CN114234946A - 一种多角点倾斜摄影测量标志及其识别方法 - Google Patents

一种多角点倾斜摄影测量标志及其识别方法 Download PDF

Info

Publication number
CN114234946A
CN114234946A CN202111601478.6A CN202111601478A CN114234946A CN 114234946 A CN114234946 A CN 114234946A CN 202111601478 A CN202111601478 A CN 202111601478A CN 114234946 A CN114234946 A CN 114234946A
Authority
CN
China
Prior art keywords
point
oblique
mark
reflection
bottom plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111601478.6A
Other languages
English (en)
Inventor
张沛全
左天惠
邹衍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi Zhuang Autonomous Region Natural Resources Investigation And Monitoring Institute
Guangxi Zhuang Autonomous Region Seismological Bureau
Original Assignee
Guangxi Zhuang Autonomous Region Natural Resources Investigation And Monitoring Institute
Guangxi Zhuang Autonomous Region Seismological Bureau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Zhuang Autonomous Region Natural Resources Investigation And Monitoring Institute, Guangxi Zhuang Autonomous Region Seismological Bureau filed Critical Guangxi Zhuang Autonomous Region Natural Resources Investigation And Monitoring Institute
Priority to CN202111601478.6A priority Critical patent/CN114234946A/zh
Publication of CN114234946A publication Critical patent/CN114234946A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/02Means for marking measuring points
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/028Micro-sized aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/02Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography

Abstract

一种多角点倾斜摄影测量标志及其识别方法,包括正方形底板,正方形底板上设置反射识别平板。反射识别平板与正方形底板的几何中心具有预先确定的空间关系。其识别方法分为多角点摄影测量标志制作、野外测量标志布设、无人机外业倾斜摄影测量与内业数据处理、测量标志的影像识别四个步骤。一次飞行任务后读取同一标志不同角点的坐标,可获得多余观测,有利于提高点位的观测精度。多期多次飞行任务后,可获得不同飞行期次时间间隔中点位的变化特征。该摄影测量标志及识别方法适用于地表变形观测、建筑物位移及施工监测等领域。

Description

一种多角点倾斜摄影测量标志及其识别方法
技术领域
本发明涉及倾斜摄影测量技术领域,具体是一种多角点倾斜摄影测量标志及其识别方法。
背景技术
倾斜摄影测量是摄影测量发展至数字摄影测量阶段的一项新技术。倾斜摄影测量是通过同一飞行平台搭载多台传感器,至少从一个垂直、四个倾斜等5个不同角度进行影像采集。影像经过影像匹配和数字计算后可获得待测点的精确三维坐标。倾斜摄影测量除了具备摄影测量的非接触、高精度和快速测量等优点外,还具备多角度、适应性强等特点。如果使用无人机作为搭载平台,还具备低空域等优势。这使得倾斜摄影测量技术可用于国土资源动态调查、数字城市、电力巡线、岩土体变形监测、大坝变形监测,甚至断层活动监测等诸多领域。
倾斜摄影测量作业时,为了测得待测点的精确坐标,一般在待测部位布置摄影测量标志,摄影测量标志的几何中心即代表待测点的位置。
在上述领域的应用中,往往涉及多时相重复作业。首次布置的测量标志可能会被遮挡,那么设计一种可以在多条件下能被传感器快速识别和捕获的摄影测量标志,才可能减少遮挡带来的不变。
可获取多角度地面影像是倾斜摄影测量的特点之一。为了使测量标志能被不同角度的传感器捕获影像,平面标志已经不能满足多角度拍摄的需要,立体的倾斜摄影测量标志的设计成为改变这一现状的关键技术之一。
倾斜摄影测量的另一个特点是高精度,提供多余观测时减少误差提高观测精度的常用方法。然而,平面的摄影测量标志不能提供多余观测。设计一种可提供多余观测的倾斜摄影测量标志是改变这一现状的另一项关键技术。
发明内容
本发明的目的是提供一种多角点倾斜摄影测量标志及其识别方法,其中在使用该倾斜摄影测量标志进行测量时,倾斜摄影的镜头与水平面有更大的夹角范围,又可以提供更多的多余观测点,从而提高测量标志的定位精度,通过喷涂颜色可以实现快速捕获与识别。
为了达到上述目的,本发明采取的技术方案是:提供一种多角点倾斜摄影测量标志,包括:
底板,所述的底板为正方形,所述的正方形具有几何中心;
至少4个反射识别平板,所述的至少4个反射识别平板设置在所述的底板上,所述的至少4个反射识别平板与所述的正方形几何中心具有预先确定的空间位置关系,使得当所述的倾斜摄影测量标志置于一个空间时,所述的几何中心在所述的空间中的位置能够根据至少1个反射识别平板在所述空间中的位置以及所述的预先确定的空间关系计算获得。
所述至少4个反射识别平板设置在所述底板上的具有已知形状的平面,或者为设置在所述底板上的具有已知形状和颜色的区域。
所述空间关系为反射识别平板的边长与底板对角线边长关系、几何关系,底板几何中心与反射识别平面上特定点的对应关系。
所述至少4个反射识别平板具有两个平面,两个平面的几何编号相同,两个平面的特定点编号相同。
所述反射识别平板为等腰直角三角形,所述的等腰直角三角形的直角边等于所述的底板对角线的一半。
所述至少4个反射识别平板几何形状一致,边长一致。
所述至少4个反射识别平板与底板垂直。
所述4个反射识别的第一、二、三、四反射识别平板的一条直角边的直角点与底板的几何中心对应,直角边的另一个角点与底板第一、二、三、四直角点对应。
所述的多角点倾斜摄影测量标志的识别方法,包括如下步骤:
(1)测量标志埋设或布置
根据任务需要将测量标志埋设在指定位置,如基岩、沉积物、墙角;
(2)飞行场地勘察
抵达任务场地后,开展详细勘察,勘察内容包括任务场地的交通、地形、地貌情况,确认任务场地内是否存在高压电线、通讯基站、登山缆索危害飞行安全的物体,勘察完成后,选择合适的飞行起降场地进行飞行准备工作;
(3)飞行准备工作
①.GNSS基准站架设置;②.飞机通讯链路电台架设;③.飞机组装调试;④.任务区航线设计;⑤.飞机+地面控制站联调;
(4)快速DSM制作
飞行准备工作完成后,先在任务区安全高度以上,进行正射影像获取,正射影像获取任务飞行完成后,将GNSS基准站数据、飞机机载GNSS移动站数据、飞机飞控惯导和拍照信息数据、机载相机拍照的正射照片拷贝至任务现场的计算机内,进行快速DSM制作;
(5)倾斜摄影航拍
快速DSM制作完成后,根据获得的任务区域DSM数据,设计高分辨率的倾斜摄影航线,使无人机跟随地面仿地飞行并进行近距离拍摄,通过多个架次的不断飞行,获取任务区域的高分辨率倾斜摄影航拍数据,航拍完成后,将GNSS基准站数据、飞机机载GNSS移动站数据、飞机飞控惯导和拍照信息数据、机载相机获取的照片拷贝至移动硬盘内存放;
(6)实景三维数据制作
将移动硬盘的数据拷贝至计算机处理集群,使用专业处理软Smart3D或ContextCapture或Mirauge3D进行处理,首先进行空中三角测量解算,获取每张照片的精确POS信息,然后进行实景三维重建,获得任务区域的实景三维模型数据;
(7)正射影像制作
根据生产出来的实景三维数据,进行垂直影像获取处理,获得任务区的正射影像成果;
(8)测量标志角点的二维坐标读取方法
将正射影像导入ArcGIS或其他遥感软件中,将影像中某一个角点放大至一个像元读取其二维坐标;
(9)测量标志角点的三维坐标读取方法
将DSM影像导入Smart3D或其他软件中,将影像种某一个角点放大后,读取其三维坐标;
(10)重复(8)和(9)步骤量取多个角点的二维或三维坐标后,进行二维或三维坐标平差,获得测量标志的中心坐标,或根据角点与中心点的预设几何关系推导出中心点的坐标。
本发明的突出优点在于:
1、在使用该倾斜摄影测量标志进行测量时,倾斜摄影的镜头与水平面有更大的夹角范围,又可以提供更多的多余观测点,从而提高测量标志的定位精度。
2、通过喷涂颜色可以实现快速捕获与识别。
附图说明:
图1为本发明所述的多角点倾斜摄影测量标志的立体示意图。
图2为本发明所述的多角点倾斜摄影测量标志的俯视示意图。
图3为本发明所述的多角点倾斜摄影测量标志的侧视示意图。
图4为本发明所述的多角点倾斜摄影测量标志的识别方法流程图。
图5为本发明所述的多角点倾斜摄影测量标志的成品外观及整平方法图。
图6为本发明所述的多角点倾斜摄影测量标志识别前的野外倾斜摄影作业图。
图7为本发明所述的多角点倾斜摄影测量标志的角点二维坐标识别图。
图8为本发明所述的多角点倾斜摄影测量标志的角点三维坐标识别图。
具体实施方式
以下通过附图和实施例对本发明的技术方案作进一步详细描述。
实施例1
如图1到图3所示,本发明所述的多角点倾斜摄影测量标志,包括1块底板和4块等腰直角三角形板。该标志的整体轮廓为方锥体。即1块正方形底板,该正方形底板具有几何中心。整体轮廓如图1的O1ABCD方锥,正方形底板如图1和图2中的正方形ABCD,正方形底板的几何中心如图1和图3中的O。边长为28.28cm。
正方形底板设有至少4个反射识别板,至少4个反射识别板与正方形底板的几何中心O之间具有预先确定的空间位置关系。这种预先设定的空间位置关系在制作标志时可以实现。反射识别板为等腰直角三角形板,如图1中的O1OA、O1OB、O1OC和O1OD。O1O、OA、OB、OC、OD的腰长为20cm。等腰直角三角形板的一个角点,如图1中的A点,与正方形底板上的一个同名角点,正方形底板ABCD中的A点相对应,等腰直角三角形的直角点,如图1中的O点,与正方形底板的几何中心,如图1中的O点,对应拼接。4块等腰直角三角形板拼接后,等腰直角三角形板的第三个角点成为方椎体的顶点,如图1、图2和图3中的O1点。
该至少4个反射识别板与底板的几何中心O的空间关系是已知的。因此,当将该倾斜摄影测量标志至于某个空间是,正方形底板的几何中心O在该空间中的空间中的位置将能够根据该至少1个反射识别板在该空间中的位置以及该预先设定的空间位置关系计算获得。而该至少1个反射识别板在该空间的位置通过对该倾斜摄影测量标志进行倾斜摄影后相应地处理获得。因此,当倾斜摄影测量标志置于该空间之后,对该倾斜摄影测量获得该至少1个反射识别板在该空间中的位置,然后通过该至少1个放射识别板在该空间中的位置以及前述的,该至少设置的4个反射识别板与正方形底板几何中心O之间的预先确定的空间位置推算出底板几何中心O在该空间中的位置。
为了在倾斜摄影过程中更清晰更快速地识别出倾斜测量标志,可对该倾斜摄影测量标志进行分色喷涂。将一块反射识别板喷涂成黄色,如将图3中的O1OA反射识别板喷涂成黄色;将另一块放射识别板喷涂成蓝色,如将图3中的O1OB反射识别板喷涂成蓝色;将两块反射识别板与底板所构成的几何区域喷涂成红色,如将图3中的AOB区域喷涂成红色。
该标志的整体轮廓为方锥体。
实施例2
本实施例为本发明述所述的多角点倾斜摄影测量标志的识别方法的一个实例,包括如下步骤:
(1)测量标志埋设或布置
为了测量地表变形,在测量标志下方焊接了连接杆,如在测量标志下方焊接了1m长的连接杆。在遮蔽度中等的情况下插入土中。使用罗盘上的圆水准器和管水准器整平测量标志。如图5所示。
(2)飞行场地勘察
本实施例模拟一次地表变形观测的任务,观测地表的沉降或抬升。抵达任务场地后,详细踏勘了周围地区,了解了当地的交通、地貌、输电线路、通讯基站、人员活动范围等特点。之后将勘作业区选择某河流阶地的耕地中。踏勘完成后,选择遮蔽度中等的玉米地埋设标志以及飞行起降场地。
(3)飞行准备工作
本实施例使用了大疆精灵4RTK单镜头无人机。飞行前,在野外进行了飞机组装调试、任务区航线设计、飞机与地面控制站联调等工作。航高设为7.5m,光圈2.8,快门速度1/160S,ISO100,规划航线为井字形航线,倾斜摄影拍摄模式。
(4)快速DSM制作
飞行准备工作完成后,先在任务区安全高度以上,进行正射影像获取,正射影像获取任务飞行完成后,将GNSS基准站数据、飞机机载GNSS移动站数据、飞机飞控惯导和拍照信息数据、机载相机拍照的正射照片拷贝至任务现场的计算机内,进行快速DSM制作;
(5)倾斜摄影航拍
倾斜摄影航拍快速DSM制作完成后,根据获得的任务区域DSM数据,设计高分辨率的倾斜摄影航线,使无人机跟随地面仿地飞行并进行近距离拍摄。如图6所示。通过多个架次的不断飞行,获取任务区域的高分辨率倾斜摄影航拍数据。
(6)实景三维数据制作
航拍完成后,将飞机机载GNSS移动站数据、飞机飞控惯导和拍照信息数据、机载相机获取的照片拷贝至移动硬盘内存放。将移动硬盘的数据拷贝至计算机处理集群,使用专业处理软Smart3D或ContextCapture或Mirauge3D进行处理,进行空中三角测量解算,获取每张照片的精确POS信息,然后进行实景三维重建,获得任务区域的实景三维模型数据。
(7)正射影像制作
根据生产出来的实景三维数据,进行垂直影像获取处理,获得任务区的正射影像成果。
(8)测量标志角点的二维坐标读取方法
将正射影像导入ArcGIS或其他遥感软件中,将影像中某一个角点放大至一个像元读取其二维坐标;如图7所示。
(9)测量标志角点的三维坐标读取方法
将DSM影像导入Smart3D或其他软件中,将影像中某一个角点放大后,读取其三维坐标,如图8所示。
(10)重复(8)和(9)步骤量取多个角点的二维或三维坐标后,进行二维或三维坐标平差,获得测量标志的中心坐标,或根据角点与中心点的预设几何关系推导出中心点的坐标。
这里提供了一次飞行任务后的测量结果。如果需要进行沉积地表变形观测,重复(4)-(10)步骤开展复测,然后进行数据比较,即可获得两侧飞行任务时间间隔里的地表变形特征。

Claims (10)

1.一种多角点倾斜摄影测量标志,其特征在于,包括:
底板,所述的底板为正方形,所述的正方形具有几何中心;
至少4个反射识别平板,所述的至少4个反射识别平板设置在所述的底板上,所述的至少4个反射识别平板与所述的正方形几何中心具有预先确定的空间位置关系,使得当所述的倾斜摄影测量标志置于一个空间时,所述的几何中心在所述的空间中的位置能够根据至少1个反射识别平板在所述空间中的位置以及所述的预先确定的空间关系计算获得。
2.根据权利要求1所述的多角点倾斜摄影测量标志,其特征在于:所述至少4个反射识别平板设置在所述底板上的具有已知形状的平面,或者为设置在所述底板上的具有已知形状和颜色的区域。
3.根据权利要求1所述的多角点倾斜摄影测量标志,其特征在于:所述空间关系为反射识别平板的边长与底板对角线边长关系、几何关系,底板几何中心与反射识别平面上特定点的对应关系。
4.根据权利要求1所述的多角点倾斜摄影测量标志,其特征在于:所述至少4个反射识别平板具有两个平面,两个平面的几何编号相同,两个平面的特定点编号相同。
5.根据权利要求1所述的多角点倾斜摄影测量标志,其特征在于:所述反射识别平板为等腰直角三角形,所述的等腰直角三角形的直角边等于所述的底板对角线的一半。
6.根据权利要求1所述的多角点倾斜摄影测量标志,其特征在于:所述至少4个反射识别平板几何形状一致,边长一致。
7.根据权利要求1所述的多角点倾斜摄影测量标志,其特征在于:所述至少4个反射识别平板与底板垂直。
8.根据权利要求3所述的多角点倾斜摄影测量标志,其特征在于:所述4个反射识别的第一、二、三、四反射识别平板的一条直角边的直角点与底板的几何中心对应,直角边的另一个角点与底板第一、二、三、四直角点对应。
9.根据权利要求1所述的多角点倾斜摄影测量标志的识别方法,其特征在于,包括如下步骤:
(1)测量标志埋设或布置
根据任务需要将测量标志埋设在指定位置,如基岩、沉积物、墙角;
(2)飞行场地勘察
抵达任务场地后,开展详细勘察,勘察内容包括任务场地的交通、地形、地貌情况,确认任务场地内是否存在高压电线、通讯基站、登山缆索危害飞行安全的物体,勘察完成后,选择合适的飞行起降场地进行飞行准备工作;
(3)飞行准备工作
①.GNSS基准站架设置;②.飞机通讯链路电台架设;③.飞机组装调试;④.任务区航线设计;⑤.飞机+地面控制站联调;
(4)快速DSM制作
飞行准备工作完成后,先在任务区安全高度以上,进行正射影像获取,正射影像获取任务飞行完成后,将GNSS基准站数据、飞机机载GNSS移动站数据、飞机飞控惯导和拍照信息数据、机载相机拍照的正射照片拷贝至任务现场的计算机内,进行快速DSM制作;
(5)倾斜摄影航拍
快速DSM制作完成后,根据获得的任务区域DSM数据,设计高分辨率的倾斜摄影航线,使无人机跟随地面仿地飞行并进行近距离拍摄,通过多个架次的不断飞行,获取任务区域的高分辨率倾斜摄影航拍数据,航拍完成后,将GNSS基准站数据、飞机机载GNSS移动站数据、飞机飞控惯导和拍照信息数据、机载相机获取的照片拷贝至移动硬盘内存放;
(6)实景三维数据制作
将移动硬盘的数据拷贝至计算机处理集群,使用专业处理软Smart3D或ContextCapture或Mirauge3D进行处理,首先进行空中三角测量解算,获取每张照片的精确POS信息,然后进行实景三维重建,获得任务区域的实景三维模型数据;
(7)正射影像制作
根据生产出来的实景三维数据,进行垂直影像获取处理,获得任务区的正射影像成果;
(8)测量标志角点的二维坐标读取方法
将正射影像导入ArcGIS或其他遥感软件中,将影像中某一个角点放大至一个像元读取其二维坐标;
(9)测量标志角点的三维坐标读取方法
将DSM影像导入Smart3D或其他软件中,将影像种某一个角点放大后,读取其三维坐标;
(10)重复(8)和(9)步骤量取多个角点的二维或三维坐标后,进行二维或三维坐标平差,获得测量标志的中心坐标。
10.根据权利要求9所述的多角点倾斜摄影测量标志的识别方法,其特征在于,所述获得测量标志的中心坐标还可以根据角点与中心点的预设几何关系推导出中心点的坐标。
CN202111601478.6A 2021-12-24 2021-12-24 一种多角点倾斜摄影测量标志及其识别方法 Pending CN114234946A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111601478.6A CN114234946A (zh) 2021-12-24 2021-12-24 一种多角点倾斜摄影测量标志及其识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111601478.6A CN114234946A (zh) 2021-12-24 2021-12-24 一种多角点倾斜摄影测量标志及其识别方法

Publications (1)

Publication Number Publication Date
CN114234946A true CN114234946A (zh) 2022-03-25

Family

ID=80762752

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111601478.6A Pending CN114234946A (zh) 2021-12-24 2021-12-24 一种多角点倾斜摄影测量标志及其识别方法

Country Status (1)

Country Link
CN (1) CN114234946A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589981A (en) * 1994-03-10 1996-12-31 Aerospatiale Societe Nationale Industrielle Retroreflector target for laser ranging
KR20040006624A (ko) * 2002-07-13 2004-01-24 손호웅 기준좌표계와 레이저를 이용한 3차원 측량 및 암반절리면의 방향성 추출시스템 및 그 방법
CN110244308A (zh) * 2019-06-13 2019-09-17 南京拓曼思电气科技有限公司 一种适用于无人机测高定姿的激光传感器及其工作方法
CN110455256A (zh) * 2019-07-30 2019-11-15 西安科技大学 基于无人机倾斜摄影测量的地表沉降观测方法
CN214375272U (zh) * 2021-03-30 2021-10-08 山西华阳集团新能股份有限公司 一种可重复使用的机载激光雷达和无人机航摄地面靶标

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589981A (en) * 1994-03-10 1996-12-31 Aerospatiale Societe Nationale Industrielle Retroreflector target for laser ranging
KR20040006624A (ko) * 2002-07-13 2004-01-24 손호웅 기준좌표계와 레이저를 이용한 3차원 측량 및 암반절리면의 방향성 추출시스템 및 그 방법
CN110244308A (zh) * 2019-06-13 2019-09-17 南京拓曼思电气科技有限公司 一种适用于无人机测高定姿的激光传感器及其工作方法
CN110455256A (zh) * 2019-07-30 2019-11-15 西安科技大学 基于无人机倾斜摄影测量的地表沉降观测方法
CN214375272U (zh) * 2021-03-30 2021-10-08 山西华阳集团新能股份有限公司 一种可重复使用的机载激光雷达和无人机航摄地面靶标

Similar Documents

Publication Publication Date Title
WO2022061945A1 (zh) 一种电力线路安全距离检测方法
Carvajal-Ramírez et al. Virtual reconstruction of damaged archaeological sites based on Unmanned Aerial Vehicle Photogrammetry and 3D modelling. Study case of a southeastern Iberia production area in the Bronze Age
CN109357617B (zh) 一种基于无人机的高陡岩质边坡位移变形监测方法
Lo Brutto et al. UAV platforms for cultural heritage survey: first results
Tao Mobile mapping technology for road network data acquisition
Zeybek Accuracy assessment of direct georeferencing UAV images with onboard global navigation satellite system and comparison of CORS/RTK surveying methods
Sanz‐Ablanedo et al. Reducing systematic dome errors in digital elevation models through better UAV flight design
CN109242918B (zh) 一种直升机机载双目立体视觉标定方法
KR101105361B1 (ko) 영상데이터와 라이다데이터의 기하학적 정합방법 및 그 장치
Wang et al. Estimating earthwork volumes through use of unmanned aerial systems
CN113607135A (zh) 一种用于路桥施工领域的无人机倾斜摄影测量方法
CN106408601A (zh) 一种基于gps的双目融合定位方法及装置
CN113012292B (zh) 一种基于无人机航拍的ar远程施工监控方法及系统
CN109782276A (zh) 一种长基线机载重轨干涉sar配准方法
Yeh et al. Modeling slope topography using unmanned aerial vehicle image technique
CN110986888A (zh) 一种航空摄影一体化方法
Kurkov et al. DEM accuracy research based on unmanned aerial survey data
Roca et al. Novel aerial 3D mapping system based on UAV platforms and 2D laser scanners
Lin et al. Micro-UAV based remote sensing method for monitoring landslides in three gorges reservoir, China
Ismael et al. Accuracy assessment of UAV photogrammetry for large scale topographic mapping
KR102262120B1 (ko) 드론 경로 제공 방법
Li et al. A study of the potential attainable geometric accuracy of IKONOS satellite imagery
Lin et al. Accuracy analysis of low altitude photogrammetry with wide-angle camera
CN215767057U (zh) 一种提高无人机调查复杂边坡岩体精度的动态调整装置
CN114234946A (zh) 一种多角点倾斜摄影测量标志及其识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination