CN114213493A - 一种精确原子数的dna为模板金纳米团簇探针的制备及其应用 - Google Patents

一种精确原子数的dna为模板金纳米团簇探针的制备及其应用 Download PDF

Info

Publication number
CN114213493A
CN114213493A CN202111390428.8A CN202111390428A CN114213493A CN 114213493 A CN114213493 A CN 114213493A CN 202111390428 A CN202111390428 A CN 202111390428A CN 114213493 A CN114213493 A CN 114213493A
Authority
CN
China
Prior art keywords
gold
dna
solution
atomic number
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111390428.8A
Other languages
English (en)
Other versions
CN114213493B (zh
Inventor
任晓君
王施政
高学云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202111390428.8A priority Critical patent/CN114213493B/zh
Priority to PCT/CN2022/080041 priority patent/WO2023092892A1/zh
Publication of CN114213493A publication Critical patent/CN114213493A/zh
Application granted granted Critical
Publication of CN114213493B publication Critical patent/CN114213493B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H23/00Compounds containing boron, silicon, or a metal, e.g. chelates, vitamin B12
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/626Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using heat to ionise a gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种精确原子数的DNA为模板金纳米团簇探针的制备及其应用,涉及核酸检测材料制备技术领域。其包括:(1)设计一条带有发卡结构的特定DNA序列;(2)将DNA溶液与金盐溶液混合,形成混合液:(3)在一定条件下,加入二甲基胺硼烷(DMAB)还原剂,使混合液体系发生氧化还原反应,将金盐中的高价金离子还原为金原子或金离子,金与DNA中设计的发卡结构里的胞嘧啶结合,形成基于DNA模板的金纳米团簇。(4)本发明的金纳米团簇具有良好的荧光和精确原子数,利用荧光性质可以在原位可视化核糖核酸剪接变异体,利用精确原子数性质可在激光剥蚀电感耦合等离子体质谱仪(LA‑ICP‑MS)上定量单细胞核糖核酸剪接变异体。

Description

一种精确原子数的DNA为模板金纳米团簇探针的制备及其 应用
技术领域
本发明涉及核酸检测材料制备技术领域,具体为一种可用于核酸检测的金纳米团簇的制备方法及其在细胞水平上的应用。
背景技术
由贵金属组成的纳米尺度的原子精密物质是一类具有许多特殊性质的新材料。目前已知有100多个这类分子的分子式,如Au25(SR)18、Au38(SR)24和Au102(SR)44以及Ag25(SR)18、Ag29(S2R)12和Ag44(SR)30(通常带有一些反离子来补偿电荷)。它们可以用强健的合成方案重复制造,产生有色溶液,产生粉末或可衍射的晶体。它们在光学吸收和发射等光谱性质上与纳米颗粒明显不同,表现出与分子一样明确的特征。它们在质谱中显示同位素分辨的分子离子峰,并在通过多种仪器方法检查时提供不同的信息。这些特性中最重要的是发光,通常在可见的-近红外窗口中,在生物应用中很有用。可见光区的发光,特别是由蛋白质保护的团簇的发光,具有很大的斯托克斯位移,在空气和水中已经被用于各种传感应用,小到几十个分子/离子。这些系统的材料科学提供了许多可能性,并且正在快速发展。计算的洞察力给出了它们的稳定性和不同寻常的特性的原因。这些材料的分子本质在最近的一些研究中得到了明确的体现,比如簇间反应形成了精确的簇。这些体系表现出核心、配位体壳层以及集成体系的性质,它们更好地被描述为受保护的分子或小分子。
金属纳米团簇包含几到几百个原子,尺寸从亚纳米到纳米不等,占据了连接较大的等离子体纳米粒子和较小的金属配合物的中等大小的区域。由于具有很强的量子限制,金属纳米团簇表现出类似分子的性质。荧光金纳米团簇(AuNC)具有尺寸超小、发光强、光稳定性好、生物相容性好等优点,是一种新型的高性能传感器和生物成像荧光探针,在检测金属离子、无机阴离子、生物小分子、蛋白质、核酸、药物分子、pH和温度等方面有良好的应用。虽然以DNA为模板的金属纳米团簇还处于起步阶段,但预计它们将成为一种新型的功能纳米材料,在生物学和能源科学中有着广泛的应用。
发明内容
针对现有技术的不足,本发明提出一种基于DNA为模板的金纳米团簇的合成方法及其在核酸检测上的应用。具体方案如下:
将DNA溶液与金盐溶液混合,形成混合液,在一定温度及PH条件下,加入二甲基胺硼烷(DMAB)还原剂,使混合液体系发生氧化还原反应,将金盐中的高价金离子还原为金原子或金离子,金与DNA中设计的发卡结构中的胞嘧啶结合,形成基于DNA模板的金纳米团簇。
设计的DNA是一种带有特定发卡结构的寡核苷酸分子,包含能自发形成发卡结构的互补区、结合金原子/离子区和核酸靶向区,其序列(5’-3’)为:TATCCGTCCCCCCCCACGGATATTTTAATCCTCCTCAATGCTGG。
所述的金纳米团簇的分子组成(Au)x(DNA)y,x=1-10,y=1-5,所述DNA来自寡核苷酸分子,Au作用于寡核苷酸分子中的胞嘧啶(C)。
所述反应温度为20~30℃,PH条件为4.4-7.1。
在混合溶液中,所述DNA的浓度为1μM~10mM,Au化合物的浓度为1μM~1M。
所述Au化合物为Au的三价无机化合物,如氯金酸;其中所述三价化合物中的Au离子被还原成Au原子或一价Au离子。
所述混合液发生氧化还原反应,待溶液颜色发生改变后,在20~30℃搅拌3~24h,用超滤管纯化5-11h,得到所述金纳米团簇。
所述的金纳米团簇的水合粒径为1~4nm。
所述的金纳米团簇具有良好的荧光和精确原子数,通过荧光可以在体外/细胞/组织切片/体内等原位可视化核糖核酸剪接变异体,通过精确原子数可在电感耦合等离子体质谱仪(ICP-MS)上定量核糖核酸剪接变异体。
附图说明
图1为本发明(Au)6(DNA)1金纳米团簇的合成示意图
图2为本发明实施例1的(Au)6(DNA)1金纳米团簇的紫外吸收及荧光光谱图
图3为本发明实施例1的(Au)6(DNA)1金纳米团簇的基质辅助激光解析电离飞行时间质谱(MALDI-TOF-MS)图
图4为本发明实施例1的(Au)6(DNA)1金纳米团簇的DLS粒径分布图
图5为本发明实施例2的(Au)6(DNA)1金纳米团簇的共聚焦成像图
图6为本发明实施例3的(Au)6(DNA)1金纳米团簇的激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)信号图
具体实施方式
下述实施例为便于更好地理解本发明,对本发明实施例中的技术方案进行清楚、完整地描述,不能理解为对本发明保护范围的限制。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除特殊说明,实施例中各实验材料、试剂及设备均可通过常规购买渠道所得。
以下实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中的定量试验,均设置三次重复实验,结果取平均值。
实施例1:DNA合成精确原子数金纳米团簇(Au)6(DNA)1的制备
将375μM HAuCl4.4H2O滴加到25μM序列为5'-TATCCGTCCCCCCCCACGGATATTTTAATCCTCCTCAATGCTGG的发夹DNA中,在20mM磷酸盐缓冲液(pH 5.8)、1mM醋酸镁中,室温下将平衡的溶液搅拌12小时(25℃)。然后,将新鲜制备的3.75mM二甲胺硼烷(DMAB)溶液加入混合物中,在室温下在黑暗中再搅拌12小时。所合成的(Au)6(DNA)1用截留量3000的超滤管除掉游离的金属离子以及未反应的小分子。合成的(Au)6(DNA)1在可见光下呈现出黄色,在紫外光下呈现出红色的荧光。
如图2所示,单纯的DNA在263nm有一个很强的吸收峰,(Au)6(DNA)1在263nm没有吸收峰,(Au)6(DNA)1在268nm和349nm有强吸收峰,说明成功合成了金纳米团簇。另外,因为(Au)6(DNA)1形成,它显示出良好的荧光特征。图2所示的荧光光谱图显示,(Au)6(DNA)1在436nm处有一个荧光激发峰,在627nm处有一个荧光发射峰。
如图3所示,基质辅助激光解析电离飞行时间质谱(MALDI-TOF-MS)的结果显示,一条DNA链上结合了6个金原子(m/z=14494),可以得出金纳米团簇的组成为(Au)6(DNA)1
如图4所示,(Au)6(DNA)1采用DLS测定的水合粒径大约为3.0nm。
实施例2:(Au)6(DNA)1在RAW264.7细胞上的激光共聚焦显微镜定位研究
将RAW 264.7细胞接种在共聚焦培养皿上,分为两组,分别在有无LPS(1μg mL-1)存在下在37℃下孵育24小时。然后,用PBS洗涤细胞并用4%多聚甲醛固定15分钟,用PBS清洗。用0.5%Triton X-100处理5分钟,然后用PBS洗涤。(Au)6(DNA)1与目标mRNA剪接变体MyD88L的杂交在20μL的体积中进行,其中包含2μL 20×柠檬酸钠缓冲液(SSC),2μL(Au)6(DNA)1探针(20μM)、1μL DTT(100mM)、2μL酵母转运RNA(10mg mL-1)、2μL 10ngμL-1鲑鱼精子DNA和0.5μL RiboLock RNase抑制剂(40UμL-1)在37℃下孵育60分钟。然后在室温下使用PBS-T(含有0.05%Tween-20的DEPC-PBS)洗涤样品3分钟后进行成像。最后,使用UltraVIEWVox(PerkinElmer)共聚焦激光扫描系统附件和带有60×1.4数值孔径平面复消色差油浸透镜的Nikon Ti-e显微镜对细胞进行成像。结果如图5所示,在共聚焦显微镜成像下,(Au)6(DNA)1探针在RAW 264.7细胞原位有很好的成像效果,红色荧光即为细胞内原位的RNA剪接变异体MyD88L
实施例3:通过激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)在单个RAW 264.7细胞上对MyD88L进行定量分析。
使用NWR 213激光烧蚀系统和NexION 300D ICP-MS仪器(PerkinElmer,Norwalk,CT,USA)进行LA-ICP-MS测量。氦气用作烧蚀气体。氦气的流速为0.6L min-1。细胞消融后,通过Y形件注入氩气。在NIST 612玻璃烧蚀过程中,115In信号强度被调至最大值,并将UO/U比值保持在较低水平。将信号强度记录为时间的函数(每秒计数(CPS))。我们在盖玻片上接种RAW 264.7细胞(2×104)。用(Au)6(DNA)1探针孵育细胞60分钟。为了完全消融单个细胞,在对应于细胞的位置消融直径为35μm的区域。选择点的直径以确保单元的边界被完全覆盖,并且与相邻单元没有重叠。如图6所示,单个信号强度峰即为单个细胞原位的RNA剪接变异体MyD88L

Claims (5)

1.一种基于DNA合成金纳米团簇,其特征在于,所述的金纳米团簇的分子组成(Au)x(DNA)y,x=1-10,y=1-5,所述DNA来自寡核苷酸分子,Au作用于寡核苷酸分子中的胞嘧啶(C)。
2.制备权利要求1所述的金纳米团簇的方法,其特征在于,包括以下步骤:将DNA溶液与金盐溶液混合,形成混合液,,加入二甲基胺硼烷(DMAB)还原剂,使混合液体系发生氧化还原反应,将金盐中的高价金离子还原为金原子或金离子,金与DNA中设计的发卡结构中的胞嘧啶结合,形成基于DNA模板的金纳米团簇;
设计的DNA是一种带有特定发卡结构的寡核苷酸分子,包含能自发形成发卡结构的互补区、结合金原子/离子区和核酸靶向区,其序列(5’-3’)为:TATCCGTCCCCCCCCACGGATATTTTAATCCTCCTCAATGCTGG;
其中所述反应温度为20~30℃,pH条件为4.4-7.1;所述氧化还原反应具体为,待溶液颜色发生改变后,在20~30℃搅拌3~24h,用超滤管纯化5-11h,得到所述金纳米团簇;
所述DNA的浓度为1μM~10mM,金盐溶液的浓度为1μM~1M。
3.按照权利要求2所述的方法,其特征在于,所述Au化合物为Au的三价无机化合物,其中所述三价化合物中的Au离子被还原成Au原子或一价Au离子。
4.按照权利要求2所述的方法,其特征在于,所述的金纳米团簇的水合粒径为2~4nm。
5.按照权利要求1所述的金纳米团簇的应用,其特征在于,所述的金纳米团簇通过荧光可以在体外/细胞/组织切片/体内等原位可视化核糖核酸剪接变异体,通过精确原子数在电感耦合等离子体质谱仪(ICP-MS)上定量核糖核酸剪接变异体。
CN202111390428.8A 2021-11-23 2021-11-23 一种精确原子数的dna为模板金纳米团簇探针的制备及其应用 Active CN114213493B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111390428.8A CN114213493B (zh) 2021-11-23 2021-11-23 一种精确原子数的dna为模板金纳米团簇探针的制备及其应用
PCT/CN2022/080041 WO2023092892A1 (zh) 2021-11-23 2022-03-10 一种精确原子数的dna为模板金纳米团簇探针的制备及其单细胞分析应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111390428.8A CN114213493B (zh) 2021-11-23 2021-11-23 一种精确原子数的dna为模板金纳米团簇探针的制备及其应用

Publications (2)

Publication Number Publication Date
CN114213493A true CN114213493A (zh) 2022-03-22
CN114213493B CN114213493B (zh) 2023-11-17

Family

ID=80697783

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111390428.8A Active CN114213493B (zh) 2021-11-23 2021-11-23 一种精确原子数的dna为模板金纳米团簇探针的制备及其应用

Country Status (2)

Country Link
CN (1) CN114213493B (zh)
WO (1) WO2023092892A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117431058B (zh) * 2023-12-18 2024-06-18 天津大学 单分散及表面单功能化超小金团簇的方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050048546A1 (en) * 2003-07-11 2005-03-03 Sharron Penn Multiplexed molecular beacon assay for detection of human pathogens
US6979729B1 (en) * 1999-09-14 2005-12-27 Yeda Research And Development Co. Ltd. Metal cluster containing nucleotides and nucleic acids, and intermediates therefor
WO2015114127A1 (en) * 2014-01-31 2015-08-06 Fundación Imdea Nanociencia Functionalized metal nanoparticles and uses thereof for detecting nucleic acids
WO2017082517A1 (ko) * 2015-11-13 2017-05-18 고려대학교산학협력단 플라즈몬 나노구조에서 광산란을 이용한 rna 스플라이싱을 실시간 검지하는 방법
CN111991561A (zh) * 2020-08-26 2020-11-27 中国科学院上海高等研究院 一种高效穿过血脑屏障的寡聚核苷酸/原子精细纳米团簇复合物及其制备方法以及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6979729B1 (en) * 1999-09-14 2005-12-27 Yeda Research And Development Co. Ltd. Metal cluster containing nucleotides and nucleic acids, and intermediates therefor
US20050048546A1 (en) * 2003-07-11 2005-03-03 Sharron Penn Multiplexed molecular beacon assay for detection of human pathogens
WO2015114127A1 (en) * 2014-01-31 2015-08-06 Fundación Imdea Nanociencia Functionalized metal nanoparticles and uses thereof for detecting nucleic acids
WO2017082517A1 (ko) * 2015-11-13 2017-05-18 고려대학교산학협력단 플라즈몬 나노구조에서 광산란을 이용한 rna 스플라이싱을 실시간 검지하는 방법
CN111991561A (zh) * 2020-08-26 2020-11-27 中国科学院上海高等研究院 一种高效穿过血脑屏障的寡聚核苷酸/原子精细纳米团簇复合物及其制备方法以及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张普等: "寡聚核苷酸稳定银纳米簇荧光探针的合成及含巯基药物的高选择性分析测定", 《中国科学:化学》 *
沈佳佳等: "具有精确原子数的金纳米簇的制备及其应用", 《药学学报》 *

Also Published As

Publication number Publication date
CN114213493B (zh) 2023-11-17
WO2023092892A1 (zh) 2023-06-01

Similar Documents

Publication Publication Date Title
Yang et al. A Janus 3D DNA nanomachine for simultaneous and sensitive fluorescence detection and imaging of dual microRNAs in cancer cells
Carvalho et al. Aptamer-based targeted delivery of a G-quadruplex ligand in cervical cancer cells
Tian et al. Highly sensitive detection of exosomes by SERS using gold nanostar@ Raman reporter@ nanoshell structures modified with a bivalent cholesterol-labeled DNA anchor
Zhang et al. Fluorescent metal nanoshell probe to detect single miRNA in lung cancer cell
Ai et al. DNA G-quadruplex-templated formation of the fluorescent silver nanocluster and its application to bioimaging
Maretti et al. Facile photochemical synthesis and characterization of highly fluorescent silver nanoparticles
Zhan et al. A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging
Bian et al. One-step fabrication of intense red fluorescent gold nanoclusters and their application in cancer cell imaging
Wang et al. Quantitative and specific detection of cancer-related microRNAs in living cells using surface-enhanced Raman scattering imaging based on hairpin DNA-functionalized gold nanocages
CN107601455B (zh) 长时间靶向成像活细胞内rna荧光碳点的制备方法及其产品和应用
NL2028411B1 (en) RAMAN-ENHANCED SUBSTRATE, FABRICATION METHOD THEREOF, AND METHOD FOR DETECTING miRNA
Li et al. A “light-up” and “spectrum-shift” response of aptamer-functionalized silver nanoclusters for intracellular mRNA imaging
He et al. A targeted DNAzyme-nanocomposite probe equipped with built-in Zn2+ arsenal for combined treatment of gene regulation and drug delivery
WO2011037973A1 (en) "click" nanoparticle conjugates
Schachter The source of toxicity in CTAB and CTAB-stabilized gold nanorods
Qiu et al. A dendritic nano-sized hexanuclear ruthenium (II) complex as a one-and two-photon luminescent tracking non-viral gene vector
CN114213493B (zh) 一种精确原子数的dna为模板金纳米团簇探针的制备及其应用
Hamasaki et al. Synthesis of 18O-labeled RNA for application to kinetic studies and imaging
Wei et al. Supramolecules‐Guided Synthesis of Brightly Near‐Infrared Au22 Nanoclusters with Aggregation‐Induced Emission for Bioimaging
Lan et al. Aptamer-modified silver nanoclusters for fluorescence detection of intracellular 8-hydroxydeoxyguanosine
Loukanov et al. Real time monitoring and quantification of uptake carbon nanodots in eukaryotic cells
Gunjal et al. Waste derived sustainable carbon nanodots as a new approach for sensitive quantification of ethionamide and cell imaging
ES2749101T3 (es) Nanocompuesto núcleo-cubierta para fluorescencia mejorada por metal
Sojka et al. Hydrophobic sodium fluoride‐based nanocrystals doped with lanthanide ions: assessment of in vitro toxicity to human blood lymphocytes and phagocytes
Qi et al. Silver ions-regulated two-stage photoluminescence transformations of glutathione-capped gold nanoclusters from near-infrared (NIR) to visible region: Anti-galvanic reaction and Ag deposition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant