector and application thereof
CN114875062B (en) Method for improving wheat scab resistance through genome editing
CN111826391A (en) Application of NHX2-GCD1 double genes or protein thereof
CN109811005A (en) The application of plant type GAP-associated protein GAP OsSLA1 and its encoding gene in adjusting and controlling rice Leaf inclination
CN106434613B (en) Rice pectin lyase precursor coding gene DEL1 and application thereof
CN111269300A (en) Gene for regulating lignin synthesis and application
CN114395580A (en) Gene for controlling plant height of corn
CN109609515B (en) Gene for regulating growth and development of chloroplast and influencing leaf color under low-temperature stressCDE4And applications
CN109608531B (en) Application of FPA and FPAL in regulating and controlling plant chloroplast development
JPWO2008120410A1 (en) Gene with end-reduplication promoting activity
CN111620933A (en) Application of protein GmNAC2 in regulation and control of salt tolerance of plants
CN114516908B (en) Rice grain shape regulatory protein HOS59, encoding gene and application thereof
CN113416747B (en) Method for creating temperature-sensitive male sterile plant
US20230081195A1 (en) Methods of controlling grain size and weight
CN110078808B (en) Cotton GhKNAT7-A03 protein and coding gene and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant