CN114226751B - 一种h13钢模具的激光增材修复方法 - Google Patents

一种h13钢模具的激光增材修复方法 Download PDF

Info

Publication number
CN114226751B
CN114226751B CN202111394944.8A CN202111394944A CN114226751B CN 114226751 B CN114226751 B CN 114226751B CN 202111394944 A CN202111394944 A CN 202111394944A CN 114226751 B CN114226751 B CN 114226751B
Authority
CN
China
Prior art keywords
steel
laser
area
repaired
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111394944.8A
Other languages
English (en)
Other versions
CN114226751A (zh
Inventor
赵海东
梁华耀
王果
邓朝阳
马文有
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Institute of New Materials of Guangdong Academy of Sciences
Original Assignee
South China University of Technology SCUT
Institute of New Materials of Guangdong Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT, Institute of New Materials of Guangdong Academy of Sciences filed Critical South China University of Technology SCUT
Priority to CN202111394944.8A priority Critical patent/CN114226751B/zh
Publication of CN114226751A publication Critical patent/CN114226751A/zh
Application granted granted Critical
Publication of CN114226751B publication Critical patent/CN114226751B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F2007/068Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts repairing articles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明公开了一种H13钢模具的激光增材修复方法,包括以下步骤:1)对H13钢模具的待修复区域进行前处理;2)采用不同粒径分布的球形H13钢混合粉末通过激光增材制造对待修复区域进行激光金属沉积,根据待修复区域的特点动态调整喷嘴的位置和角度,并根据沉积层数动态调整激光功率;3)对激光金属沉积形成的沉积层进行铣削加工。本发明可以对H13钢模具的平面、斜面和弧面等多种表面进行激光增材修复,修复区域的强度、硬度和冲击韧性较大,且修复区域和H13钢模具基体之间形成了良好的冶金结合。

Description

一种H13钢模具的激光增材修复方法
技术领域
本发明涉及激光金属材料加工技术领域,具体涉及一种H13钢模具的激光增材修复方法。
背景技术
H13钢是一种热作模具钢,是在碳素工具钢的基础上加入合金元素而形成的钢种。H13钢的强度、硬度和韧性较大,且具有良好的抗热疲劳性能和中等耐磨性,是一种强韧兼备的钢种,其在压铸模领域占据重要的地位,据统计90%以上的压铸模具模芯是由H13钢制成。压铸模具在苛刻的服役条件下经历多次温度循环变化以及交变应力的周期作用之后,容易出现失效、产生裂纹等问题。压铸目前正朝着大型化和复杂化方向发展,模具生产存在制造周期长、成本昂贵等问题,而对失效模具进行修复可以延长模具的使用寿命,提高材料的利用率,进而降低生产成本。
模具钢的修复通常采用焊接技术(例如:CN 112935485 A)和激光选区熔化技术(例如:CN 111270146 A),但这两项技术均存在不少问题,主要表现在以下几个方面:1)焊接过程中需要输入较大的热量,热影响区较大,母材相关部分性能下降明显,同时焊接过程中较高的残余应力容易造成工件翘曲变形;2)激光选区熔化技术成形效率较低,在增材制造部分工件的原始形状和尺寸需要便于铺粉,而曲面或弧面上铺粉成形困难,且压铸或注塑件形状通常非常复杂,因此激光选区熔化技术难以用于具有复杂表面的压铸/注塑模具的修复。
因此,有必要开发一种可以对H13钢模具的平面、斜面和弧面等多种表面进行激光增材修复的方法。
发明内容
本发明的目的在于提供一种H13钢的激光增材修复方法。
本发明所采取的技术方案是:
一种H13钢模具的激光增材修复方法包括以下步骤:
1)对H13钢模具的待修复区域进行前处理;
2)采用不同粒径分布的球形H13钢混合粉末通过激光增材制造对待修复区域进行激光金属沉积,根据待修复区域的特点动态调整喷嘴的位置和角度,并根据沉积层数动态调整激光功率;
3)对激光金属沉积形成的沉积层进行铣削加工。
优选的,步骤1)所述前处理包括铣削加工、打磨和清洗。
优选的,步骤1)所述前处理的具体操作为:通过铣削加工去除待修复区域底部以下2mm~3mm、中心以外3mm~5mm的H13钢,再用砂纸将铣削区域打磨至表面粗糙度Ra值≥3.2,再对铣削区域进行清洗。
优选的,所述打磨采用400#砂纸。
优选的,所述清洗采用的试剂为无水乙醇。
优选的,步骤2)所述不同粒径分布的球形H13钢混合粉末由粒径10μm~53μm的球形H13钢混合粉末和粒径50μm~150μm的球形H13钢混合粉末组成。
优选的,步骤2)所述不同粒径分布的球形H13钢混合粉末的元素质量百分比为:
C:0.32%~0.45%;
V:0.80%~1.20%;
Cr:4.75%~5.50%;
Mo:1.10%~1.75%;
Mn:0.20%~0.50%;
Si:0.80%~1.20%;
P:0.03%;
Fe:余量。
优选的,步骤2)所述激光增材制造的工艺参数为:激光功率为1500W~2500W,扫描速度为300mm/min~800mm/min,激光光斑直径为3mm~5mm,离焦距离为15mm~17mm,沉积粉末流速为10g/min~15g/min,多道搭接率为30%~50%。
优选的,步骤2)所述激光增材制造采用的送粉气体为氩气,氩气流量为6slpm~9slpm。
优选的,步骤2)所述激光增材制造采用的保护气体为氦气,氦气流量为6slpm~10slpm。
优选的,步骤2)所述激光金属沉积过程中喷嘴的轴线与待修复平面的夹角为60°~120°。
优选的,步骤2)所述激光金属沉积过程中喷嘴的轴线与待修复曲面的切线的夹角为75°~105°。
优选的,步骤2)所述沉积层数超过3层后,每累积沉积3层激光功率减少10%~20%。
优选的,步骤3)所述铣削加工的具体操作为:通过铣削加工去除沉积层表面1mm~3mm的氧化层直到沉积区域的表面形状和尺寸满足使用要求尺寸及精度。
本发明的有益效果是:本发明可以对H13钢模具的平面、斜面和弧面等多种表面进行激光增材修复,修复区域的强度、硬度和冲击韧性较大,且修复区域和H13钢模具基体之间形成了良好的冶金结合。
具体来说:
1)本发明采用不同粒径分布的球形H13钢混合粉末对H13钢模具进行激光增材修复,修复区域的致密度达到98.8%以上,解决了小粒径粉末在沉积过程中易团聚的问题以及大粒径粉末易导致修复区域孔隙率较高的问题;
2)本发明可以根据H13钢模具的表面情况对沉积喷嘴的角度和位置进行动态调整,能够应用于模具复杂表面的修复,且还考虑了沉积过程中的热量累积,根据沉积层数灵活调整输入的激光功率,维持一定的冷却速度,有利于保持组织的均一性,减少内部裂纹的出现;
3)本发明形成的修复区域组织致密、缺陷少,且强度、硬度和冲击韧性较大,抗拉强度可达1500MPa~2100MPa,屈服强度可达1000MPa~1300MPa,维氏硬度可达580HV0.3~660HV0.3,冲击韧性可达18J~23J,此外,修复区域和基体之间形成了良好的冶金结合,结合强度可达1300MPa~1800MPa。
附图说明
图1为实施例1的H13钢模具的激光增材修复方法的工艺流程图。
图2为实施例1中不同粒径分布的球形H13钢混合粉末的扫描电镜图。
图3为实施例1中粒径10μm~53μm的球形H13钢混合粉末的粒径分布图。
图4为实施例1中粒径50μm~150μm的球形H13钢混合粉末的粒径分布图。
图5为实施例1中修复完成后的H13钢模具截面的金相组织图。
图6为实施例1中的H13钢模具基体、H13钢模具基体-修复区域和修复区域的拉伸曲线。
图7为实施例2的H13钢模具的激光增材修复方法的工艺流程图。
图8为实施例2中的H13钢模具基体-修复区域和修复区域的拉伸曲线。
具体实施方式
下面结合具体实施例对本发明作进一步的解释和说明。
实施例1:
一种H13钢模具的激光增材修复方法,其包括以下步骤(工艺流程图如图1所示):
1)确定H13钢模具的待修复区域,待修复区域为平面,存在深度为1mm的微裂纹,先通过铣削加工去除待修复区域底部以下2mm、中心以外3mm的H13钢,将待修复区域加工成梯形凹槽,再用400#砂纸将铣削区域打磨至表面粗糙度Ra值为3.2,再用无水乙醇对铣削区域进行清洗;
2)采用气雾法制备不同粒径分布的球形H13钢混合粉末(扫描电镜图如图2所示),不同粒径分布的球形H13钢混合粉末的元素质量百分比为:C:0.32%~0.45%;V:0.80%~1.20%;Cr:4.75%~5.50%;Mo:1.10%~1.75%;Mn:0.20%~0.50%;Si:0.80%~1.20%;P:0.03%;Fe:余量,不同粒径分布的球形H13钢混合粉末中粒径10μm~53μm的球形H13钢混合粉末(粒径分布图如图3所示)和粒径50μm~150μm的球形H13钢混合粉末(粒径分布图如图4所示)的质量比为3:7,再采用不同粒径分布的球形H13钢混合粉末通过激光增材制造对待修复区域进行多道次多层激光金属沉积,送粉气体为氩气,氩气流量为6slpm,保护气体为氦气,氦气流量为10slpm,激光增材制造的工艺参数为:激光功率为2200W,扫描速度为500mm/min,激光光斑直径为4mm,离焦距离为17mm,沉积粉末流速为13.3g/min,多道搭接率为50%,沉积区域为水平面,沉积层数为3层,沉积过程中喷嘴轴线与水平面和斜面保持垂直,无需对激光功率进行调整;
3)激光金属沉积完成后待H13钢模具冷却至室温,再通过铣削加工去除沉积层表面1.5mm厚的氧化层,使得沉积层形状尺寸满足使用要求(经测试,修复区域的致密度为98.90%)。
性能测试:
1)本实施例修复完成后的H13钢模具截面的金相组织图(OM)如图5所示。
由图5可知:沉积层无明显孔洞和裂纹,热影响区较小,修复区域和基体之间形成了良好的冶金结合。
2)H13钢模具基体(H13 substrate)、H13钢模具基体-修复区域(LMD-Substrate)和修复区域(LMD)的拉伸曲线如图6所示。
由图6可知:修复区域的强度、硬度和冲击韧性较大,抗拉强度和屈服强度分别达到2054.14MPa和1193.12MPa,与H13钢模具基体相比分别提升了38%和26%,修复区域和H13钢模具基体之间的结合强度达到了1782.63MPa,修复区域的维氏硬度和冲击韧性分别达到590HV0.3和19.88J,与H13钢模具基体相比分别提升了48%和17%。
综上可知,本实施例在H13钢基体上形成了与其结合较好的H13钢沉积层,实现了平面H13钢模具的有效修复。
实施例2:
一种H13钢模具的激光增材修复方法,其包括以下步骤(工艺流程图如图7所示):
1)确定H13钢模具的待修复区域,待修复区域为曲面,存在深度为3mm的微裂纹,先通过铣削加工去除待修复区域底部以下2mm、中心以外3mm的H13钢,将待修复区域加工成圆弧凹槽,再用400#砂纸将铣削区域打磨至表面粗糙度Ra值为3.2,再用无水乙醇对铣削区域进行清洗;
2)采用气雾法制备不同粒径分布的球形H13钢混合粉末,不同粒径分布的球形H13钢混合粉末的元素质量百分比为:C:0.32%~0.45%;V:0.80%~1.20%;Cr:4.75%~5.50%;Mo:1.10%~1.75%;Mn:0.20%~0.50%;Si:0.80%~1.20%;P:0.03%;Fe:余量,不同粒径分布的球形H13钢混合粉末中粒径10μm~53μm的球形H13钢混合粉末和粒径50μm~150μm的球形H13钢混合粉末的质量比为2:8,再采用不同粒径分布的球形H13钢混合粉末通过激光增材制造对待修复区域进行多道次多层激光金属沉积,送粉气体为氩气,氩气流量为6slpm,保护气体为氦气,氦气流量为10slpm,激光增材制造的工艺参数为:激光功率为2200W,扫描速度为600mm/min,激光光斑直径为4mm,离焦距离为17mm,沉积粉末流速为13.3g/min,多道搭接率为50%,沉积区域为曲面,沉积层数为6层,沉积过程中喷嘴的轴线与曲面的切线的夹角范围为90°~100°,沉积第1~3次时激光功率为2200W,沉积第4~6层时激光功率为1980W;
3)激光金属沉积完成后待H13钢模具冷却至室温,再通过铣削加工去除沉积层表面一定厚度的氧化层,使得沉积层形状尺寸满足使用要求(经测试,修复区域的致密度为98.86%)。
性能测试:
H13钢模具基体-修复区域(LMD-Substrate)和修复区域(LMD)的拉伸曲线如图8所示。
由图8可知:修复区域的强度、硬度和冲击韧性较大,抗拉强度和屈服强度分别达到2007.14MPa和1010.69MPa,与H13钢模具基体相比分别提升了35%和6.3%,修复区域和H13钢模具基体之间的结合强度达到了1679.61MPa,修复区域的维氏硬度和冲击韧性分别达到565HV0.3和21.06J,与H13钢模具基体相比分别提升了35%和24%。
综上可知,本实施例在H13钢基体上形成了与其结合较好的H13钢沉积层,实现了带曲面的H13钢模具的有效修复。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (3)

1.一种H13钢模具的激光增材修复方法,其特征在于,包括以下步骤:
1)对H13钢模具的待修复区域进行前处理;
2)采用不同粒径分布的球形H13钢混合粉末通过激光增材制造对待修复区域进行激光金属沉积,根据待修复区域的特点动态调整喷嘴的位置和角度,并根据沉积层数动态调整激光功率;
3)对激光金属沉积形成的沉积层进行铣削加工;
步骤1)所述前处理的具体操作为:通过铣削加工去除待修复区域底部以下2mm~3mm、中心以外3mm~5mm的H13钢,再用砂纸将铣削区域打磨至表面粗糙度Ra值≥3.2,再对铣削区域进行清洗;
步骤2)所述不同粒径分布的球形H13钢混合粉末由粒径10μm~53μm的球形H13钢混合粉末和粒径50μm~150μm的球形H13钢混合粉末组成;
步骤2)所述激光增材制造的工艺参数为:激光功率为1500W~2500W,扫描速度为300mm/min~800mm/min,激光光斑直径为3mm~5mm,离焦距离为15mm~17mm,沉积粉末流速为10g/min~15g/min,多道搭接率为30%~50%;
步骤2)所述激光金属沉积过程中喷嘴的轴线与待修复平面的夹角为60°~120°;
步骤2)所述激光金属沉积过程中喷嘴的轴线与待修复曲面的切线的夹角为75°~105°;
步骤2)所述沉积层数超过3层后,每累积沉积3层激光功率减少10%~20%。
2.根据权利要求1所述的H13钢模具的激光增材修复方法,其特征在于:步骤2)所述不同粒径分布的球形H13钢混合粉末的元素质量百分比为:
C:0.32%~0.45%;
V:0.80%~1.20%;
Cr:4.75%~5.50%;
Mo:1.10%~1.75%;
Mn:0.20%~0.50%;
Si:0.80%~1.20%;
P:0.03%;
Fe:余量。
3.根据权利要求1所述的H13钢模具的激光增材修复方法,其特征在于:步骤3)所述铣削加工的具体操作为:通过铣削加工去除沉积层表面1mm~3mm的氧化层直到沉积区域的表面形状和尺寸满足使用要求尺寸及精度。
CN202111394944.8A 2021-11-23 2021-11-23 一种h13钢模具的激光增材修复方法 Active CN114226751B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111394944.8A CN114226751B (zh) 2021-11-23 2021-11-23 一种h13钢模具的激光增材修复方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111394944.8A CN114226751B (zh) 2021-11-23 2021-11-23 一种h13钢模具的激光增材修复方法

Publications (2)

Publication Number Publication Date
CN114226751A CN114226751A (zh) 2022-03-25
CN114226751B true CN114226751B (zh) 2023-03-21

Family

ID=80750590

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111394944.8A Active CN114226751B (zh) 2021-11-23 2021-11-23 一种h13钢模具的激光增材修复方法

Country Status (1)

Country Link
CN (1) CN114226751B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115026305B (zh) * 2022-05-20 2023-03-21 华南理工大学 一种4Cr5Mo2SiV模具钢的增材制造方法
CN115041915B (zh) * 2022-06-27 2024-02-06 广东鸿图科技股份有限公司 一种金属3d打印模具的修复方法及服务器
CN115286477A (zh) * 2022-06-30 2022-11-04 湖北航天化学技术研究所 一种固体推进剂/包覆层一体化增材制造界面结构
CN116100029A (zh) * 2022-11-18 2023-05-12 国营川西机器厂 用于航空发动机篦齿盘损伤的修复方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11390928B2 (en) * 2018-03-05 2022-07-19 General Electric Company Inducing compressive stress with shot peen elements in internal opening of additively manufactured component
CN111441050A (zh) * 2020-04-28 2020-07-24 苏州大学 激光超高速熔覆头、超高速熔覆系统及熔覆方法
CN112795918A (zh) * 2021-02-01 2021-05-14 福州大学 H13模具钢修复再制造方法及装置
CN113403542A (zh) * 2021-06-24 2021-09-17 张云江 一种h13钢模具修复用合金粉末及激光修复方法

Also Published As

Publication number Publication date
CN114226751A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
CN114226751B (zh) 一种h13钢模具的激光增材修复方法
CN110344056B (zh) 利用高速激光熔覆技术在铜质基体表面制备熔覆层的工艺
CN107400887A (zh) 一种超声滚压强化激光熔覆层的方法
CN107164756B (zh) 一种激光熔覆用修复h13模具钢的金属粉末
CN103305842B (zh) 弯曲模的激光修复方法
CN103343338B (zh) 扩口模的激光修复方法
CN101817121A (zh) 零件与模具的熔积成形复合制造方法及其辅助装置
CN108866538B (zh) 激光熔覆原位合成复合碳化物(Ti,Nb)C强化Ni基涂层及制备
CN105239070A (zh) 一种修复和强化热作模具表面的方法
CN107190257A (zh) 一种模具损伤部位的激光熔覆与机械喷丸交错再制造方法
CN109881109A (zh) 一种激光熔覆材料及激光熔覆涂层的制备方法
CN111655874A (zh) 工具材料的再生方法及工具材料
CN104593785A (zh) 一种钢制汽车配件热锻模表面强化方法
CN113337815A (zh) 一种基于高速激光熔覆法制备双尺度铁基复合梯度涂层的方法
CN112795916A (zh) 轧辊阶梯垫的激光熔覆合金粉末及激光熔覆方法
CN114990547A (zh) 一种超高速激光熔覆对轨道车轮进行强化的方法
CN115386870A (zh) 一种复合磁场辅助超高速激光熔覆的加工方法
CN103343339B (zh) 拉深模的激光修复方法
CN115704071A (zh) 一种高熵合金粉末及制备方法以及高熵合金涂层制备方法
CN103290408B (zh) 落料模的激光修复方法
CN112538626B (zh) 一种模具钢激光增材修复与表面合金化改性方法
CN114799068B (zh) 一种砂型铸造模具及其制造装备和制作方法
CN114951659B (zh) 一种具有碳化钨覆层的复杂钛合金构件的加工方法
Belitz et al. Alternative solutions to crack issues considering laser metal deposition in hybrid-additive manufacturing of press tools
CN113604802B (zh) 一种超高压柱塞泵柱塞杆制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant