CN114208369A - 在未授权频带中执行传输的信道接入方法和使用其的装置 - Google Patents

在未授权频带中执行传输的信道接入方法和使用其的装置 Download PDF

Info

Publication number
CN114208369A
CN114208369A CN202080055952.7A CN202080055952A CN114208369A CN 114208369 A CN114208369 A CN 114208369A CN 202080055952 A CN202080055952 A CN 202080055952A CN 114208369 A CN114208369 A CN 114208369A
Authority
CN
China
Prior art keywords
duration
transmission
fixed
channel access
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080055952.7A
Other languages
English (en)
Inventor
卢珉锡
崔庚俊
郭真三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wilus Institute of Standards and Technology Inc
Original Assignee
Wilus Institute of Standards and Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wilus Institute of Standards and Technology Inc filed Critical Wilus Institute of Standards and Technology Inc
Publication of CN114208369A publication Critical patent/CN114208369A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • H04W74/0875Non-scheduled access, e.g. ALOHA using a dedicated channel for access with assigned priorities based access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种无线通信系统的基站。无线通信的基站包括通信模块和处理器。处理器被配置成从基站接收用于调度多个上行链路传输的许可,并且当UE尝试第一基于固定持续时间的信道接入用于作为多个上行链路传输之一的第一传输并且在第一基于固定持续时间的信道接入中失败时,尝试第二基于固定持续时间的信道接入用于作为跟随第一传输的传输的第二传输。

Description

在未授权频带中执行传输的信道接入方法和使用其的装置
技术领域
本发明涉及一种无线通信系统。具体地,本发明涉及在未授权频带中操作的无线通信系统中的信道接入方法和使用该方法的设备。
背景技术
在第四代(4G)通信系统的商业化之后,为了满足对无线数据业务的越来越多的需求,正在努力开发新的第五代(5G)通信系统。5G通信系统被称作为超4G网络通信系统、后LTE系统或新无线电(NR)系统。为了实现高数据传输速率,5G通信系统包括使用6GHz或更高的毫米波(mmWave)频带来操作的系统,并且在确保覆盖范围方面包括使用6GHz或更低的频带来操作的通信系统,使得基站和终端中的实现方式在考虑中。
第三代合作伙伴计划(3GPP)NR系统提高了网络的频谱效率并且使得通信提供商能够在给定带宽上提供更多的数据和语音服务。因此,3GPP NR系统被设计成除了支持大量语音之外还满足对高速数据和媒体传输的需求。NR系统的优点是在相同平台上具有更高的吞吐量和更低的延迟,支持频分双工(FDD)和时分双工(TDD),以及因增强的最终用户环境和简单架构而具有低操作成本。
为了更高效的数据处理,NR系统的动态TDD可以使用用于根据小区用户的数据业务方向来改变可以被用在上行链路和下行链路中的正交频分复用(OFDM)符号的数目的方法。例如,当小区的下行链路业务大于上行链路业务时,基站可以给时隙(或子帧)分配多个下行链路OFDM符号。应该向终端发送关于时隙配置的信息。
为了减轻无线电波的路径损耗并且增加mmWave频带中的无线电波的传输距离,在5G通信系统中,讨论了波束成形、大规模多输入/输出(大规模MIMO)、全维MIMO(FD-MIMO)、阵列天线、模拟波束成形、组合了模拟波束成形和数字波束成形的混合波束成形以及大规模天线技术。此外,为了系统的网络改进,在5G通信系统中,正在进行与演进型小小区、高级小小区、云无线电接入网络(云RAN)、超密集网络、设备到设备通信(D2D)、车辆到一切通信(V2X)、无线回程、非陆地网络通信(NTN)、移动网络、协作通信、协调多点(CoMP)、干扰消除等有关的技术开发。此外,在5G系统中,正在开发作为高级编码调制(ACM)方案的混合FSK与QAM调制(FQAM)和滑动窗口叠加编码(SWSC)以及作为高级连接技术的滤波器组多载波(FBMC)、非正交多址(NOMA)和稀疏码多址(SCMA)。
同时,在人类生成并消费信息的以人类为中心的连接网络中,因特网已经演进成物联网(IoT)网络,该IoT网络在诸如物体的分布式组件之间交换信息。通过与云服务器的连接将IoT技术与大数据处理技术组合的万物互联(IoE)技术也正在兴起。为了实现IoT,需要诸如感测技术、有线/无线通信和网络基础设施、服务接口技术及安全技术的技术要素,使得近年来,已经研究了诸如传感器网络、机器到机器(M2M)和机器类型通信(MTC)的技术以在物体之间进行连接。在IoT环境中,能够提供智能互联网技术(IT)服务,该智能IT服务收集并分析从所连接的物体生成的数据以在人类生活中创造新价值。通过现有信息技术(IT)和各个行业的融合和混合,能够将IoT应用于诸如智能家居、智能建筑、智能城市、智能汽车或联网汽车、智能电网、医疗保健、智能家电和高级医疗服务的领域。
因此,已经进行了各种尝试以将5G通信系统应用于IoT网络。例如,诸如传感器网络、机器到机器(M2M)和机器类型通信(MTC)的技术是通过诸如波束成形、MIMO和阵列天线的技术来实现的。作为上述大数据处理技术的云RAN的应用是5G技术和IoT技术的融合的示例。通常,移动通信系统被开发以在确保用户的活动的同时提供语音服务。
然而,移动通信系统不仅在逐渐扩展语音服务而且还扩展数据服务,并且现在已经发展到提供高速数据服务的程度。然而,在当前正在提供服务的移动通信系统中,由于资源短缺现象和用户的高速服务需求,需要更高级的移动通信系统。
近年来,随着由于智能设备的普及而导致的移动业务的激增,仅使用现有的授权频谱或授权频带来应对用于提供蜂窝通信服务的数据使用量的增加就变得越来越困难。
在这种情况下,正在讨论使用未授权频谱或未授权频带(例如,2.4GHz频带、5GHz频带或更高频带等)来提供蜂窝通信服务的方法,以解决缺乏频谱的问题。
与在电信运营商通过诸如拍卖等程序确保专有使用权的授权频带不同,在未授权频带中,可以同时使用多个通信设备而不受限制,前提是仅遵守一定级别的相邻频带保护法规。为此,当将未授权频带用于蜂窝通信服务时,难以将通信质量保证到授权频带中提供的级别,并且很可能发生与使用未授权频带的现有的无线通信设备(例如,无线LAN设备)的干扰。
为了在未授权频带中使用LTE和NR技术,将预先进行与用于未授权频带的现有设备的共存以及与其他无线通信设备的无线信道的有效共享的研究。即,需要开发稳健的共存机制(RCM),使得在未授权频带中使用LTE和NR技术的设备不会影响用于未授权频带的现有设备。
发明内容
技术问题
本发明的实施例的目的是提供一种用于在未授权频带中操作的无线通信系统中执行传输的信道接入方法和使用该信道接入方法的设备。
技术方案
根据本发明的实施例,一种在未授权频带中与基站进行无线通信的用户设备(UE)包括通信模块和控制该通信模块的处理器。处理器可以被配置成从基站接收用于调度多个上行链路传输的许可,并且当UE尝试第一基于固定持续时间的信道接入用于作为多个上行链路传输之一的第一传输,并且在第一基于固定持续时间的信道接入中失败时,可以被配置成尝试第二基于固定持续时间的信道接入用于作为跟随第一传输的传输的第二传输。第一基于固定持续时间的信道接入是其中当在第一固定持续时间内感测到信道空闲时,允许执行第一基于固定持续时间的信道接入的UE在第一固定持续时间之后立即执行传输的信道接入。第二基于固定持续时间的信道接入是其中当在第二固定持续时间内感测到信道空闲时,允许执行第二基于固定持续时间的信道接入的UE在第二固定持续时间之后立即执行传输的信道接入。
第一固定持续时间可以短于第二固定持续时间。
第一固定持续时间可以是16μs,并且第二固定持续时间可以是25μs。
许可可以将基于固定持续时间的信道接入指示为信道接入类型,并且指示被用于接入在其中执行多个上行链路传输的信道的信道接入优先级。
许可可以将第一基于固定持续时间的信道接入指示为信道接入类型。
许可可以包括用于调度多个上行链路传输的一个或多个许可,并且多个上行链路传输可以是连续的而没有时间上的间隙。
根据本发明的实施例,一种在未授权频带中与UE进行无线通信的基站包括通信模块和控制该通信模块的处理器。处理器可以被配置成,当UE的传输的持续时间小于最大信道占用时间并且在UE的传输和到UE的传输之间的间隙不大于第一固定持续时间时,在其中执行UE的传输的信道中的最大信道占用时间内在没有进行感测的情况下,在该间隙之后立即执行到UE的传输。在这种情况下,第一固定持续时间是16μs。
处理器可以被配置成,当在UE的传输和到UE的传输之间的间隙不大于第一固定持续时间时,在预定的持续时间内没有感测的情况下,在该间隙之后立即执行到UE的传输,并且预定持续时间可以是与最大信道占用时间分开地应用于基站传输的约束。
处理器可以被配置成,当在UE的传输和到UE的传输之间的间隙等于第一固定持续时间时,在其中执行UE的传输的信道中尝试第一基于固定持续时间的信道接入。第一基于固定持续时间的信道接入可以是其中当在第一固定持续时间内感测到信道空闲时,允许执行第一基于固定持续时间的信道接入的基站在第一固定持续时间之后立即执行传输的信道接入。
处理器可以被配置成,当在UE的传输与到UE的传输之间的间隙不大于第二固定持续时间时,在其中执行UE的传输的信道中尝试第二基于固定持续时间的信道接入。第二基于固定持续时间的信道接入可以是其中当在第二固定持续时间期间感测到信道空闲时,允许执行第二基于固定持续时间的信道接入的基站在第二固定持续时间之后立即执行传输的信道接入。在这种情况下,第二固定持续时间是25μs。
包括UE的传输和基站到UE的传输的信道占用可以由基站发起。
包括UE的传输和基站到UE的传输的信道占用可以由UE发起。
根据本发明的实施例,一种用于操作在未授权频带中与基站进行无线通信的UE的方法可以包括:从基站接收用于调度多个上行链路传输的许可;和当UE尝试第一基于固定持续时间的信道接入用于作为多个上行链路传输之一的第一传输,并且在第一基于固定持续时间的信道接入中失败时,尝试第二基于固定持续时间的信道接入用于作为跟随第一传输的传输的第二传输。在这种情况下,第一基于固定持续时间的信道接入可以是其中当在第一固定持续时间内感测到信道空闲时,允许执行第一基于固定持续时间的信道接入的UE在第一固定持续时间之后立即执行传输的信道接入,并且第二基于固定持续时间的信道接入可以是其中当在第二固定持续时间期间感测到信道空闲时,允许执行第二基于固定持续时间的信道接入的UE在第二固定持续时间之后立即执行传输的信道接入。
第一固定持续时间可以短于第二固定持续时间。
第一固定持续时间可以是16μs,并且第二固定持续时间可以是25μs。
许可可以将基于固定持续时间的信道接入指示为信道接入类型,并且可以指示被用于接入在其中执行多个上行链路传输的信道的信道接入优先级。
许可可以将第一基于固定持续时间的信道接入指示为信道接入类型。
许可可以包括用于调度多个上行链路传输的一个或多个许可,并且多个上行链路传输可以在没有时间上的间隙的情况下继续。
根据本发明的一个实施例,一种用于操作在未授权频带中与UE进行无线通信的基站的方法包括,当UE的传输的持续时间小于最大信道占用时间并且在UE的传输和到UE的传输之间的间隙不大于第一固定持续时间时,在其中执行UE的传输的信道中的最大信道占用时间内在没有感测的情况下,在该间隙之后立即执行到UE的传输。在这种情况下,第一固定持续时间是16μs。
该方法可以进一步包括,当在UE的传输和到UE的传输之间的间隙不大于第一固定持续时间时,在预定持续时间内没有感测的情况下,在所述间隙之后立即执行到UE的传输。在这种情况下,预定持续时间可以是与最大信道占用时间分开地应用于基站的传输的约束。
该方法可以进一步包括:当UE的传输与到UE的传输之间的间隙等于第一固定持续时间时,在其中执行UE的传输的信道中尝试第一基于固定持续时间的信道接入。在这种情况下,第一基于固定持续时间的信道接入可以是其中当在第一固定持续时间内感测到信道空闲时,允许执行第一基于固定持续时间的信道接入的基站在第一固定持续时间之后立即执行传输的信道接入。
该方法可以进一步包括,当UE的传输和到UE的传输之间的间隙不大于第二固定持续时间时,在其中执行UE的传输的信道中尝试第二基于固定持续时间的信道接入。在这种情况下,第二基于固定持续时间的信道接入可以是其中当在第二固定持续时间内感测到信道空闲时,允许执行第二基于固定持续时间的信道接入的基站在第二固定持续时间之后立即执行传输的信道接入。此外,第二固定持续时间可以是25μs。
包括UE的传输和基站到UE的传输的信道占用可以由基站发起。
包括UE的传输和基站到UE的传输的信道占用可以由UE发起。
有益效果
本发明的实施例提供一种用于在未授权频带中操作的无线通信系统中执行传输的信道接入方法和使用该信道接入方法的设备。
本发明要实现的效果不限于上述效果,并且本领域的普通技术人员将从以下描述清楚地理解未提及的其他效果。
附图说明
图1图示在无线通信系统中使用的无线帧结构的示例;
图2图示无线通信系统中的下行链路(DL)/上行链路(UL)时隙结构的示例;
图3是用于说明在3GPP系统中使用的物理信道和使用该物理信道的典型信号传输方法的图;
图4图示用于3GPP NR系统中的初始小区接入的SS/PBCH块;
图5图示用于在3GPP NR系统中发送控制信息和控制信道的过程;
图6图示在3GPP NR系统中的其中可以发送物理下行链路控制信道(PUCCH)的控制资源集(CORESET);
图7图示用于在3GPP NR系统中配置PDCCH搜索空间的方法;
图8是图示载波聚合的概念图;
图9是用于说明信号载波通信和多载波通信的图;
图10是示出其中应用跨载波调度技术的示例的图;
图11图示根据本发明的实施例的码块组(CBG)配置及其时频资源映射;
图12图示根据本发明的实施例的基站执行基于TB的传输或基于CBG的传输,并且UE响应于此而发送HARQ-ACK的过程;
图13图示新无线电未授权(NR-U)服务环境;
图14图示NR-U服务环境中的UE和基站的布置场景的实施例;
图15图示在现有的未授权频带中操作的通信方法(例如,无线LAN);
图16图示根据本发明的实施例的基于类别4LBT的信道接入过程;
图17图示基于HARQ-ACK反馈来调整竞争窗口大小(CWS)的方法的实施例;
图18是图示根据本发明的实施例的UE和基站的配置的框图;
图19图示根据本发明的实施例的当发起节点在由发起节点发起的信道占用内的传输的持续时间不超过信道占用的最大占用时间(MCOT)时,响应节点在由发起节点发起的信道占用时间(COT)内执行传输;
图20图示根据本发明的实施例的当下行链路传输在由基站发起的信道占用内不占用与MCOT一样多并且由基站调度或配置UE的传输时的UE的操作。
具体实施方式
说明书中使用的术语通过考虑本发明中的功能尽可能采纳当前广泛地使用的通用术语,但是可以根据本领域的技术人员的意图、习惯和新技术的出现来改变这些术语。另外,在特定情况下,存在由申请人任意地选择的术语,并且在这种情况下,其含义将在本发明的对应描述部分中描述。因此,意图是揭示说明书中使用的术语不应该仅基于该术语的名称来分析,而是应该基于整个说明书中术语和内容的实质含义来分析。
在整个说明书和随后的权利要求书中,当描述了一个元件“连接”到另一元件时,该元件可以“直接连接”到另一元件或通过第三元件“电连接”到另一元件。另外,除非明确地相反描述,否则词语“包括”将被理解成暗示包括所述元件,而不暗示排除任何其它元件。此外,在一些示例性实施例中,诸如基于特定阈值的“大于或等于”或“小于或等于”的限制分别可以用“大于”或“小于”适当地替换。
可以在各种无线接入系统中使用以下技术:诸如码分多址(CDMA)、频分多址(FDMA)、时分多址(TDMA)、正交频分多址(OFDMA)、单载波-FDMA(SC-FDMA)等。CDMA可以由诸如通用陆地无线电接入(UTRA)或CDMA2000的无线技术来实现。TDMA可以由诸如全球移动通信系统(GSM)/通用分组无线电服务(GPRS)/增强型数据速率GSM演进(EDGE)的无线技术来实现。OFDMA可以由诸如IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802-20、演进型UTRA(E-UTRA)等的无线技术来实现。UTRA是通用移动电信系统(UMTS)的一部分。第三代合作伙伴计划(3GPP)长期演进(LTE)是使用演进型UMTS陆地无线电接入(E-UTRA)的演进型UMTS(E-UMTS)的一部分,并且LTE高级(A)是3GPP LTE的演进版本。3GPP新无线电(NR)是与LTE/LTE-A分开设计的系统,并且是用于支持作为IMT-2020的要求的增强型移动宽带(eMBB)、超可靠低延迟通信(URLLC)和大规模机器类型通信(mMTC)服务的系统。为了清楚的描述,主要描述了3GPP NR,但是本发明的技术思想不限于此。
除非本文另有说明,否则基站可以包括在3GPP NR中定义的下一代节点B(gNB)。此外,除非另有说明,否则终端可以包括用户设备(UE)。在下文中,为了帮助理解描述,由实施例分别描述每个内容,但是每个实施例可以彼此组合使用。在本说明书中,UE的配置可以指示通过基站的配置。更详细地,基站可以通过向UE发送信道或信号来配置在UE或无线通信系统的操作中使用的参数的值。
图1图示无线通信系统中使用的无线帧结构的示例。
参考图1,3GPP NR系统中使用的无线帧(或无线电帧)可以具有10ms(ΔfmaxNf/100)*Tc)的长度。此外,无线帧包括大小相等的10个子帧(SF)。在此,Δfmax=480*103Hz,Nf=4096,Tc=1/(Δfref*Nf,ref),Δfref=15*103Hz,并且Nf,ref=2048。可以将从0至9的编号分别分配给一个无线帧内的10个子帧。每个子帧的长度为1ms并且可以根据子载波间隔包括一个或多个时隙。更具体地,在3GPP NR系统中,可以使用的子载波间隔是15*2μkHz,并且μ能够具有μ=0~4的值作为子载波间隔配置。也就是说,可以将15kHz、30kHz、60kHz、120kHz和240kHz用于子载波间隔。长度为1ms的一个子帧可以包括2μ个时隙。在这种情况下,每个时隙的长度为2ms。可以将从0至2μ-1的编号分别分配给一个子帧内的2μ个时隙。此外,可以将从0至10*2μ-1的编号分别分配给一个无线帧内的时隙。可以通过无线帧编号(也被称为无线帧索引)、子帧编号(也被称为子帧索引)和时隙编号(或时隙索引)中的至少一个来区分时间资源。
图2图示无线通信系统中的下行链路(DL)/上行链路(UL)时隙结构的示例。特别地,图2示出3GPP NR系统的资源网格的结构。
每天线端口有一个资源网格。参考图2,时隙在时域中包括多个正交频分复用(OFDM)符号并且在频域中包括多个资源块(RB)。一个OFDM符号也是指一个符号区间。除非另外指定,否则可以将OFDM符号简称为符号。一个RB在频域中包括12个连续的子载波。参考图2,从每个时隙发送的信号可以由包括Nsize,μ grid,x*NRB sc个子载波和Nslot symb个OFDM符号的资源网格来表示。这里,当信号是DL信号时x=DL,而当信号是UL信号时x=UL。Nsize,μ grid,x表示根据子载波间隔成分μ的资源块(RB)的数目(x是DL或UL),并且Nslot symb表示时隙中的OFDM符号的数目。NRB sc是构成一个RB的子载波的数目并且NRB sc=12。可以根据多址方案将OFDM符号称为循环移位OFDM(CP-OFDM)符号或离散傅立叶变换扩展OFDM(DFT-s-OFDM)符号。
一个时隙中包括的OFDM符号的数目可以根据循环前缀(CP)的长度而变化。例如,在正常CP的情况下,一个时隙包括14个OFDM符号,但是在扩展CP的情况下,一个时隙可以包括12个OFDM符号。在特定实施例中,只能在60kHz子载波间隔下使用扩展CP。在图2中,为了描述的方便,作为示例一个时隙被配置有14个OFDM符号,但是可以以类似的方式将本公开的实施例应用于具有不同数目的OFDM符号的时隙。参考图2,每个OFDM符号在频域中包括Nsize,μ grid,x*NRB sc个子载波。可以将子载波的类型划分成用于数据传输的数据子载波、用于参考信号的传输的参考信号子载波和保护频带。载波频率也被称为中心频率(fc)。
一个RB可以由频域中的NRB sc(例如,12)个连续子载波定义。为了参考,可以将配置有一个OFDM符号和一个子载波的资源称为资源元素(RE)或音调。因此,一个RB能够被配置有Nslot symb*NRB sc个资源元素。资源网格中的每个资源元素能够由一个时隙中的一对索引(k,l)唯一地定义。k可以是在频域中从0至Nsize,μ grid,x*NRB sc–1被指配的索引,并且l可以是在时域中从0至Nslot symb–1被指配的索引。
为让UE从基站接收信号或向基站发送信号,UE的时间/频率可以与基站的时间/频率同步。这是因为当基站和UE同步时,UE能够确定在正确的时间对DL信号进行解调并且发送UL信号所必需的时间和频率参数。
时分双工(TDD)或不成对频谱中使用的无线电帧的每个符号可以被配置有DL符号、UL符号和灵活符号中的至少一个。在频分双工(FDD)或成对频谱中用作DL载波的无线电帧可以被配置有DL符号或灵活符号,而用作UL载波的无线电帧可以被配置有UL符号或灵活符号。在DL符号中,DL传输是可能的,但是UL传输是不可用的。在UL符号中,UL传输是可能的,但是DL传输是不可用的。可以根据信号将灵活符号确定为被用作DL或UL。
关于每个符号的类型的信息,即表示DL符号、UL符号和灵活符号中的任意一个的信息,可以用小区特定或公共的无线电资源控制(RRC)信号配置。此外,关于每个符号的类型的信息可以附加地用UE特定或专用RRC信号配置。基站通过使用小区特定RRC信号来通知i)小区特定的时隙配置的周期、ii)从小区特定的时隙配置的周期的开头起仅具有DL符号的时隙的数目、iii)从紧接在仅具有DL符号的时隙之后的时隙的第一符号起的DL符号的数目、iv)从小区特定的时隙配置的周期的结束起仅具有UL符号的时隙的数目、以及v)从紧接在仅具有UL符号的时隙之前的时隙的最后符号起的UL符号的数目。这里,未配置有UL符号和DL符号中的任意一个的符号是灵活符号。
当关于符号类型的信息用UE特定的RRC信号配置时,基站可以以小区特定的RRC信号用信号通知灵活符号是DL符号还是UL符号。在这种情况下,UE特定的RRC信号不能将用小区特定的RRC信号配置的DL符号或UL符号改变成另一符号类型。UE特定的RRC信号可以用信号通知每个时隙的对应时隙的Nslot symb个符号当中的DL符号的数目以及对应时隙的Nslot symb个符号当中的UL符号的数目。在这种情况下,时隙的DL符号可以连续地被配置有时隙的第一符号至第i个符号。此外,时隙的UL符号可以连续地被配置有时隙的第j个符号至最后一个符号(其中i<j)。在时隙中,未配置有UL符号和DL符号中的任意一个的符号是灵活符号。
可以将用以上RRC信号配置的符号的类型称为半静态DL/UL配置。在先前用RRC信号配置的半静态DL/UL配置中,灵活符号可以通过在物理DL控制信道(PDCCH)上发送的动态时隙格式信息(SFI)被指示为DL符号、UL符号指示,或者灵活符号。在这种情况下,不会将用RRC信号配置的DL符号或UL符号改变为另一符号类型。表1举例说明基站能够指示给UE的动态SFI。
[表1]
Figure BDA0003496294030000141
在表1中,D表示DL符号,U表示UL符号,并且X表示灵活符号。如表1中所示,可以允许一个时隙中最多两次DL/UL切换。
图3是用于说明3GPP系统(例如,NR)中使用的物理信道和使用该物理信道的典型信号传输方法的图。
如果UE的电源被打开或者UE驻留在新小区中,则UE执行初始小区搜索(S101)。具体地,UE可以在初始小区搜索中与BS同步。为此,UE可以从基站接收主同步信号(PSS)和辅同步信号(SSS)以与基站同步,并且获得诸如小区ID的信息。此后,UE能够从基站接收物理广播信道并且获得小区中的广播信息。
在初始小区搜索完成后,UE根据物理下行链路控制信道(PDCCH)和PDCCH中的信息来接收物理下行链路共享信道(PDSCH),使得UE能够获得比通过初始小区搜索获得的系统信息更具体的系统信息(S102)。这里,由UE接收到的系统信息是用于UE在无线资源控制(RRC)中的物理层中正常操作的小区公共系统信息,并且被称为剩余系统信息,或者被称为系统信息块(SIB)1。
当UE最初接入基站或者不具有用于信号传输的无线电资源(即,UE处于RRC_IDLE模式)时,UE可以对基站执行随机接入过程(操作S103至S106)。首先,UE能够通过物理随机接入信道(PRACH)发送前导(S103)并且通过PDCCH和所对应的PDSCH从基站接收针对前导的响应消息(S104)。当UE接收到有效的随机接入响应消息时,UE通过由通过PDCCH从基站发送的UL许可所指示的物理上行链路共享信道(PUSCH)来向基站发送包括UE的标识符等的数据(S105)。接下来,UE等待PDCCH的接收作为用于冲突解决的基站的指示。如果UE通过UE的标识符成功地接收到PDCCH(S106),则终止随机接入过程。UE可以在随机接入过程期间获得用于UE在RRC层中的物理层中正常操作的UE特定的系统信息。当UE获得UE特定的系统信息时,UE进入RRC连接模式(RRC_CONNECTED模式)。
RRC层被用于生成或管理用于控制UE与无线电接入网(RAN)之间的连接的消息。更详细地,在RRC层中,基站和UE可以执行小区中每个UE所需的广播小区系统信息、管理移动性和切换、UE的测量报告、包括UE能力管理和设备管理的存储管理。通常,因为在RRC层中传递的信号的更新周期长于物理层中的传输时间间隔(TTI),所以RRC信号在相当长的间隔内不被改变并且被维持。
在上述过程之后,UE接收PDCCH/PDSCH(S107)并且发送物理上行链路共享信道(PUSCH)/物理上行链路控制信道(PUCCH)(S108)作为一般UL/DL信号传输过程。特别地,UE可以通过PDCCH来接收下行链路控制信息(DCI)。DCI可以包括针对UE的诸如资源分配信息的控制信息。另外,DCI的格式可以根据预定用途而变化。UE通过UL向基站发送的上行链路控制信息(UCI)包括DL/UL ACK/NACK信号、信道质量指示符(CQI)、预编码矩阵索引(PMI)、秩指示符(RI)等。这里,可以将CQI、PMI和RI包括在信道状态信息(CSI)中。在3GPP NR系统中,UE可以通过PUSCH和/或PUCCH来发送诸如上述HARQ-ACK和CSI的控制信息。
图4图示用于3GPP NR系统中的初始小区接入的SS/PBCH块。
当电源接通或者想要接入新小区时,UE可以获得与该小区的时间和频率同步并且执行初始小区搜索过程。UE可以在小区搜索过程期间检测小区的物理小区标识NcellID。为此,UE可以从基站接收同步信号,例如,主同步信号(PSS)和辅同步信号(SSS),并且与基站同步。在这种情况下,UE能够获得诸如小区标识(ID)的信息。
参考图4的(a),将更详细地描述同步信号(SS)。能够将同步信号分类为PSS和SSS。PSS可以用于获得时域同步和/或频域同步,诸如OFDM符号同步和时隙同步。SSS能够用于获得帧同步和小区组ID。参考图4的(a)和表2,SS/PBCH块能够在频率轴上被配置有连续的20个RB(=240个子载波),并且能够在时间轴上被配置有连续的4个OFDM符号。在这种情况下,在SS/PBCH块中,通过第56个至第182个子载波,在第一OFDM符号中发送PSS并且在第三OFDM符号中发送SSS。这里,SS/PBCH块的最低子载波索引从0起编号。在发送PSS的第一OFDM符号中,基站不通过剩余子载波,即第0个至第55个子载波和第183个至第239个子载波来发送信号。此外,在发送SSS的第三OFDM符号中,基站不通过第48个至第55个子载波和第183个至第191个子载波来发送信号。基站通过SS/PBCH块中除了以上信号以外的剩余RE来发送物理广播信道(PBCH)。
[表2]
Figure BDA0003496294030000171
SS允许通过三个PSS和SSS的组合将总共1008个唯一物理层小区ID分组成336个物理层小区标识符组,每个组包括三个唯一标识符,具体地,使得每个物理层小区ID将仅仅是一个物理层小区标识符组的一部分。因此,物理层小区ID Ncell ID=3N(1) ID+N(2) ID能够由指示物理层小区标识符组的范围从0至335的索引N(1) ID和指示物理层小区标识符组中的物理层标识符的范围从0至2的索引N(2) ID唯一地定义。UE可以检测PSS并且识别三个唯一物理层标识符中的一个。此外,UE能够检测SSS并且识别与物理层标识符相关联的336个物理层小区ID中的一个。在这种情况下,PSS的序列dPSS(n)如下。
dPSS(n)=1-2x(m)
Figure BDA0003496294030000172
0≤n<127
这里,x(i+7)=(x(i+4)+x(i))mod2并且被给出为
[x(6) x(5) x(4) x(3) x(2) x(1) x(0)]=[1 1 1 0 1 1 0]。
此外,SSS的序列dSSS(n)如下。
dSSS(n)=[1-2x0((n+m0)mod127)][1-2x1((n+m1)mod127)]
Figure BDA0003496294030000181
Figure BDA0003496294030000182
0≤n<127
这里,
Figure BDA0003496294030000183
并且被给出为
[x0(6) x0(5) x0(4) x0(3) x0(2) x0(1) x0(0)]=[0 0 0 0 0 0 1]
[x1(6) x1(5) x1(4) x1(3) x1(2) x1(1) x1(0)]=[0 0 0 0 0 0 1]。
可以将具有10ms长度的无线电帧划分成具有5ms长度的两个半帧。参考图4的(b),将描述在每个半帧中发送SS/PBCH块的时隙。发送SS/PBCH块的时隙可以是情况A、B、C、D和E中的任何一种。在情况A中,子载波间隔是15kHz并且SS/PBCH块的起始时间点是第({2,8}+14*n)个符号。在这种情况下,在3GHz或更低的载波频率下,n=0或1。此外,在高于3GHz且低于6GHz的载波频率下,可以为n=0、1、2、3。在情况B中,子载波间隔是30kHz并且SS/PBCH块的起始时间点是{4,8,16,20}+28*n。在这种情况下,在3GHz或更低的载波频率下,n=0。此外,在高于3GHz且低于6GHz的载波频率下可以为n=0、1。在情况C中,子载波间隔是30kHz并且SS/PBCH块的起始时间点是第({2,8}+14*n)个符号。在这种情况下,在3GHz或更低的载波频率下,n=0或1。此外,在高于3GHz且低于6GHz的载波频率下,可以为n=0、1、2、3。在情况D中,子载波间隔是120kHz并且SS/PBCH块的起始时间点是第({4,8,16,20}+28*n)个符号。在这种情况下,在6GHz或更高的载波频率下,n=0、1、2、3、5、6、7、8、10、11、12、13、15、16、17、18。在情况E中,子载波间隔是240kHz并且SS/PBCH块的起始时间点是第({8,12,16,20,32,36,40,44}+56*n)个符号。在这种情况下,在6GHz或更高的载波频率下,n=0、1、2、3、5、6、7、8。
图5图示在3GPP NR系统中发送控制信息和控制信道的过程。参考图5的(a),基站可以将用无线电网络临时标识符(RNTI)掩码的(例如,异或运算)的循环冗余校验(CRC)添加到控制信息(例如,下行链路控制信息(DCI))(S202)。基站可以用根据每个控制信息的目的/目标确定的RNTI值对CRC进行加扰。由一个或多个UE使用的公共RNTI能够包括系统信息RNTI(SI-RNTI)、寻呼RNTI(P-RNTI)、随机接入RNTI(RA-RNTI)和发送功率控制RNTI(TPC-RNTI)中的至少一个。此外,UE特定的RNTI可以包括小区临时RNTI(C-RNTI)和CS-RNTI中的至少一个。此后,基站可以在执行信道编码(例如,极性编码)(S204)之后根据用于PDCCH传输的资源量来执行速率匹配(S206)。此后,基站可以基于以控制信道元素(CCE)为基础的PDCCH结构来复用DCI(S208)。此外,基站可以对经复用的DCI应用诸如加扰、调制(例如,QPSK)、交织等的附加过程(S210),并且然后将DCI映射到要被发送的资源。CCE是用于PDCCH的基本资源单元,并且一个CCE可以包括多个(例如,六个)资源元素组(REG)。一个REG可以被配置有多个(例如12个)RE。可以将用于一个PDCCH的CCE的数目定义为聚合等级。在3GPPNR系统中,可以使用1、2、4、8或16的聚合等级。图5B是与CCE聚合等级和PDCCH的复用有关的图,并且图示用于一个PDCCH的CCE聚合等级的类型以及据此在控制区域中发送的CCE。
图6图示在3GPP NR系统中的其中可以发送物理下行链路控制信道(PUCCH)的控制资源集(CORESET)。
CORESET是时间-频率资源,在该时间-频率资源中,PDCCH(即用于UE的控制信号)被发送。此外,可以将要稍后描述的搜索空间映射到一个CORESET。因此,UE可以监视被指定为CORESET的时间-频率域而不是监视用于PDCCH接收的所有频带,并且对映射到CORESET的PDCCH进行解码。基站可以向UE针对每个小区配置一个或多个CORESET。CORESET可以在时间轴上被配置有最多三个连续的符号。此外,可以在频率轴上以六个连续的PRB为单位配置CORESET。在图5的实施例中,CORESET#1被配置有连续的PRB,而CORESET#2和CORESET#3被配置有不连续的PRB。CORESET能够位于时隙中的任何符号中。例如,在图5的实施例中,CORESET#1开始于时隙的第一符号,CORESET#2开始于时隙的第五符号,并且CORESET#9开始于时隙的第九符号。
图7图示用于在3GPP NR系统中设置PDCCH搜索空间的方法。
为了将PDCCH发送到UE,每个CORESET可以具有至少一个搜索空间。在本公开的实施例中,搜索空间是能够用来发送UE的PDCCH的所有时间-频率资源(在下文中为PDCCH候选)的集合。搜索空间可以包括要求3GPP NR的UE共同搜索的公共搜索空间和要求特定UE搜索的UE特定的搜索空间或UE特定的搜索空间。在公共搜索空间中,UE可以监视被设置为使得属于同一基站的小区中的所有UE共同搜索的PDCCH。此外,可以为每个UE设置UE特定的搜索空间,使得UE在根据UE而不同的搜索空间位置处监视分配给每个UE的PDCCH。在UE特定的搜索空间的情况下,由于可以分配PDCCH的有限控制区域,UE之间的搜索空间可以部分地重叠并被分配。监视PDCCH包括在搜索空间中对PDCCH候选进行盲解码。当盲解码成功时,可以表达为(成功地)检测/接收到PDCCH,而当盲解码失败时,可以表达为未检测到/未接收到或者未成功地检测/接收到PDCCH。
为了说明的方便,用一个或多个UE先前已知的组公共(GC)RNTI被加扰以便向一个或多个UE发送DL控制信息的PDCCH被称为组公共(GC)PDCCH或公共PDCCH。此外,用特定UE已经知道的特定终端的RNTI被加扰以便向特定UE发送UL调度信息或DL调度信息的PDCCH被称为特定UE的PDCCH。可以将公共PDCCH包括在公共搜索空间中,并且可以将UE特定的PDCCH包括在公共搜索空间或UE特定的PDCCH中。
基站可以通过PDCCH向每个UE或UE组用信号通知关于与作为传输信道的寻呼信道(PCH)和下行链路共享信道(DL-SCH)的资源分配有关的信息(即,DL许可)或与上行链路共享信道(UL-SCH)和混合自动重传请求(HARQ)的资源分配有关的信息(即,UL许可)。基站可以通过PDSCH来发送PCH传输块和DL-SCH传输块。基站可以通过PDSCH来发送排除特定控制信息或特定服务数据的数据。此外,UE可以通过PDSCH来接收排除特定控制信息或特定服务数据的数据。
基站可以在PDCCH中包括关于向哪个UE(一个或多个UE)发送PDSCH数据并且该PDSCH数据将如何由所对应的UE接收并解码的信息,并且发送PDCCH。例如,假定在特定的PDCCH上发送的DCI用RNTI“A”被CRC掩码,并且DCI指示PDSCH被分配给无线电资源“B”(例如,频率位置)并且指示传输格式信息“C”(例如,传输块大小、调制方案、编码信息等)。UE使用UE具有的RNTI信息来监视PDCCH。在这种情况下,如果存在使用“A”RNTI对PDCCH执行盲解码的UE,则该UE接收PDCCH,并且通过所接收到的PDCCH的信息来接收由“B”和“C”指示的PDSCH。
表3示出无线通信系统中使用的物理上行链路控制信道(PUCCH)的实施例。
[表3]
PUCCH格式 OFDM符号的长度 比特数
0 1-2 ≤2
1 4-14 ≤2
2 1-2 >2
3 4-14 >2
4 4-14 >2
PUCCH可以用于发送以下UL控制信息(UCI)。
-调度请求(SR):用于请求UL UL-SCH资源的信息。
-HARQ-ACK:对PDCCH的响应(指示DL SPS释放)和/或对PDSCH上的DL传输块(TB)的响应。HARQ-ACK指示是否接收到在PDCCH或PDSCH上成功地发送的信息。HARQ-ACK响应包括肯定ACK(简称为ACK)、否定ACK(在下文中为NACK)、不连续传输(DTX)或NACK/DTX。这里,术语HARQ-ACK与HARQ-ACK/NACK和ACK/NACK混合使用。通常,ACK可以由比特值1表示,而NACK可以由比特值0表示。
-信道状态信息(CSI):关于DL信道的反馈信息。UE基于由基站发送的CSI-参考信号(RS)来生成它。多输入多输出(MIMO)相关的反馈信息包括秩指示符(RI)和预编码矩阵指示符(PMI)。能够根据由CSI指示的信息将CSI划分成CSI部分1和CSI部分2。
在3GPP NR系统中,可以使用五种PUCCH格式来支持各种服务场景、各种信道环境和帧结构。
PUCCH格式0是能够递送1比特或2比特HARQ-ACK信息或SR的格式。能够通过在时间轴上的一个或两个OFDM符号以及在频率轴上的一个PRB来发送PUCCH格式0。当在两个OFDM符号中发送PUCCH格式0时,两个符号上的相同序列可以通过不同的RB来发送。在这种情况下,该序列可以是从PUCCH格式0中使用的基础序列循环移位(CS)的序列。通过此,UE可以获得频率分集增益。更详细地,UE可以根据Mbit比特UCI(Mbit=1或2)来确定循环移位(CS)值mcs。另外,可以通过将基于预定CS值mcs的循环移位序列映射到一个OFDM符号和一个RB的12个RE来发送长度为12的基础序列。当可用于UE的循环移位的数量是12并且Mbit=1时,可以将1比特的UCI 0和1分别映射到两个循环移位序列,该两个循环移位序列的循环移位值具有6的差。另外,当Mbit=2时,可以将2比特的UCI 00、01、11和10分别映射到具有在循环移位值上的差为3的四个循环移位序列。
PUCCH格式1可以递送1比特或2比特HARQ-ACK信息或SR。可以通过时间轴上的连续的OFDM符号和频率轴上的一个PRB来发送PUCCH格式1。这里,由PUCCH格式1占据的OFDM符号的数目可以是4至14中的一个。更具体地,可以对Mbit=1的UCI进行BPSK调制。UE可以利用正交相移键控(QPSK)对Mbit=2的UCI进行调制。信号是通过将已调制的复数值符号d(0)乘以长度12的序列来获得的。在这种情况下,序列可以是用于PUCCH格式0的基础序列。UE通过时间轴正交覆盖码(OCC)扩展PUCCH格式1被分配到的偶数编号的OFDM符号以发送所获得的信号。PUCCH格式1根据要使用的OCC的长度来确定在一个RB中复用的不同的UE的最大数目。解调参考信号(DMRS)可以用OCC被扩展并且被映射到PUCCH格式1的奇数编号的OFDM符号。
PUCCH格式2可以递送超过2个比特的UCI。可以通过时间轴上的一个或两个OFDM符号和频率轴上的一个或多个RB来发送PUCCH格式2。当在两个OFDM符号中发送PUCCH格式2时,通过两个OFDM符号在不同的RB中发送的序列可以彼此相同。这里,序列可以是多个已调制的复数值符号d(0)、...、d(Msymbol-1)。这里,Msymbol可以是Mbit/2。通过这个,UE可以获得频率分集增益。更具体地,对Mbit个比特UCI(Mbit>2)进行比特级加扰、QPSK调制,并且将其映射到一个或两个OFDM符号的RB。这里,RB的数目可以是1至16中的一个。
PUCCH格式3或PUCCH格式4可以递送超过2个比特的UCI。可以通过时间轴上的连续的OFDM符号和频率轴上的一个PRB来发送PUCCH格式3或PUCCH格式4。由PUCCH格式3或PUCCH格式4占据的OFDM符号的数目可以是4至14中的一个。具体地,UE利用π/2-二进制相移键控(BPSK)或QPSK对Mbit个比特UCI(Mbit>2)进行调制以生成复数值符号d(0)至d(Msymb-1)。这里,当使用π/2-BPSK时,Msymb=Mbit,而当使用QPSK时,Msymb=Mbit/2。UE可以不对PUCCH格式3应用块单位扩展。然而,UE可以使用长度为12的PreDFT-OCC来对一个RB(即,12个子载波)应用块单位扩展,使得PUCCH格式4可以具有两种或四种复用能力。UE对扩展信号执行发送预编码(或DFT预编码)并且将其映射到每个RE以发送扩展信号。
在这种情况下,可以根据由UE发送的UCI的长度和最大编码速率来确定由PUCCH格式2、PUCCH格式3或PUCCH格式4占据的RB的数目。当UE使用PUCCH格式2时,UE可以通过PUCCH一起发送HARQ-ACK信息和CSI信息。当UE可以发送的RB的数目大于PUCCH格式2、PUCCH格式3或PUCCH格式4可以使用的RB的最大数目时,UE可以根据UCI信息的优先级不发送一些UCI信息,而是仅发送剩余的UCI信息。
可以通过RRC信号来配置PUCCH格式1、PUCCH格式3或PUCCH格式4以指示时隙中的跳频。当配置了跳频时,可以用RRC信号配置要跳频的RB的索引。当通过时间轴的N个OFDM符号来发送PUCCH格式1、PUCCH格式3或PUCCH格式4时,第一跳变可以具有floor(N/2)个OFDM符号并且第二跳变可以具有ceiling(N/2)个OFDM符号。
PUCCH格式1、PUCCH格式3或PUCCH格式4可以被配置成在多个时隙中重复地发送。在这种情况下,可以通过RRC信号来配置重复地发送PUCCH的时隙的数目K。重复地发送的PUCCH必须开始于每个时隙中恒定位置的OFDM符号,并且具有恒定长度。当通过RRC信号将其中UE应该发送PUCCH的时隙的OFDM符号当中的一个OFDM符号指示为DL符号时,UE可以不在对应的时隙中发送PUCCH并且将PUCCH的传输延迟到下一个时隙以发送PUCCH。
同时,在3GPP NR系统中,UE可以使用等于或小于载波(或小区)的带宽的带宽来执行传输/接收。为此,UE可以接收被配置有载波带宽中的一些带宽的连续带宽的带宽部分(BWP)。根据TDD操作或在不成对频谱中操作的UE可以在一个载波(或小区)中接收多达四个DL/UL BWP对。另外,UE可以激活一个DL/UL BWP对。根据FDD操作或以成对频谱操作的UE可以在DL载波(或小区)上接收多达四个DL BWP,并且在UL载波(或小区)上接收多达四个ULBWP。UE可以针对每个载波(或小区)激活一个DL BWP和一个UL BWP。UE可能不在除了激活的BWP之外的时频资源中执行接收或传输。激活的BWP可以被称为活动BWP。
基站可以通过下行链路控制信息(DCI)指示由UE配置的BWP当中的激活的BWP。通过DCI指示的BWP被激活,并且其他被配置的BWP被停用。在以TDD操作的载波(或小区)中,基站可以在用于调度PDSCH或PUSCH的DCI中包括带宽部分指示符(BPI),该带宽部分指示符指示要被激活以改变UE的DL/UL BWP对的BWP。UE可以接收用于调度PDSCH或PUSCH的DCI,并且可以识别基于BPI激活的DL/UL BWP对。对于以FDD操作的DL载波(或小区),基站可以在用于调度PDSCH的DCI中包括指示要被激活的BWP的BPI,以改变UE的DL BWP。对于以FDD操作的UL载波(或小区),基站可以在用于调度PUSCH的DCI中包括指示要被激活的BWP的BPI,以改变UE的UL BWP。
图8是图示载波聚合的概念图。
载波聚合是这样的方法,其中UE使用被配置有UL资源(或分量载波)和/或DL资源(或分量载波)的多个频率块或(在逻辑意义上的)小区作为一个大逻辑频带以便无线通信系统使用更宽的频带。一个分量载波也可以被称为称作主小区(PCell)或辅小区(SCell)或主SCell(PScell)的术语。然而,在下文中,为了描述的方便,使用术语“分量载波”。
参考图8,作为3GPP NR系统的示例,整个系统频带可以包括最多16个分量载波,并且每个分量载波可以具有最多400MHz的带宽。分量载波可以包括一个或多个物理上连续的子载波。尽管在图8中示出了每个分量载波具有相同的带宽,但是这仅仅是示例,并且每个分量载波可以具有不同的带宽。另外,尽管每个分量载波被示出为在频率轴上彼此相邻,但是附图是在逻辑概念上被示出,并且每个分量载波可以物理上彼此相邻,或者可以间隔开。
不同的中心频率可以被用于每个分量载波。另外,可以在物理上相邻的分量载波中使用一个公共中心频率。假定在图8的实施例中所有分量载波是物理上相邻的,则中心频率A可以被用在所有分量载波中。另外,假定各自的分量载波彼此物理上不相邻,则中心频率A和中心频率B能够被用在每个分量载波中。
当通过载波聚合来扩展总系统频带时,能够以分量载波为单位来定义用于与每个UE通信的频带。UE A可以使用作为总系统频带的100MHz,并且使用所有五个分量载波来执行通信。UE B1~B5能够仅使用20MHz带宽并且使用一个分量载波来执行通信。UE C1和C2分别可以使用40MHz带宽并且使用两个分量载波来执行通信。这两个分量载波可以在逻辑上/物理上相邻或不相邻。UE C1表示使用两个不相邻分量载波的情况,而UE C2表示使用两个相邻分量载波的情况。
图9是用于说明信号载波通信和多载波通信的图。特别地,图9的(a)示出单载波子帧结构并且图9的(b)示出多载波子帧结构。
参考图9的(a),在FDD模式下,一般的无线通信系统可以通过一个DL频带和与其相对应的一个UL频带来执行数据传输或接收。在另一特定实施例中,在TDD模式下,无线通信系统可以在时域中将无线电帧划分成UL时间单元和DL时间单元,并且通过UL/DL时间单元来执行数据传输或接收。参考图9的(b),能够将三个20MHz分量载波(CC)聚合到UL和DL中的每一个中,使得能够支持60MHz的带宽。每个CC可以在频域中彼此相邻或不相邻。图9的(b)示出UL CC的带宽和DL CC的带宽相同且对称的情况,但是能够独立地确定每个CC的带宽。此外,具有不同数目的UL CC和DL CC的不对称载波聚合是可能的。可以将通过RRC分配/配置给特定UE的DL/UL CC称作特定UE的服务DL/UL CC。
基站可以通过激活UE的服务CC中的一些或全部或者停用一些CC来执行与UE的通信。基站能够改变要激活/停用的CC,并且改变要激活/停用的CC的数目。如果基站将对于UE可用的CC分配为小区特定的或UE特定的,则除非针对UE的CC分配被完全重新配置或者UE被切换,否则所分配的CC中的至少一个能够被停用。未由UE停用的一个CC被称作为主CC(PCC)或主小区(PCell),而基站能够自由地激活/停用的CC被称作辅CC(SCC)或辅小区(SCell)。
同时,3GPP NR使用小区的概念来管理无线电资源。小区被定义为DL资源和UL资源的组合,即,DL CC和UL CC的组合。小区可以被单独配置有DL资源,或者可以被配置有DL资源和UL资源的组合。当支持载波聚合时,DL资源(或DL CC)的载波频率与UL资源(或UL CC)的载波频率之间的链接可以由系统信息来指示。载波频率是指每个小区或CC的中心频率。与PCC相对应的小区被称为PCell,而与SCC相对应的小区被称为SCell。DL中与PCell相对应的载波是DL PCC,而UL中与PCell相对应的载波是UL PCC。类似地,DL中与SCell相对应的载波是DL SCC,而UL中与SCell相对应的载波是UL SCC。根据UE能力,服务小区可以被配置有一个PCell和零个或更多个SCell。在处于RRC_CONNECTED状态但未配置用于载波聚合或者不支持载波聚合的UE的情况下,只有一个服务小区仅配置有PCell。
如上所述,载波聚合中使用的术语“小区”与指通过一个基站或一个天线组来提供通信服务的某个地理区域的术语“小区”区分开。也就是说,还可以将一个分量载波称为调度小区、被调度的小区、主小区(PCell)、辅小区(SCell)或主SCell(PScell)。然而,为了区分表示某个地理区域的小区和载波聚合的小区,在本公开中,将载波聚合的小区称为CC,并且将地理区域的小区称为小区。
图10是示出其中应用跨载波调度技术的示例的图。当设置跨载波调度时,通过第一CC发送的控制信道可以使用载波指示符字段(CIF)来调度通过第一CC或第二CC发送的数据信道。CIF被包括在DCI中。换句话说,设置调度小区,并且在该调度小区的PDCCH区域中发送的DL许可/UL许可调度被调度的小区的PDSCH/PUSCH。也就是说,在调度小区的PDCCH区域中存在用于多个分量载波的搜索区域。PCell基本上可以是调度小区,并且特定SCell可以由上层指定为调度小区。
在图10的实施例中,假定了三个DL CC被合并。这里,假定了DL分量载波#0是DLPCC(或PCell),并且DL分量载波#1和DL分量载波#2是DL SCC(或SCell)。此外,假定了将DLPCC设置为PDCCH监视CC。当未通过UE特定的(或UE组特定或小区特定)更高层信令配置跨载波调度时,CIF被禁用,并且每个DL CC能够根据NR PDCCH规则在没有CIF的情况下仅发送用于调度其PDSCH的PDCCH(非跨载波调度、自载波调度)。同时,如果通过UE特定的(或UE组特定或小区特定)更高层信令配置了跨载波调度,则CIF被启用,并且特定CC(例如,DL PCC)可以使用CIF来不仅发送用于调度DL CC A的PDSCH的PDCCH而且还发送用于调度另一CC的PDSCH的PDCCH(跨载波调度)。另一方面,在另一DL CC中不发送PDCCH。因此,UE根据是否为UE配置了跨载波调度来监视不包括CIF的PDCCH以接收自载波调度的PDSCH,或者监视包括CIF的PDCCH以接收跨载波调度的PDSCH。
另一方面,图9和图10图示3GPP LTE-A系统的子帧结构,并且可以将相同或类似的配置应用于3GPP NR系统。然而,在3GPP NR系统中,图9和图10的子帧可以用时隙替换。
图11图示根据本发明的实施例的码块组(CBG)配置及其时频资源映射。更具体地,图11(a)图示包括在一个传输块(TB)中的CBG配置的实施例,并且图11(b)图示CBG配置的时频资源映射。
信道码定义最大支持长度。例如,在3GPP LTE(-A)中使用的涡轮码(turbo code)的最大支持长度为6144个比特。但是,在PDSCH上发送的传输块(TB)的长度可能比6144个比特长。如果TB的长度大于最大支持的长度,则TB可以被划分为具有最大长度为6144个比特的码块(CB)。每个CB是其中执行信道编码的单位。另外,为了有效地进行重传,可以将几个CB分组以配置一个CBG。UE和基站需要有关如何配置CBG的信息。
可以根据各种实施例来配置TB内的CBG和CB。根据实施例,可用CBG的数量可以被确定为固定值,或者可以用基站和UE之间的RRC配置信息来配置。在这种情况下,CB的数量由TB的长度确定,并且CBG可以取决于所确定的数量的信息被配置。根据另一实施例,要被包括在一个CBG中的CB的数量可以被确定为固定值,或者可以用基站和UE之间的RRC配置信息来配置。在这种情况下,如果通过TB的长度确定CB的数量,则可以取决于关于每CBG的CB的数量的信息来配置CBG的数量。
参考图11(a)的实施例,一个TB可以被划分为八个CB。八个CB可以再次分组成四个CBG。CB和CBG之间的映射关系(或CBG配置)可以在基站和UE之间静态地配置,或者可以利用RRC配置信息半静态地建立。根据另一实施例,可以通过动态信令来配置映射关系。当UE接收到基站发送的PDCCH时,UE可以通过显式信息和/或隐式信息直接或间接地识别CB和CBG之间的映射关系(或CBG配置)。一个CBG可以仅包含一个CB,或者可以包括构成一个TB的所有CB。作为参考,可以应用本发明的实施例中呈现的技术,而不管CB和CBG的配置如何。
参考图11(b),将构成1个TB的CBG映射到PDSCH被调度的时频资源。根据实施例,每个CBG可以首先在频率轴上被分配,并且然后在时间轴上扩展。当由包括四个CBG的一个TB组成的PDSCH被分配给七个OFDM符号时,CBG0可以在第一和第二OFDM符号上被发送,CBG1可以在第二、第三和第四OFDM符号上被发送,CBG2可以在第四、第五、以及第六OFDM符号上被发送,并且CBG3可以在第六和第七OFDM符号上被发送。可以在基站和UE之间确定用CBG和PDSCH分配的时频映射关系。然而,图11(b)中所图示的映射关系是用于描述本发明的实施例,并且可以与CBG的时频映射关系无关地应用本发明的实施例中呈现的技术。
图12图示其中基站执行基于TB的传输或基于CBG的传输,并且UE响应于此而发送HARQ-ACK的过程。参考图12,基站可以配置适合于基于TB的传输和基于CBG的传输的UE的传输方案。UE可以根据由基站配置的传输方案来通过PUCCH或PUSCH发送HARQ-ACK信息比特。基站可以配置PDCCH以调度要发送给UE的PDSCH。PDCCH可以调度基于TB的传输和/或基于CBG的传输。例如,可以在PDCCH上调度一个TB或两个TB。如果调度一个TB,则UE必须反馈1比特HARQ-ACK。如果调度两个TB,则必须反馈2比特的HARQ-ACK用于两个TB中的每个。为了消除基站与UE之间的歧义,在2比特的HARQ-ACK的每个信息比特与两个TB之间可以存在预定顺序。作为参考,当MIMO传输秩或层低时,可以在一个PDSCH上发送一个TB,而当MIMO传输秩或层高时,可以在一个PDSCH上发送两个TB。
UE可以每一个TB发送1比特的基于TB的HARQ-ACK以通知基站每个TB的接收是否成功。为了生成针对一个TB的HARQ-ACK,UE可以通过TB-CRC来检查TB的接收错误。当针对TB的TB-CRC被成功检查时,UE生成针对TB的HARQ-ACK的ACK。然而,如果发生针对TB的TB-CRC错误,则UE生成针对TB的HARQ-ACK的NACK。UE将如上所述生成的基于TB的HARQ-ACK发送到基站。基站重新发送在从UE接收的基于TB的HARQ-ACK中用NACK响应的TB。
另外,UE可以每一个CBG发送1比特的基于CBG的HARQ-ACK,以通知基站每个CBG的接收是否成功。为了生成针对一个CBG的HARQ-ACK,UE可以解码包括在CBG中的所有CB,并且通过CB-CRC检查每个CB的接收错误。当UE成功地接收到构成一个CBG的所有CB时(即,当所有CB-CRC都被成功检查时),UE为CBG的HARQ-ACK生成ACK。但是,当UE没有成功接收到构成一个CBG的CB中的至少一个时(即,当至少一个CB-CRC错误发生时),UE为CBG的HARQ-ACK生成NACK。UE将如上所述生成的基于CBG的HARQ-ACK发送到基站。基站重新发送在从UE接收的基于CBG的HARQ-ACK当中用NACK响应的CBG。根据实施例,重新发送的CBG的CB配置可以与先前发送的CBG的CB配置相同。可以基于通过PDSCH发送的CBG的数量或用RRC信号配置的CBG的最大数量,来确定由UE向基站发送的基于CBG的HARQ-ACK信息比特的长度。
另一方面,即使当UE成功接收到TB中包括的所有CBG时,也可能发生针对TB的TB-CRC错误。在这种情况下,UE可以执行基于CBG的HARQ-ACK的翻转,以便请求针对TB的重传。即,即使成功地接收到包括在TB中的所有CBG,UE也可以将所有基于CBG的HARQ-ACK信息比特生成为NACK。在接收到其中所有HARQ-ACK信息比特都是NACK的基于CBG的HARQ-ACK反馈时,基站重新发送TB的所有CBG。
根据本发明的实施例,基于CBG的HARQ-ACK反馈可以用于TB的成功传输。基站可以指示UE发送基于CBG的HARQ-ACK。在这种情况下,可以使用根据基于CBG的HARQ-ACK的重传技术。可以通过PUCCH来发送基于CBG的HARQ-ACK。另外,当UCI被配置成通过PUSCH发送时,基于CBG的HARQ-ACK可以通过PUSCH发送。在PUCCH中,可以通过RRC信号来配置HARQ-ACK资源的配置。另外,可以通过调度基于CBG发送的PDSCH的PDCCH来指示实际发送的HARQ-ACK资源。UE可以通过用RRC配置的PUCCH资源当中的通过PDCCH指示的一个PUCCH资源来发送针对是否成功接收所发送的CBG的HARQ-ACK。
基站可以通过UE的基于CBG的HARQ-ACK反馈来识别UE是否已经成功地接收到发送给UE的CBG。即,通过从UE接收的针对每个CBG的HARQ-ACK,基站可以辨识出UE已经成功接收的CBG和UE未能接收到的CBG。基站可以基于接收到的基于CBG的HARQ-ACK来执行CBG重传。更具体地,基站可以在一个TB中仅捆绑和重发响应于失败的HARQ-ACK的CBG。在这种情况下,响应于成功接收的HARQ-ACK的CBG从重传中被排除。基站可以将重传的CBG调度为一个PDSCH,并将其发送给UE。
<未授权频带中的通信方法>
图13图示新无线电未授权(NR-U)的服务环境。
参考图13,可以向用户提供现有授权频带中的NR技术11和未授权的NR(NR-U)(即,未授权频带中的NR技术12)的服务环境。例如,在NR-U环境中,可以使用诸如载波聚合的技术来集成授权频带中的NR技术11和未授权频带中的NR技术12,这可以有助于网络容量的扩展。另外,在具有比上行链路数据更多的下行链路数据的非对称业务结构中,NR-U可以提供针对各种需求或环境而优化的NR服务。为了方便起见,将授权频带中的NR技术称为NR-L(授权的NR),并且将未授权频带中的NR技术称为NR-U(未授权的NR)。
图14图示NR-U服务环境中的用户设备和基站的部署场景。由于高频特性,NR-U服务环境所针对的频带的无线电通信范围短。考虑到这一点,在现有的NR-L服务和NR-U服务共存的环境中,用户设备和基站的部署场景可以是覆盖模型或共址模型。
在覆盖模型中,宏基站可以通过使用授权的载波与宏区域(32)中的X UE和X’UE执行无线通信,并通过X2接口与多个无线电远程头端(RRH)连接。每个RRH可以通过使用未授权载波与预定区域(31)中的X UE或X’UE执行无线通信。宏基站和RRH的频带互不相同,以免相互干扰,但是需要通过X2接口在宏基站和RRH之间快速交换数据以便使用NR-U服务作为通过载波聚合的NR-L服务的辅助下行链路信道。
在共址模型中,微微/毫微微基站可以通过使用授权载波和未授权载波两者来与YUE执行无线通信。然而,可能受到微微/毫微微基站使用NR-L服务和NR-U服务两者来进行下行链路传输的限制。NR-L服务的覆盖范围(33)和NR-U服务的覆盖范围(34)可以根据频带、传输功率等而不同。
当在未授权频带中执行NR通信时,在相应的未授权频带中执行通信的传统设备(例如,无线LAN(Wi-Fi)设备)可能不会解调NR-U消息或数据。因此,传统设备将NR-U消息或数据确定为一种能量,以通过能量检测技术来执行干扰避免操作。也就是说,当与NR-U消息或数据相对应的能量低于-62dBm或某个能量检测(ED)阈值时,无线LAN设备可以通过忽略相应的消息或数据来执行通信。结果,在未授权频带中执行NR通信的用户设备可能会经常受到无线LAN设备的干扰。
因此,需要在特定时间分配或保留特定频带,以便有效地实现NR-U技术/服务。但是,因为通过未授权频带执行通信的外围设备基于能量检测技术尝试接入,所以存在难以进行高效的NR-U服务的问题。因此,为了解决NR-U技术,需要优先研究与传统的未授权频带设备的共存方案和有效共享无线电信道的方案。即,需要开发一种稳健的共存机制,其中NR-U设备不影响传统的未授权频带设备。
图15图示在未授权频带中操作的传统通信方案(例如,无线LAN)。因为大多数在未授权频带中操作的设备基于“先听后说”(LBT)操作,所以执行在数据传输之前感测信道的清闲信道评估(CCA)技术。
参考图15,无线LAN设备(例如,AP或STA)通过在发送数据之前执行载波感测来检查信道是否忙碌。当在信道中感测到预定强度或更高强度的无线电信号以发送数据时,确定相应信道是忙碌的,并且无线LAN设备使对相应信道的接入延迟。这样的过程被称为清闲信道评估,并且用于决定是否感测到信号的信号级被称为CCA阈值。同时,当在相应的信道中没有感测到无线电信号或者当感测到强度小于CCA阈值的无线电信号时,确定信道为空闲。
当确定信道为空闲时,具有要发送的数据的终端在推迟持续时间(例如,仲裁帧间间隔(AIFS)、PCF IFS(PIFS)等)之后执行回退过程。推迟持续时间表示终端在信道空闲后需要等待的最短时间。回退过程允许终端在推迟持续时间之后进一步等待预定时间。例如,终端在竞争窗口(CW)中在信道空闲期间减小与分配给终端的随机数相对应的时隙时间的同时做好准备,并且完全耗尽该时隙时间的终端可以尝试接入相应的信道。
当终端成功接入信道时,终端可以通过信道发送数据。成功发送数据后,CW大小(CWS)将重置为初始值(CWmin)。相反,当数据未成功发送时,CWS增加为两倍。结果,在比先前的随机数范围大两倍的范围内为终端分配新的随机数,以在下一CW中执行回退过程。在无线LAN中,仅ACK被定义为接收对数据传输的响应信息。因此,当相对于数据传输接收到ACK时,CWS被重置为初始值,并且当相对于数据传输未接收到反馈信息时,CWS增加为两倍。
如上所述,因为未授权频带中的现有通信主要基于LBT进行操作,所以NR-U系统中的信道接入也执行LBT以与现有设备共存。具体地,根据LBT的存在/不存在/应用方法,在NR中的未授权频带上的信道接入方法可以被分类成下述四个类别。
·类别1:无LBT
-Tx实体不执行用于传输的LBT过程。
·类别2:没有随机回退的LBT
-Tx实体在没有随机回退的情况下在第一间隔期间感测信道是否空闲以执行传输。即,Tx实体可以在第一间隔期间感测到信道为空闲之后立即执行通过该信道的传输。第一间隔是紧接在Tx实体执行传输之前的预定长度的间隔。根据实施例,第一间隔可以是25μs长度的间隔,但是本发明不限于此。
·类别3:使用固定大小的CW执行随机回退的LBT
-Tx实体获得固定大小CW内的随机值,将其设置为回退计数器(或回退定时器)的初始值N,并通过使用设置的回退计数器N执行回退。在回退过程中,每当检测到信道在预定时隙时段内处于空闲状态时,Tx实体将回退计数器减少1。这里,预定的时隙时段可以是9μs,但是本发明不限于此。回退计数器N从初始值减小1,并且当回退计数器N的值达到0时,Tx实体可以执行传输。同时,为了执行回退,Tx实体首先感测在第二间隔(即,推迟持续时间Td)期间信道是否空闲。根据本发明的实施例,Tx实体可以根据信道是否在第二间隔内的至少一些时段(例如,一个时隙时段)内空闲来感测(确定)信道在第二间隔期间是否空闲。第二间隔可以基于Tx实体的信道接入优先级等级来设置,并且由16μs的时段和m个连续的时隙时段组成。这里,m是根据信道接入优先级等级设置的值。当在第二间隔期间感测到信道为空闲时,Tx实体执行信道感测以减少回退计数器。另一方面,当在回退过程期间感测到信道忙碌时,回退过程停止。在停止回退过程之后,当感测到在附加的第二间隔内信道空闲时,Tx实体可以恢复回退。以此方式,除了第二间隔之外,Tx实体还可以在回退计数器N的时隙时段期间信道空闲时执行传输。在这种情况下,在固定大小的CW内获得回退计数器N的初始值。
·类别4:LBT通过使用可变大小的CW执行随机回退
-Tx实体在可变大小的CW内获取随机值,将该随机值设置为回退计数器(或回退定时器)N的初始值,并通过使用设置的回退计数器N执行回退。更具体地,Tx实体可以基于针对先前传输的HARQ-ACK信息来调整CW的大小,并且在调整后大小的CW内获得回退计数器N的初始值。由Tx实体执行回退的具体过程如类别3中所述。除了第二间隔外,在回退计数器N的时隙时段期间信道为空闲时,Tx实体可以执行传输。在这种情况下,在可变大小的CW内获得回退计数器N的初始值。
在以上类别1至类别4中,Tx实体可以是基站或UE。根据本发明的实施例,第一类型的信道接入可以指的是类别4的信道接入,并且第二类型的信道接入可以指的是类别2的信道接入。
图16图示根据本发明的实施例的基于类别4LBT的信道接入过程。
为了执行信道接入,首先,Tx实体在推迟持续时间Td内执行信道感测(S302)。根据本发明的实施例,可以通过在推迟持续时间Td的至少一部分内的信道感测来执行在步骤S302中的在推迟持续时间Td内的信道感测。例如,可以通过在推迟持续时间Td内的一个时隙时段期间的信道感测来执行对推迟持续时间Td内的信道感测。Tx实体通过对推迟持续时间Td的信道感测来检查信道是否空闲(S304)。如果在推迟持续时间Td内感测到信道为空闲,则Tx实体前进到步骤S306。如果在推迟持续时间Td内未感测到信道为空闲(即,感测到忙碌),则Tx实体返回到步骤S302。Tx实体重复步骤S302至S304,直到在推迟持续时间Td内感测到信道为空闲为止。可以基于Tx实体的信道接入优先级等级来设置推迟持续时间Td,并且该推迟持续时间Td由16μs的时段和m个连续的时隙时段组成。这里,m是根据信道接入优先级等级设置的值。
接下来,Tx实体获得预定CW内的随机值,将该随机值设置为回退计数器(或回退定时器)的初始值N(S306),并且前进到步骤S308。回退计数器N的初始值是从0到CW之间的值中随机选择的。Tx实体通过使用设置的回退计数器N来执行回退过程。即,Tx实体通过重复步骤S308至S316直到回退计数器N的值达到0来执行回退过程。同时,图16图示在感测到信道在推迟持续时间Td内空闲之后执行步骤S306,但是本发明不限于此。即,步骤S306可以独立于步骤S302至S304被执行,并且可以在步骤S302至S304之前执行。当在步骤S302至S304之前执行步骤S306时,如果通过步骤S302至S304感测到信道在推迟持续时间Td内空闲,则Tx实体前进到步骤S308。
在步骤S308中,Tx实体检查回退计数器N的值是否为0。如果回退计数器N的值为0,则Tx实体前进到步骤S320以执行传输。如果回退计数器N的值不为0,则Tx实体前进到步骤S310。在步骤S310中,Tx实体将回退计数器N的值减少1。根据实施例,Tx实体可以在每个时隙的信道感测过程中选择性地将回退计数器的值减少1。在这种情况下,通过Tx实体的选择可以至少跳过步骤S310一次。接下来,Tx实体对附加时隙时段执行信道感测(S312)。Tx实体在附加时隙时段内通过信道感测来检查信道是否空闲(S314)。如果感测到在附加的时隙时段内该信道空闲,则Tx实体返回到步骤S308。以此方式,每当信道被感测到在预定时隙时段内空闲时,Tx实体可以将回退计数器减小1。这里,预定的时隙时段可以是9μs,但是本发明不限于此。
在步骤S314中,如果在附加时隙时段中未感测到信道为空闲(即,感测为忙碌),则Tx实体前进到步骤S316。在步骤S316中,Tx实体检查信道是否在附加的推迟持续时间Td内空闲。根据本发明的实施例,可以以时隙为单位执行步骤S316中的信道感测。即,Tx实体检查在附加推迟持续时间Td的所有时隙时段期间是否感测到信道空闲。当在附加推迟持续时间Td内检测到忙碌的时隙时,Tx实体立即重新开始步骤S316。当在附加推迟持续时间Td的所有时隙时段期间感测到信道空闲时,Tx实体返回到步骤S308。
另一方面,如果在步骤S308的检查中回退计数器N的值为0,则Tx实体执行传输(S320)。Tx实体接收与该传输相对应的HARQ-ACK反馈(S322)。Tx实体可以通过接收到的HARQ-ACK反馈来检查先前的传输是否成功。接下来,Tx实体基于接收到的HARQ-ACK反馈来调整用于下一个传输的CW大小(S324)。
如上所述,在感测到信道在推迟持续时间Td内空闲之后,当在N个附加的时隙时段内信道空闲时,Tx实体可以执行传输。如上所述,Tx实体可以是基站或UE,并且图16的信道接入过程可以用于基站的下行链路传输和/或UE的上行链路传输。
在下文中,提出了一种用于在未授权频带中接入信道时自适应地调整CWS的方法。可以基于UE(用户设备)反馈来调整CWS,并且用于CWS调整的UE反馈可以包括HARQ-ACK反馈和CQI/PMI/RI。在本发明中,提出了一种基于HARQ-ACK反馈来自适应地调整CWS的方法。HARQ-ACK反馈包括ACK、NACK、DTX和NACK/DTX中的至少之一。
如上所述,即使在无线LAN系统中,也基于ACK来调整CWS。当接收到ACK反馈时,CWS被重置为最小值(CWmin),并且当没有接收到ACK反馈时,CWS被增加。但是,在蜂窝系统中,需要考虑多址的CWS调整方法。
首先,为了描述本发明,术语定义如下。
-HARQ-ACK反馈值的集合(即,HARQ-ACK反馈集):指的是用于CWS更新/调整的HARQ-ACK反馈值。HARQ-ACK反馈集在确定CWS时被解码,并且对应于可用的HARQ-ACK反馈值。HARQ-ACK反馈集包括用于在未授权频带载波(例如,Scell、NR-U小区)上的一个或多个DL(信道)传输(例如,PDSCH)的HARQ-ACK反馈值。HARQ-ACK反馈集可以包括用于DL(信道)传输(例如,PDSCH)的HARQ-ACK反馈值,例如,从多个UE反馈的多个HARQ-ACK反馈值。HARQ-ACK反馈值可以指示用于码块组(CBG)或传输块(TB)的接收响应信息,并且可以指示ACK、NACK、DTX或NACK/DTX中的任何一种。取决于上下文,HARQ-ACK反馈值可以与诸如HARQ-ACK值、HARQ-ACK信息比特和HARQ-ACK响应的术语混合。
-参考窗口:指的是在未授权载波(例如,Scell、NR-U小区)中执行与HARQ-ACK反馈集相对应的DL传输(例如,PDSCH)的时间间隔。根据实施例,可以以时隙或子帧为单位定义参考窗口。参考窗口可以指示一个或多个特定时隙(或子帧)。根据本发明的实施例,特定时隙(或参考时隙)可以包括最近的DL传输突发的开始时隙,其中期望至少一些HARQ-ACK反馈可用。
图17图示基于HARQ-ACK反馈来调整竞争窗口大小(CWS)的方法的实施例。在图17的实施例中,Tx实体可以是基站,并且Rx实体可以是UE,但是本发明不限于此。另外,尽管图17的实施例假定用于基站的DL传输的信道接入过程,但是至少一些配置可以应用于UE的UL传输的信道接入过程。
参考图17,Tx实体在未授权频带载波(例如,Scell,NR-U小区)上发送第n个DL传输突发(S402),并且然后,如果需要附加的DL传输,则Tx实体可以基于LBT信道接入发送第(n+1)个DL传输突发(S412)。在此,传输突发指示通过一个或多个相邻时隙(或子帧)的传输。图17图示基于上述第一类型信道接入(即,类别4信道接入)的信道接入过程和CWS调整方法。
首先,Tx实体在未授权频带载波(例如,Scell,NR-U小区)上接收与PDSCH传输相对应的HARQ-ACK反馈(S404)。用于CWS调整的HARQ-ACK反馈包括与未授权频带载波上的最近DL传输突发(即,第n个DL传输突发)相对应的HARQ-ACK反馈。更具体地,用于CWS调整的HARQ-ACK反馈包括与最近的DL传输突发内的参考窗口上的PDSCH传输相对应的HARQ-ACK反馈。参考窗口可以指示一个或多个特定时隙(或子帧)。根据本发明的实施例,特定时隙(或参考时隙)包括最近的DL传输突发的开始时隙,其中期望至少一些HARQ-ACK反馈可用。
当接收到HARQ-ACK反馈时,针对每个传输块(TB)获得HARQ-ACK值。HARQ-ACK反馈包括基于TB的HARQ-ACK比特序列和基于CBG的HARQ-ACK中的至少一个。当HARQ-ACK反馈是基于TB的HARQ-ACK比特序列时,每TB获得一个HARQ-ACK信息比特。另一方面,当HARQ-ACK反馈是基于CBG的HARQ-ACK比特序列时,每TB获得N个HARQ-ACK信息比特。在此,N是在PDSCH传输的Rx实体中配置的每TB的CBG的最大数量。根据本发明的实施例,可以利用用于CWS确定的HARQ-ACK反馈的每个TB的HARQ-ACK信息比特来确定每个TB的HARQ-ACK值。更具体地,当HARQ-ACK反馈是基于TB的HARQ-ACK比特序列时,将TB的一个HARQ-ACK信息比特确定为HARQ-ACK值。然而,当HARQ-ACK反馈是基于CBG的HARQ-ACK比特序列时,可以基于与TB中包括的CBG相对应的N个HARQ-ACK信息比特来确定一个HARQ-ACK值。
接下来,Tx实体基于在步骤S404中确定的HARQ-ACK值来调整CWS(S406)。即,Tx实体基于利用针对HARQ-ACK反馈的每个TB的HARQ-ACK信息比特确定的HARQ-ACK值来确定CWS。更具体地,可以基于HARQ-ACK值当中的NACK的比率来调整CWS。首先,变量可以定义如下。
-p:优先级等级值
-CW_min_p:优先级等级p的预先确定的CWS最小值
-CW_max_p:优先级等级p的预先确定的CWS最大值
-CW_p:用于传输优先级等级p的CWS。将CW_p设置为优先级等级p的允许的CWS集合中包括的CW_min_p和CW_max_p之间的多个CWS值中的任何一个。
根据本发明的实施例,可以根据以下步骤来确定CWS。
步骤A-1)对于每个优先级等级p,将CW_p设置为CW_min_p。在这种情况下,优先级等级p包括{1,2,3,4}。
步骤A-2)当参考窗口k的PDSCH传输的HARQ-ACK值之中的NACK的比率为Z%或更高时,对于每个优先级等级p,CW_p增大到下一个最高允许值(此外,保留在步骤A-2)。否则,步骤A前进到步骤A-1。在此,Z是0≤Z≤100的范围内的预定整数,并且根据实施例,可以将其设置为{30,50,70,80,100}之一。
这里,参考窗口k包括由Tx实体最近传输的开始时隙(或子帧)。另外,参考窗口k是其中至少一些HARQ-ACK反馈期待成为可能的时隙(或子帧)。如果CW_p=CW_max_p,则用于CW_p调整的下一个最高允许值为CW_max_p。
接下来,Tx实体在步骤S406中确定的CWS内选择随机值,并将该随机值设置为回退计数器N的初始值(S408)。Tx实体通过使用设置的回退计数器N来执行回退(S410)。即,对于其中感测到信道空闲的每个时隙时段,Tx实体可以将回退计数器减少1。当回退计数器的值达到0时,Tx实体可以在信道中发送第(n+1)DL传输突发(S412)。
同时,在上述的CWS调整过程中,不得不确定在HARQ-ACK反馈中是否不仅考虑ACK和NACK,而且还考虑DTX或NACK/DTX。根据本发明的实施例,取决于未授权频带中的传输是基于自载波调度还是跨载波调度,可以确定在CWS调整过程中是否一起考虑DTX或NACK/DTX。
在自载波调度中,通过在相同的未授权频带载波上发送的控制信道(例如,(E)PDCCH)来调度在未授权频带载波上的DL传输(例如,PDSCH)。这里,因为DTX指示未授权频带载波中的隐藏节点等进行的DL传输失败,所以其可以与NACK一起用于CWS调整。另外,DTX是其中UE通知基站尽管基站向UE发送了包括调度信息的控制信道(例如,(E)PDCCH),但UE未能解码控制信道的方法之一。DTX可以仅由HARQ-ACK反馈值确定,或者可以考虑HARQ-ACK反馈值和实际调度情况来确定。根据本发明的实施例,在自载波调度情况下,DTX和NACK/DTX可以被计数为用于CWS调整的NACK。即,当针对参考窗口k的PDSCH传输的HARQ-ACK值当中的NACK、DTX和NACK/DTX之和的比率等于或大于Z%时,CWS增加到下一个最高允许值。否则,CWS将重置为最小值。
在跨载波调度中,可以通过在授权频带载波上发送的控制信道(例如,(E)PDCCH)来调度在未授权频带载波上的DL传输(例如,PDSCH)。在这种情况下,因为DTX反馈被用于确定针对在授权频带载波上发送的控制信道的UE的解码情况,所以对于在未授权频带中用于信道接入而自适应地调整CWS是没有帮助的。因此,根据本发明的实施例,在来自授权频带的跨载波调度情况下,针对CWS确定可以忽略DTX。即,对于CWS调整,在HARQ-ACK值当中,可以仅考虑ACK和NACK来计算NACK的比率,或者可以仅考虑ACK、NACK和NACK/DTX来计算NACK的比率。因此,当计算NACK的比率时,可以排除DTX。
图18是示出根据本发明的实施例的UE和基站的配置的框图。在本发明的实施例中,UE可以利用保证了便携性以及移动性的各种类型的无线通信设备或计算设备来实现。可以将UE称为用户设备(UE)、站(STA)、移动订户(MS)等。此外,在本发明的实施例中,基站控制并管理与服务区域相对应的小区(例如,宏小区、毫微微小区、微微小区等),并且执行信号传输、信道指定、信道监视、自我诊断、中继等的功能。可以将基站称为下一代节点B(gNB)或接入点(AP)。
如附图中所示,根据本公开的实施例的UE 100可以包括处理器110、通信模块120、存储器130、用户接口140和显示单元150。
首先,处理器110可以在UE 100内执行各种指令或程序并处理数据。此外,处理器100可以控制包括UE 100的每个单元的整个操作,并且可以控制数据在各单元之间的传输/接收。这里,处理器110可以被配置成执行根据本发明中描述的实施例的操作。例如,处理器110可以接收时隙配置信息,基于时隙配置信息确定时隙配置,并且根据所确定的时隙配置来执行通信。
接下来,通信模块120可以是使用无线通信网络来执行无线通信并且使用无线LAN来执行无线LAN接入的集成模块。为此,通信模块120可以以内部或外部形式包括多个网络接口卡(NIC),诸如蜂窝通信接口卡121和122以及未授权频带通信接口卡123。在附图中,通信模块120被示为整体集成模块,但是与附图不同,能够根据电路配置或用法独立地布置每个网络接口卡。
蜂窝通信接口卡121可以通过使用移动通信网络与基站200、外部设备和服务器中的至少一个发送或接收无线电信号并且基于来自处理器110的指令在第一频带中提供蜂窝通信服务。根据实施例,蜂窝通信接口卡121可以包括使用小于6GHz的频带的至少一个NIC模块。蜂窝通信接口卡121的至少一个NIC模块可以在由所对应的NIC模块支持的6GHz以下频带中根据蜂窝通信标准或协议来独立地与基站200、外部设备和服务器中的至少一个执行蜂窝通信。
蜂窝通信接口卡122可以通过使用移动通信网络与基站200、外部设备和服务器中的至少一个发送或接收无线电信号并且基于来自处理器110的指令在第二频带中提供蜂窝通信服务。根据实施例,蜂窝通信接口卡122可以包括使用大于6GHz的频带的至少一个NIC模块。蜂窝通信接口卡122的至少一个NIC模块可以在由所对应的NIC模块支持的6GHz以上的频带中根据蜂窝通信标准或协议独立地与基站200、外部设备和服务器中的至少一个执行蜂窝通信。
未授权频带通信接口卡123通过使用作为未授权频带的第三频带与基站200、外部设备和服务器中的至少一个发送或接收无线电信号,并且基于来自处理器110的指令提供未授权频带通信服务。未授权频带通信接口卡123可以包括使用未授权频带的至少一个NIC模块。例如,未授权频带可以是2.4GHz、5GHz、6GHz、7GHz或者52.6GHz以上的频带。未授权频带通信接口卡123的至少一个NIC模块可以根据由所对应的NIC模块支持的频带的未授权频带通信标准或协议独立地或非独立地与基站200、外部设备和服务器中的至少一个执行无线通信。
存储器130存储UE 100中使用的控制程序及其的各种数据。这样的控制程序可以包括与基站200、外部设备和服务器当中的至少一个执行无线通信所需要的规定程序。
接下来,用户接口140包括在UE 100中设置的各种输入/输出手段。换句话说,用户接口140可以使用各种输入手段来接收用户输入,并且处理器110可以基于所接收到的用户输入控制UE 100。此外,用户接口140可以使用各种输出手段来基于来自处理器110的指令执行输出。
接下来,显示单元150在显示屏幕上输出各种图像。显示单元150可以基于来自处理器110的控制指令输出各种显示对象,诸如由处理器110执行的内容或用户界面。
此外,根据本发明的实施例的基站200可以包括处理器210、通信模块220和存储器230。
首先,处理器210可以执行各种指令或程序,并且处理基站200的内部数据。此外,处理器210可以控制基站200中的各单元的整个操作,并且控制数据在各单元之间的传输和接收。这里,处理器210可以被配置成执行根据本发明中描述的实施例的操作。例如,处理器210可以用信号通知时隙配置并且根据经用信号通知的时隙配置来执行通信。
接下来,通信模块220可以是使用无线通信网络来执行无线通信并且使用无线LAN来执行无线LAN接入的集成模块。为此,通信模块220可以以内部或外部形式包括多个网络接口卡,诸如蜂窝通信接口卡221和222以及未授权频带通信接口卡223。在附图中,通信模块220被示出为整体集成模块,但是与附图不同,能够根据电路配置或用法独立地布置每个网络接口卡。
蜂窝通信接口卡221可以通过使用移动通信网络与UE 100、外部设备和服务器中的至少一个发送或接收无线电信号并且基于来自处理器210的指令在第一频带中提供蜂窝通信服务。根据实施例,蜂窝通信接口卡221可以包括使用小于6GHz的频带的至少一个NIC模块。蜂窝通信接口卡221的至少一个NIC模块可以在由所对应的NIC模块支持的小于6GHz的频带中根据蜂窝通信标准或协议独立地与基站100、外部设备和服务器中的至少一个执行蜂窝通信。
蜂窝通信接口卡222可以通过使用移动通信网络与UE 100、外部设备和服务器中的至少一个发送或接收无线电信号并且基于来自处理器210的指令在第二频带中提供蜂窝通信服务。根据实施例,蜂窝通信接口卡222可以包括使用6GHz或更高的频带的至少一个NIC模块。蜂窝通信接口卡222的至少一个NIC模块可以在由所对应的NIC模块支持的6GHz或更高的频带中根据蜂窝通信标准或协议独立地与基站100、外部设备和服务器中的至少一个执行蜂窝通信。
未授权频带通信接口卡223通过使用作为未授权频带的第三频带与基站100、外部设备和服务器中的至少一个发送或接收无线电信号,并且基于来自处理器210的指令提供未授权频带通信服务。未授权频带通信接口卡223可以包括使用未授权频带的至少一个NIC模块。例如,未授权频带可以是2.4GHz、5GHz、6GHz、7GHz或者52.6GHz以上的频带。未授权频带通信接口卡223的至少一个NIC模块可以根据由所对应的NIC模块支持的频带的未授权频带通信标准或协议独立地或依赖地与基站100、外部设备和服务器中的至少一个执行无线通信。
图18是图示根据本发明的实施例的UE 100和基站200的框图,并且单独地示出的框是装置的逻辑上划分的元件。因此,可以根据装置的设计将装置的前述元件安装在单个芯片或多个芯片中。此外,可以在UE 100中选择性地提供UE 100的配置的一部分,例如,用户接口140、显示单元150等。此外,必要时可以在基站200中附加地提供用户接口140、显示单元150等。
将参考图19描述由根据本发明的实施例的无线通信设备在未授权频带中执行的信道接入过程。具体地,将描述当根据本发明的实施例的无线通信设备在未授权频带中执行信道接入时使用的LBT过程。特别地,可以在无线通信设备中配置其中无线通信设备在预定持续时间的时间间隔内根据信道感测的结果执行传输的信道接入。在这种情况下,将描述用于在无线通信设备接入信道失败时操作无线通信设备的方法。前面已经提及的指定的持续时间可以是16μs。
为了描述方便,将作为发起信道占用的无线端点的无线通信设备称为发起节点。另外,将作为与发起节点通信的无线端点的无线通信设备称为响应节点。发起节点可以是基站,并且响应节点可以是UE。另外,发起节点可以是UE,并且响应节点可以是基站。当发起节点要发送数据时,发起节点可以根据根据数据类型确定的信道接入优先级等级执行信道接入。在这种情况下,可以根据数据的类型来确定用于信道接入的参数。用于信道接入的参数可以包括CW的最小值、CW的最大值、作为在一个信道占用中能够占用信道的最大持续时间的最大占用时间(MCOT)、以及感测时隙的数量(mp)中的任意一项。具体地,发起节点可以根据根据数据类型确定的信道接入优先级等级执行上述的类别4LBT。
下面的表4示出根据信道接入优先级等级用于信道接入的参数值的示例。具体地,表4示出用于LTE LAA系统中的下行链路传输的用于针对每个信道接入优先级等级的信道接入的参数值。
当无线通信设备发送的下行链路信道包括数据业务时,可以根据下行链路信道中包括的业务的信道接入优先级等级来配置推迟持续时间。此外,推迟持续时间可以包括初始持续时间Tf或一个或多个(mp)时隙持续时间Tsl。在这种情况下,时隙持续时间Tsl可以是9μs。初始持续时间包括一个空闲时隙持续时间Tsl。此外,可以根据上述信道接入优先级等级来配置推迟持续时间中包括的时隙持续时间的数量(mp)。具体地,推迟持续时间中包括的时隙持续时间的数量(mp)可以如表4中所示被配置。
[表4]
Figure BDA0003496294030000481
此外,无线通信设备可以根据信道接入优先级等级来配置CW值的范围。具体而言,无线通信设备可以将CW的值设置为满足CWmin,p<=CW<=CWmax,p。在这种情况下,CW的最小值CWmin,p和最大值CWmax,p可以根据信道接入优先级等级来确定。具体地,CW的最小值CWmin,p和最大值CWmax,p可以如表4中所示确定。无线通信设备可以在计数器值设置过程中设置CW的最小值CWmin,p和最大值CWmax,p。当无线通信设备接入信道时,无线通信设备可以调整CW的值,如上面参考图15至17所描述的。另外,在未授权频带的无线通信设备中,也可以根据如上所述的传输中包括的数据的信道接入优先级来确定MCOT Tmcot,p。具体地,可以如表4中所示确定MCOT。因此,可能不允许无线通信设备在未授权频带中执行超过MCOT的时间的连续传输。这是因为未授权频带是由各种无线通信设备按照一定规则使用的频段。在表4中,当信道接入优先级等级的值为p=3或p=4时,未授权频带按规定长期使用,并且没有使用其他技术的无线通信设备,无线通信设备可以配置有Tmcot,p=10ms。否则,无线通信设备可以配置有Tmcot,p=8ms。
表5示出用于在LTE LAA系统中使用的上行链路传输的每个信道接入优先级等级的信道接入的参数值。
[表5]
Figure BDA0003496294030000491
如表5中所述,当传输中包括一个或多个间隙时,MCOT值6ms可增加到8ms。间隙表示从在载波中停止传输直到在载波中恢复传输的时间。在这种情况下,间隙持续时间的最小值为100μs。此外,在包括间隙之前执行的传输持续时间的最大值是6ms。此外,间隙的持续时间不包括在信道占用时间中。当信道接入优先级等级的值是3或4,并且保证在执行信道接入的载波中没有使用其他无线电接入技术时,MCOT的值可以是10ms。在这种情况下,另一种无线接入技术可以包括Wi-Fi。否则,MCOT的值可以被确定,如表5的注释1中所描述。
COT表示无线通信设备占用信道的时间。如上所述,MCOT表示发起节点能够在未授权频带的任意一个载波中连续占用信道到最大的时间。然而,如上所述,作为不执行传输的间隔的间隙可以包括在多个传输之间,并且当包括间隙时,可以不同地应用MCOT的值。
图19图示根据本发明的实施例的当在由发起节点发起的信道占用内发起节点的传输的持续时间不超过信道占用的MCOT时,响应节点在由发起节点发起的信道占用内执行传输。即,图19图示发起节点在任意一个信道中完成传输之后,响应节点在该信道中执行传输。如上所述,可以描述为发起节点和响应节点在一个信道中执行传输的共享信道占用。
如果发起节点的传输的持续时间小于MCOT的持续时间,则响应节点可以在由发起节点发起的信道占用内执行传输。图19示出这样的情况,其中发起节点的传输与响应节点的传输之间的间隙为16μs。在这种情况下,用于响应节点执行信道接入的方法可能是有问题的。
在本发明的实施例中,当间隙的持续时间不大于第一持续时间时,响应节点可以在没有感测的情况下在间隙之后立即执行传输。具体地,响应节点可以执行上述的类别1信道接入。第一持续时间可以是16μs,并且这可以应用于稍后描述的实施例。在实施例中,可以对响应节点的传输的持续时间应用除MCOT之外的附加约束。在具体实施例中,响应节点可以在预定的持续时间内执行传输。在这种情况下,预定持续时间可以是与MCOT分开地应用于响应节点的传输的约束。具体地,预定持续时间可以是584μs。
在本发明的实施例中,当间隙的持续时间与第一持续时间相同时,响应节点可以为跟随间隙的传输执行第一基于固定持续时间的信道接入。第一基于固定持续时间的信道接入是其中当在第一固定持续时间内感测到信道空闲时,允许执行第一基于固定持续时间的信道接入的无线通信设备在第一固定的持续时间之后立即执行传输的信道接入。具体地,在第一基于固定持续时间的信道接入中,无线通信设备在第一固定持续时间内执行信道感测,并在固定持续时间内感测到信道空闲时在该信道上执行传输。第一基于固定持续时间的信道接入可以是上述的类别2LBT。在本实施例中,发起节点可以向响应节点隐式或显式指示第一基于固定持续时间的信道接入。例如,作为发起节点的基站可以通过使用许可向响应节点指示第一基于固定持续时间的信道接入。
在本发明的实施例中,当由发起节点发起的信道占用内连续调度或许可的传输之间的间隙不大于第二固定持续时间时,执行第二传输的节点可以执行第二基于固定持续时间的信道接入。第二基于固定持续时间的信道接入是其中当具有第二固定持续时间的同时信道空闲时,允许执行第二基于固定持续时间的信道接入的无线通信设备在第二固定持续时间之后立即执行传输的信道接入。具体地,在第二基于固定持续时间的信道接入中,无线通信设备在第二固定持续时间内执行信道感测,并在固定持续时间内感测到信道空闲时在该信道上执行传输。第二固定持续时间可以大于上述第一固定持续时间。具体地,第二持续时间可以为25μs,并且这可以应用于稍后描述的实施例。此外,即使在相同信道占用内上行链路传输随后不是下行链路传输,UE也可以在上行链路传输之后对上行链路传输执行第二基于固定持续时间的信道接入。此外,即使在相同信道占用内下行链路传输随后不是上行链路传输时,UE也可以对上行链路传输执行第二基于固定持续时间的信道接入。另外,当在相同信道占用内上行链路传输与后续下行链路传输的间隔大于16μs且不大于25μs时,基站可以对下行链路传输执行第二基于固定持续时间的信道接入。
将描述当间隙不大于第一固定持续时间时应用的实施例。在这种情况下,第一固定持续时间可以是如上所述的16μs。
当间隙不大于第一固定持续时间时,执行跟随间隙的传输的响应节点可以在没有感测的情况下立即执行传输,或者可以通过执行第一基于固定持续时间的信道接入来执行传输。在这种情况下,取决于跟随间隙的传输是否包括可能被分类为确定信道接入优先级等级的业务或数据业务,响应节点可以在不感测的情况下立即执行传输,或者可以通过执行第一基于固定持续时间的信道接入来执行传输。具体地,当响应节点发送针对从发起节点发送的数据业务的HARQ-ACK反馈时,响应节点可以在没有感测的情况下立即执行传输。
在另一个具体实施例中,当响应节点发送用于从发起节点发送的数据业务的上行链路控制信息(UCI)时,响应节点可以在没有感测的情况下立即执行传输。
在另一个具体实施例中,当响应节点发送SRS时,响应节点可以在没有感测的情况下立即执行传输。
在另一个具体实施例中,当响应节点发送物理随机接入信道(PRACH)时,响应节点可以在没有感测的情况下立即执行传输。
在上述实施例中,当响应节点在间隙之后立即执行包括数据业务的传输时,响应节点可以执行第一基于固定持续时间的信道接入。具体地,当由发起节点调度或配置数据业务时,响应节点可以执行第一基于固定持续时间的信道接入。当能够将数据业务分类为业务或确定数据业务的信道接入优先级等级时,响应节点可以执行第一基于固定持续时间的信道接入。
在上述实施例中,响应节点在没有感测的情况下立即执行传输可以表示发起节点执行上述类别4信道接入。如上所述,第一基于固定持续时间的信道接入可以是类别2LBT。
在由发起节点发起的COT中,发起节点可以执行跟随响应节点的传输的传输。在这种情况下,在由发起节点发起的COT中,发起节点的传输与响应节点的后续传输之间的间隙可以不大于第一固定持续时间。取决于间隙之后的传输是否包括可以分类为确定接入优先级等级的业务或者数据业务,发起节点可以在没有感测的情况下立即执行传输,或者可以通过执行第一基于固定持续时间的信道接入来执行传输。
具体地,当发起节点仅发送用于调度由响应节点发送的数据的控制信息时,发起节点可以在没有感测的情况下立即执行传输。在这种情况下,控制信息可以是仅PDCCH、组公共信令、寻呼、仅参考信号、跟踪参考信号(TRS)、RACH消息4或切换命令中的至少一种。
在又一具体实施例中,当发起节点仅发送广播信息时,发起节点可以在没有感测的情况下立即执行传输。在这种情况下,广播信息可以是发现参考信号(DRS)、SS/PBCH块、类型0-PDCCH或剩余系统信息(RMSI)中的至少一种。
在上述实施例中,当发起节点在间隙之后立即执行包括数据业务的传输时,发起节点可以执行第一基于固定持续时间的信道接入。具体地,当数据业务调度响应节点或为响应节点配置时,发起节点可以执行第一基于固定持续时间的信道接入。当数据业务被分类为确定信道接入优先级等级的业务或数据业务时,发起节点可以执行第一基于固定持续时间的信道接入。
在上述实施例中,发起节点在没有感测的情况下立即执行传输可以表示发起节点执行前述的类别4信道接入。如上所述,第一基于固定持续时间的信道接入可以是类别2LBT。
在上述实施例中,发起节点可以是基站,并且响应节点可以是UE。也就是说,在上述实施例中,信道占用可以由基站发起。另外,发起节点可以是UE,并且响应节点可以是基站。也就是说,在上述实施例中,信道占用可以由UE发起。
在上述实施例中,在间隙之后执行传输的节点可以在MCOT内执行传输。
图20图示根据本发明的实施例的当下行链路传输在基站发起的COT内不占用与MCOT一样多并且UE的传输由基站调度或配置时UE的操作。
如图20中所示,基站的下行链路传输与UE的上行链路传输的间隙为16μs。在图20(a)的情况下,下行链路传输包括用于以时隙为单位调度PUSCH传输的多个UL许可。UE基于多个UL许可在多个时隙中发送PUSCH。在图20(b)的情况下,下行链路传输包括用于在多个时隙中调度PUSCH传输的一个UL许可。UE基于UL许可在多个时隙中发送PUSCH。在图20中,在作为发起节点的基站获取的信道占用内执行对上行链路传输的调度,但是上行链路传输的配置或调度可以在信道占用之前被执行。即使在这种情况下,也可以应用稍后描述的实施例。
发起节点可以是基站,并且响应节点可以是UE。当发起节点的传输与响应节点的传输之间的间隙为第一固定持续时间时,基站可以隐式或显式地指示第一基于固定持续时间的信道接入。例如,作为发起节点的基站可以通过使用UL许可向响应节点指示第一基于固定持续时间的信道接入。在这种情况下,UE在第一固定持续时间内感测信道。当在第一持续时间期间感测到信道空闲时,UE在第一固定持续时间之后立即执行传输。当在第一持续时间期间感测到信道忙碌时,用于操作UE的方法是有问题的。具体地,如上所述,可以调度或配置UE在多个时隙上的上行链路传输。在这种情况下,即使UE未能在多个时隙当中的第一时隙中接入信道,也可能在多个时隙当中的除了第一时隙之外的时隙中需要用于上行链路传输的信道接入。在这种情况下,将描述用于操作UE的方法。为了描述方便,通过{slot(n),slot(n+1),slot(n+2),…,slot(n+k-1)}表示调度或配置UE的上行链路传输的多个时隙,并且通过k表示多个时隙的数量。
对于UE,可以调度或配置多个上行链路传输。在没有间隙的情况下多个上行链路传输可以是连续的。具体地,UE可以从基站接收用于调度多个上行链路传输的许可。该许可指的是下行链路控制信息(DCI),并且可以包括用于调度上行链路传输的DL许可或UL许可。在具体实施例中,DL许可或UL许可可以将基于固定持续时间的信道接入指示为信道接入类型,并且可以指示用于接入其中执行多个上行链路传输的信道的信道接入优先级。在这种情况下,DL许可或UL许可可以将第一基于固定持续时间的信道接入指示为信道接入类型。
UE可以为作为多个上行链路传输之一的第一传输尝试第一基于固定持续时间的信道接入,并且当第一基于固定持续时间的信道接入失败时UE可以对作为跟随第一传输的传输的第二传输尝试第一基于固定持续时间的信道接入。当UE在第一基于固定持续时间的信道接入成功时,UE可以执行第二传输。在特定实施例中,UE可以为在多个时隙中的第一时隙slot(n)之后的剩余时隙slot(n+1)、slot(n+2)、...、slot(n+k-1)中的每一个执行用于上行链路传输的第一基于固定持续时间的信道接入。。
在另一个具体实施例中,UE可以在多个时隙中的第一时隙slot(n)之后的剩余的时隙slot(n+1)、slot(n+2)、...、slot(n+k-1)中执行用于上行链路传输的第一基于固定持续时间的信道接入预定次数。在这种情况下,可以将预定次数限制为k-1。
在又一具体实施例中,UE可以为作为多个上行链路传输之一的第一传输尝试第一基于固定持续时间的信道接入,并且当第一基于固定持续时间的信道接入失败时,取决于信道是否被连续感测为空闲的,UE可以尝试第一基于固定持续时间的信道接入或基于随机回退的接入用于作为跟随第一传输的传输的第二传输。当UE在第一时隙slot(n)中第一基于固定持续时间的信道接入失败并且在UE进行信道接入失败之后持续感测到信道空闲时,UE可以尝试第一基于固定持续时间的信道接入用于第二传输。在这种情况下,当UE在第一基于固定持续时间的信道接入成功时,UE可以执行第二传输。另外,当UE在第一时隙slot(n)中第一基于固定持续时间的信道接入失败并且在UE进行的信道接入失败之后没有持续感测到信道空闲时,UE可以在多个时隙的第一时隙slot(n)之后的剩余时隙slot(n+1)、slot(n+2)、...、slot(n+k-1)中执行用于上行链路传输的基于随机回退的信道接入。当UE成功进行基于随机回退的信道接入时,UE可以执行第二传输。在这种情况下,当在第一时隙slot(n)或在多个时隙中的第一时隙slot(n)之后的剩余的时隙slot(n+1)、slot(n+2)、..、slot(n+k-1)中通过DCI向UE指示作为信道接入方法的基于随机回退的信道接入时,UE可以通过使用由DCI指示的信道接入优先级等级来执行基于随机回退的信道接入。当在多个时隙slot(n)、slot(n+1)、slot(n+2)、...、slot(n+k-1)的全部中通过DCI向UE指示作为除了基于随机回退的信道接入之外的信道接入方法的其他信道接入方法,UE可以使用调度DCI指示的信道接入优先级等级执行用于上行链路传输的基于随机回退的信道接入。为此,当基站在DCI中指示基于固定持续时间的信道接入时,基站可以在DCI中指示用于获得对信道的接入的信道接入优先级等级。具体地,当基站在DCI中指示第一基于固定持续时间的信道接入时,基站可以在DCI中指示用于获得对该信道的接入的信道接入优先级等级。
在又一具体实施例中,UE可以为作为多个上行链路传输之一的第一传输尝试第一基于固定持续时间的信道接入,并且当第一基于固定持续时间的信道接入失败时UE可以为作为跟随第一传输的传输的第二传输尝试第二基于固定持续时间的信道接入。当UE在第二基于固定持续时间的信道接入中成功时,UE可以执行第二传输。具体地,当UE在第一时隙slot(n)中第一基于固定持续时间的信道接入失败后,UE可以在每个感测时隙Tsl感测UE是否空闲。当UE在第一时隙slot(n)中第一基于固定持续时间的信道接入失败并且在UE进行的信道接入失败后持续感测信道空闲时,UE可以在多个时隙的第一时隙slot(n)之后的剩余时隙slot(n+1)、slot(n+2)、...、slot(n+k-1)中执行用于上行链路传输的第二基于固定持续时间的信道接入。这是通过考虑到当间隙是第一固定持续时间时段时可以执行第一基于固定持续时间的信道接入来执行的,并且信道接入在第一时隙slot(n)中失败,并且因此传输之间的间隙被增加。当UE在第一时隙slot(n)中第一基于固定持续时间的信道接入失败并且在UE进行的信道接入失败之后没有持续感测到信道空闲时,UE可以在多个时隙的第一时隙slot(n)之后的剩余时隙slot(n+1)、slot(n+2)、...、slot(n+k-1)中执行用于上行链路传输的基于随机回退的信道接入。当UE基于随机回退的信道接入成功时,UE可以执行第二传输。在这种情况下,当在多个时隙的第一时隙slot(n)或第一时隙slot(n)之后的剩余的时隙slot(n+1)、slot(n+2)、...、slot(n+k-1)中,通过DCI向UE指示作为信道接入方法的基于随机回退的信道接入时,UE可以通过使用由DCI指示的信道接入优先级等级来执行基于随机回退的信道接入。当在多个时隙slot(n)、slot(n+1)、slot(n+2)、...、slot(n+k-1)的全部中通过DCI向UE指示除了基于随机回退的信道接入之外的作为信道接入方法的其他信道接入方法时,UE可以使用调度DCI指示的信道接入优先级等级执行用于上行链路传输的基于随机回退的信道接入。为此,当基站在DCI中指示基于固定持续时间的信道接入时,基站可以在DCI中指示用于获得对信道的接入的信道接入优先级等级。具体地,当基站在DCI中指示第一基于固定持续时间的信道接入时,基站可以在DCI中指示用于获得对该信道的接入的信道接入优先级等级。
在又一具体实施例中,可以在来自基站的传输与UE打算发送的上行链路传输之间配置第一固定持续时间的间隙,并且因此UE可以将信道接入类型切换为用于作为多个上行链路传输之一的第一传输的第一基于固定持续时间的信道接入。在这种情况下,当第一基于固定持续时间的信道接入失败时,UE可以根据通过DCI指示的信道接入类型尝试信道接入以用于第二传输,该第二传输是跟随第一次传输的传输。当UE成功接入信道时,UE可以执行第二传输。具体地,当UE在第一时隙slot(n)中第一基于固定持续时间的信道接入失败时,UE可以在多个时隙中的第一时隙slot(n)之后的剩余的时隙slot(n+1)、slot(n+2)、…、slot(n+k-1)中根据通过DCI指示的信道接入类型执行用于上行链路传输的信道接入。此外,当多个许可在多个时隙上调度上行链路传输时,可以为每个时隙指示用于上行链路传输的信道接入类型。UE可以根据为多个时隙中的第一时隙slot(n)之后的剩余时隙slot(n+1)、slot(n+2)、...、slot(n+k-1)中的每一个指示的信道接入类型执行用于上行链路传输的信道接入。在实施例中,当通过DCI指示的信道接入类型为第一基于固定持续时间的信道接入时,UE的操作可以与描述的第一和第二实施例相同。然而,当通过DCI指示的信道接入类型不是第一基于固定持续时间的信道接入时,UE的操作与描述的第一和第二实施例不同。
在又一个具体实施例中,当UE在第一时隙slot(n)中第一基于固定持续时间的信道接入失败时,UE可以在多个时隙中的第一时隙slot(n)之后的剩余的时隙slot(n+1)、slot(n+2)、…、slot(n+k-1)中执行用于上行链路传输的基于随机回退的信道接入。这考虑了信道不空闲并且由于其他节点使用未授权的频带而导致信道忙碌的可能性。具体地,在实施例中,当通过第一基于固定持续时间的信道接入感测到信道忙碌而不是空闲时,即使连续执行第一基于固定持续时间的信道接入或第二基于固定持续时间的信道接入,由于其他节点该信道正处于忙碌,并且因此该信道很可能不是空闲且处于忙碌。因此,这是其中UE在执行基于随机回退的信道接入以用于slot(n+1)和后续时隙的传输之后执行上行链路传输的方法。
在上述实施例中,基于随机回退的信道接入可以是类别4LBT。
关于调度上行链路传输的情况,已经描述了本发明的先前实施例,重点是通过调度许可来调度上行链路传输的情况。即使当以时间和频率为单位的资源由RRC配置来配置并且UE在配置的资源中执行上行链路传输时,也可以应用上述实施例。
尽管已经结合特定实施例描述了本发明的方法和系统,但是可以使用具有通用硬件架构的计算系统来实现其组件或操作中的一些或全部。
上述本发明的描述仅是示例性的,并且本发明所属的本领域的技术人员将理解,可以在不改变本发明的技术精神或基本特征的情况下进行各种修改和改变。因此,应解释为上述实施例在所有方面都是说明性的而不是限制性的。例如,描述为单一类型的各个组件可以以分布式的方式实现,并且同样地,描述为分布式的组件也可以以组合的形式实现。
本发明的范围由所附权利要求而不是详细描述来指示,并且应理解为,从权利要求及其等效物的含义和范围导出的所有变化或修改均包括在本发明的范围内。

Claims (20)

1.一种在未授权频带中与基站进行无线通信的用户设备(UE),所述UE包括:
通信模块;和
处理器,所述处理器控制所述通信模块,
其中,所述处理器被配置成:
从所述基站接收用于调度多个上行链路传输的许可,并且
当所述UE尝试第一基于固定持续时间的信道接入用于作为所述多个上行链路传输之一的第一传输,并且在所述第一基于固定持续时间的信道接入中失败时,尝试第二基于固定持续时间的信道接入用于作为跟随所述第一传输的传输的第二传输,其中所述第一基于固定持续时间的信道接入是其中当在第一固定持续时间内感测到信道空闲时,允许执行所述第一基于固定持续时间的信道接入的所述UE在所述第一固定持续时间之后立即执行传输的信道接入;并且
其中,所述第二基于固定持续时间的信道接入是其中当在第二固定持续时间期间感测到所述信道空闲时,允许执行所述第二基于固定持续时间的信道接入的所述UE在所述第二固定持续时间之后立即执行传输的信道接入。
2.根据权利要求1所述的UE,其中,所述第一固定持续时间短于所述第二固定持续时间。
3.根据权利要求2所述的UE,其中,所述第一固定持续时间是16μs,并且
其中,所述第二固定持续时间是25μs。
4.根据权利要求1所述的UE,其中,所述许可将基于固定持续时间的信道接入指示为信道接入类型,并且指示被用于接入在其中执行所述多个上行链路传输的信道的信道接入优先级。
5.根据权利要求4所述的UE,其中,所述许可将所述第一基于固定持续时间的信道接入指示为所述信道接入类型。
6.根据权利要求1所述的UE,其中,所述许可包括用于调度所述多个上行链路传输的一个或多个许可,并且所述多个上行链路传输在没有时间上的间隙的情况下继续。
7.一种在未授权频带中与UE进行无线通信的基站,所述基站包括:
通信模块;和
处理器,所述处理器控制所述通信模块,
其中,所述处理器被配置成,当所述UE的传输的持续时间小于最大信道占用时间并且在所述UE的传输和到所述UE的传输之间的间隙不大于第一固定持续时间时,在其中执行所述UE的传输的信道中的最大信道占用时间内在没有进行感测的情况下,在所述间隙之后立即执行到所述UE的传输,并且
其中,所述第一固定持续时间是16μs。
8.根据权利要求7所述的基站,其中,所述处理器被配置成,当在所述UE的传输和到所述UE的传输之间的间隙不大于所述第一固定持续时间时,在预定的持续时间内没有感测的情况下,在所述间隙之后立即执行到所述UE的传输,并且
其中,所述预定持续时间是与所述最大信道占用时间分开地应用于所述基站的传输的约束。
9.根据权利要求7所述的基站,其中,所述处理器被配置成,当在所述UE的传输和到所述UE的传输之间的所述间隙等于所述第一固定持续时间时,在其中执行所述UE的传输的信道中尝试第一基于固定持续时间的信道接入,其中,所述第一基于固定持续时间的信道接入是其中当在所述第一固定持续时间内感测到所述信道空闲时,允许执行所述第一基于固定持续时间的信道接入的所述基站在所述第一固定持续时间之后立即执行传输的信道接入。
10.根据权利要求9所述的基站,其中,当在所述UE的传输与到所述UE的传输之间的所述间隙不大于所述第二固定持续时间时,在其中执行所述UE的传输的信道中尝试第二基于固定持续时间的信道接入,其中,所述第二基于固定持续时间的信道接入是其中当在所述第二固定持续时间期间感测到所述信道空闲时,允许执行所述第二基于固定持续时间的信道接入的所述基站在所述第二固定持续时间之后立即执行传输的信道接入,并且
其中,所述第二固定持续时间是25μs。
11.根据权利要求7所述的基站,其中,包括所述UE的传输和所述基站到所述UE的传输的信道占用由所述基站发起。
12.根据权利要求7所述的基站,其中,包括所述UE的传输和所述基站到所述UE的传输的信道占用由所述UE发起。
13.一种用于操作在未授权频带中与基站进行无线通信的UE的方法,所述方法包括:
从所述基站接收用于调度多个上行链路传输的许可;和
当所述UE尝试第一基于固定持续时间的信道接入用于作为所述多个上行链路传输之一的第一传输,并且在所述第一基于固定持续时间的信道接入中失败时,尝试第二基于固定持续时间的信道接入用于作为跟随所述第一传输的传输的第二传输,其中,所述第一基于固定持续时间的信道接入是其中当在第一固定持续时间内感测到信道空闲时,允许执行所述第一基于固定持续时间的信道接入的所述UE在所述第一固定持续时间之后立即执行传输的信道接入,并且
其中,所述第二基于固定持续时间的信道接入是其中当在第二固定持续时间期间感测到所述信道空闲时,允许执行所述第二基于固定持续时间的信道接入的所述UE在所述第二固定持续时间之后立即执行所述传输的信道接入。
14.根据权利要求13所述的方法,其中,所述第一固定持续时间短于所述第二固定持续时间。
15.根据权利要求14所述的方法,其中,所述第一固定持续时间是16μs,并且所述第二固定持续时间是25μs。
16.根据权利要求13所述的方法,其中,所述许可将基于固定持续时间的信道接入指示为信道接入类型,并且指示被用于接入在其中执行所述多个上行链路传输的信道的信道接入优先级。
17.根据权利要求16所述的方法,其中,所述许可将所述第一基于固定持续时间的信道接入指示为所述信道接入类型。
18.根据权利要求13所述的方法,其中,所述许可包括用于调度所述多个上行链路传输的一个或多个许可,并且所述多个上行链路传输在没有时间上的间隙的情况下继续。
19.一种用于操作在未授权频带中与UE进行无线通信的基站的方法,所述方法包括:
当所述UE的传输的持续时间小于最大信道占用时间并且在所述UE的传输和到所述UE的传输之间的间隙不大于第一固定持续时间时,在其中执行所述UE的传输的信道中的最大信道占用时间内在没有感测的情况下,在所述间隙之后立即执行到所述UE的传输,其中,所述第一固定持续时间是16μs。
20.根据权利要求19所述的基站,其中,在其中执行所述UE的传输的所述信道中,在所述最大信道占用时间内没有感测的情况下,在所述间隙之后立即执行到所述UE的传输包括:
当在所述UE的传输和到所述UE的传输之间的所述间隙不大于所述第一固定持续时间时,在预定持续时间内没有感测的情况下,在所述间隙之后立即执行到所述UE的传输,并且
其中,所述预定持续时间是与所述最大信道占用时间分开地应用于所述基站的传输的约束。
CN202080055952.7A 2019-08-06 2020-08-06 在未授权频带中执行传输的信道接入方法和使用其的装置 Pending CN114208369A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2019-0095457 2019-08-06
KR20190095457 2019-08-06
PCT/KR2020/010409 WO2021025488A1 (ko) 2019-08-06 2020-08-06 비면허 대역에서 전송을 수행하기 위한 채널 액세스 방법 및 이를 이용하는 장치

Publications (1)

Publication Number Publication Date
CN114208369A true CN114208369A (zh) 2022-03-18

Family

ID=74504141

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080055952.7A Pending CN114208369A (zh) 2019-08-06 2020-08-06 在未授权频带中执行传输的信道接入方法和使用其的装置

Country Status (7)

Country Link
US (4) US11503653B2 (zh)
EP (3) EP4329354A3 (zh)
JP (4) JP7204275B2 (zh)
KR (4) KR102476055B1 (zh)
CN (1) CN114208369A (zh)
TW (2) TW202329742A (zh)
WO (1) WO2021025488A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11323887B2 (en) * 2017-09-27 2022-05-03 Lg Electronics Inc. Method for terminal for transmitting uplink signal in wireless communication system supporting unlicensed band, and apparatus supporting method
TW202329742A (zh) 2019-08-06 2023-07-16 南韓商韋勒斯標準與技術協會公司 使用者設備及用於使用者設備之方法
WO2023167546A1 (ko) * 2022-03-03 2023-09-07 엘지전자 주식회사 무선랜 시스템에서 센싱 절차를 수행하는 방법 및 장치
KR20240065669A (ko) 2022-11-07 2024-05-14 주식회사 엘지에너지솔루션 전고체 전지용 양극 및 이를 포함하는 전고체 전지

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115426657A (zh) 2015-09-25 2022-12-02 中兴通讯股份有限公司 一种确定lbt模式的方法、装置和实现lbt模式切换的方法
JP6557423B6 (ja) * 2016-01-20 2019-09-18 エルジー エレクトロニクス インコーポレイティド 非免許帯域を支援する無線通信システムにおいて上りリンク信号を送信する方法及びそれを支援する装置
EP3435580A4 (en) * 2016-03-25 2019-10-16 Wilus Institute of Standards and Technology Inc. UPLINK BANDLESS LICENSE ACCESS CHANNEL ACCESS METHOD IN WIRELESS COMMUNICATION SYSTEM AND APPARATUS THEREFOR
US10383165B2 (en) * 2016-06-03 2019-08-13 Ofinno, Llc Uplink resource allocation in a wireless device and wireless network
WO2017214621A1 (en) * 2016-06-11 2017-12-14 Ofinno Technologies, Llc Listen before talk procedure in a wireless device and wireless network
KR102647787B1 (ko) * 2017-08-12 2024-03-15 주식회사 윌러스표준기술연구소 비면허 대역에서의 채널 액세스 방법, 장치 및 시스템
US10779289B2 (en) * 2018-02-28 2020-09-15 Lg Electronics Inc. Method for adjusting contention window size in wireless communication system and apparatus using same
US11405150B2 (en) * 2018-05-10 2022-08-02 Lg Electronics Inc. Method by which terminal transmits data in unlicensed band, and apparatus for using method
US20200053798A1 (en) * 2018-08-10 2020-02-13 Mediatek Inc. Methods for mitigating impact of listen-before-talk in unlicensed spectrum
WO2020091565A1 (ko) * 2018-11-02 2020-05-07 엘지전자 주식회사 비면허 대역에서 단말의 상향링크 신호 전송 방법 및 상기 방법을 이용하는 장치
EP3900432A4 (en) * 2018-12-20 2022-08-03 Telefonaktiebolaget LM Ericsson (publ) METHOD AND DEVICE FOR SHARING A COMMUNICATION CHANNEL
US11330443B2 (en) * 2019-01-08 2022-05-10 Ofinno, Llc HARQ feedback for configured grant
EP3925357A1 (en) * 2019-02-12 2021-12-22 Telefonaktiebolaget LM Ericsson (publ) Control signalling for transmission in unlicensed frequency spectrum
US20200322987A1 (en) * 2019-04-02 2020-10-08 Mediatek Singapore Pte. Ltd. Switching Between Load-Based Mode And Frame-Based Mode When Operating In Unlicensed Band In Mobile Communications
TW202329742A (zh) 2019-08-06 2023-07-16 南韓商韋勒斯標準與技術協會公司 使用者設備及用於使用者設備之方法
US11751251B2 (en) 2019-09-19 2023-09-05 Intel Corporation Grant based PUSCH transmission and configured grant based PUSCH transmission in NR systems operating on unlicensed spectrum

Also Published As

Publication number Publication date
US11838955B2 (en) 2023-12-05
KR102476055B1 (ko) 2022-12-09
US11792863B2 (en) 2023-10-17
EP4329354A2 (en) 2024-02-28
US20220159717A1 (en) 2022-05-19
EP4329353A2 (en) 2024-02-28
TW202123761A (zh) 2021-06-16
EP3996459A4 (en) 2022-08-03
KR102577889B1 (ko) 2023-09-14
JP2023024629A (ja) 2023-02-16
US11503653B2 (en) 2022-11-15
JP7388773B2 (ja) 2023-11-29
KR20220143970A (ko) 2022-10-25
EP3996459A1 (en) 2022-05-11
EP3996459B1 (en) 2024-05-22
KR102647709B1 (ko) 2024-03-15
JP2022539268A (ja) 2022-09-07
JP7388774B2 (ja) 2023-11-29
TWI799729B (zh) 2023-04-21
US20240049305A1 (en) 2024-02-08
EP4329353A3 (en) 2024-04-17
US20220295548A1 (en) 2022-09-15
WO2021025488A1 (ko) 2021-02-11
TW202329742A (zh) 2023-07-16
JP2023184734A (ja) 2023-12-28
KR20220146682A (ko) 2022-11-01
JP2023024630A (ja) 2023-02-16
KR20240036155A (ko) 2024-03-19
US20220304050A1 (en) 2022-09-22
KR20220046563A (ko) 2022-04-14
EP4329354A3 (en) 2024-04-17
JP7204275B2 (ja) 2023-01-16

Similar Documents

Publication Publication Date Title
CN112567827B (zh) 无线通信系统中发送和接收物理信道和信号的方法以及使用其的装置
KR102642717B1 (ko) 비면허 대역에서의 채널 액세스 방법, 장치 및 시스템
US11838955B2 (en) Channel access method for performing transmission in unlicensed band, and device using same
EP4050962A1 (en) Method for transmitting/receiving channel by using guard band in one carrier in wireless communication system, and device therefor
CN113785648A (zh) 在未授权频带中执行传输的资源分配方法及使用其的设备
KR102636046B1 (ko) 비면허 대역에서 전송을 수행하기 위한 채널 액세스 방법 및 이를 이용하는 장치
KR102577892B1 (ko) 비면허 대역에서 bwp(대역폭 파트)를 기초로 물리 채널 및 신호를 송수신하는 방법 및 이를 이용하는 장치
US20220150979A1 (en) Channel access method for performing transmission in unlicensed band, and apparatus using same
CN115362744A (zh) 在无线通信系统中执行上行链路/下行链路传输的方法和设备
CN113170511B (zh) 基于未授权频带的带宽部分(bwp)发送和接收物理信道和信号的方法及使用该方法的设备
CN115804212A (zh) 在未授权频带中接收下行链路和上行链路无线电资源的方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination