CN114200573B - 基于液体填充的高非线性高双折射光子晶体保偏光纤 - Google Patents

基于液体填充的高非线性高双折射光子晶体保偏光纤 Download PDF

Info

Publication number
CN114200573B
CN114200573B CN202111402069.3A CN202111402069A CN114200573B CN 114200573 B CN114200573 B CN 114200573B CN 202111402069 A CN202111402069 A CN 202111402069A CN 114200573 B CN114200573 B CN 114200573B
Authority
CN
China
Prior art keywords
fiber
air holes
nonlinearity
birefringence
polarization maintaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111402069.3A
Other languages
English (en)
Other versions
CN114200573A (zh
Inventor
王超
林凯
曹苏群
姜明新
王俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaiyin Institute of Technology
Suzhou Everbright Photonics Co Ltd
Original Assignee
Huaiyin Institute of Technology
Suzhou Everbright Photonics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Institute of Technology, Suzhou Everbright Photonics Co Ltd filed Critical Huaiyin Institute of Technology
Priority to CN202111402069.3A priority Critical patent/CN114200573B/zh
Publication of CN114200573A publication Critical patent/CN114200573A/zh
Application granted granted Critical
Publication of CN114200573B publication Critical patent/CN114200573B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02385Comprising liquid, e.g. fluid filled holes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/024Optical fibres with cladding with or without a coating with polarisation maintaining properties

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明涉及超连续光谱的调谐和控制技术领域,公开了一种基于液体填充的高非线性高双折射光子晶体保偏光纤,包括纤芯和包层,纤芯位于光纤的中心,在纤芯周围的包层中设置两种尺寸的空气孔,空气孔的径向截面均为圆形且其呈六边形点阵排列;小空气孔位于纤芯上下端对称设置,且其上端与下端的小空气孔均呈V字形分布,大空气孔位于纤芯左右端对称设置,且其左侧与右侧的大空气孔均呈菱形分布;各空气孔之间的间距相等。与现有技术相比,本发明晶体保偏光纤是一种三层气孔非旋转对称结构,具有较高的非线性和双折射特性,高非线性、高双折射(B=10‑3~10‑2)单模传输,结构简单容易实现。

Description

基于液体填充的高非线性高双折射光子晶体保偏光纤
技术领域
本发明涉及超连续光谱的调谐和控制技术领域,具体涉及一种基于液体填充的高非线性高双折射光子晶体保偏光纤。
背景技术
紫外到近红外区域线偏振超连续谱源可用于生物医学成像和荧光寿命成像领域,高光谱成像系统要求超连续谱源为线偏振光,超短脉冲放大器和2μm光谱区频率梳源需要线偏振超连续谱光源,然而线偏振超连续谱产生离不开高双折射的保偏光纤。另外,通过保偏光纤能获得明确定义的种子脉冲的偏振态和相位等。传统的晶体保偏光纤,利用单纯的固体材料光纤实现光谱的调谐或控制的范围较窄、精度较低。为了获得高非线性、高折射和色散可控光子晶体光纤,常用的方法是在纤芯或纤芯周围使用椭圆或菱形孔,这些方法能使双折射系数达到10-3~10-2范围,但是在纤芯或纤芯周围引入椭圆孔或矩形孔会使光纤的制造变得较为困难。高非线性液体(CS2)填充光子晶体光纤保留了软玻璃光纤的高非线性特性,具备与气体填充相当的可调谐能力。通过优化结构能实现光纤慢轴工作于全正常色散区、快轴工作于反常色散区,可实现超连续光谱的调谐和控制。
发明内容
发明目的:针对现有技术中存在的问题,本发明提供一种基于液体填充的高非线性高双折射光子晶体保偏光纤,实现高非线性、高双折射单模传输,且结构简单容易实现。
技术方案:本发明提供了一种基于液体填充的高非线性高双折射光子晶体保偏光纤,包括纤芯和包层,所述纤芯位于光纤的中心,在所述纤芯周围的包层中设置两种尺寸的空气孔,所述空气孔的径向截面均为圆形且其呈六边形点阵排列;小空气孔位于所述纤芯上下端对称设置,且其上端与下端的小空气孔均呈V字形分布,大空气孔位于所述纤芯左右端对称设置,且其左侧与右侧的大空气孔均呈菱形分布;各所述空气孔之间的间距相等。
进一步地,所述纤芯直径D与各所述空气孔之间的间距Λ相等。
进一步地,所述纤芯直径D和各所述空气孔之间的间距Λ取值为1.3μm~2.0μm,所述纤芯相对折射率差Δn为0.02%~1.29%;所述包层直径d为125μm±5μm,且所述包层为纯石英玻璃层。
进一步地,所述光纤的数值孔径NA为0.35~0.51,模场有效面积为1.31μm2~5.21μm2
进一步地,所述大空气孔的直径为d1=0.8Λ~0.9Λ,所述小空气孔的直径d2=0.4Λ~0.5Λ。
进一步地,所述光纤工作波长为1550nm时,其截止波长为1000nm~3000nm。
进一步地,所述光纤双折射系数B值大于等于1.9×10-4
进一步地,所述光纤双折射系数B值大于等于1.2×10-2
有益效果:
1、本发明设计的液体填充复合光子晶体保偏光纤是一种三层气孔非旋转对称结构,纤芯和包层孔均为圆形孔,纤芯填充中红外波长区高透射率的CS2液体,不存在简并的正交偏振模,使该复合光纤表现出很高的非线性和双折射特性。同时该光纤也具备在中红外波长区域良好单模传输特性,实现高非线性、高双折射(B=10-3~10-2)单模传输,兼具结构简单容易实现等优点,可适用于高相干光纤激光和光纤传感等系统,并使应用领域得到进一步拓宽。
2、本发明所设计的高非线性、高热光特性CS2液体填充复合单模保偏光子晶体光纤除了能实现光谱的可调谐、可控特性之外,对外界多个参量如(温度、应力/应变等)的变化具有较高的灵敏度。
附图说明
图1为本发明晶体保偏光纤剖面结构示意图;
图2为本发明实施例3晶体保偏光纤非线性仿真图;
图3为本发明实施例3晶体保偏光纤模式双折射仿真图;
图4为本发明实施例3晶体保偏光纤色散仿真图。
其中,1-纤芯,2-包层,3-大空气孔,4-小空气孔。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
本发明提出了一种基于液体填充的高非线性高双折射光子晶体保偏光纤,参见附图1,主要包括纤芯1和包层2,纤芯1位于光纤中心,纤芯1和包层2截面均为圆形孔,纤芯1为CS2液体填充芯,在纤芯1周围包层2中设置两种尺寸的空气孔,所有空气孔呈六边形点阵排列,包层2中的空气孔与空气孔之间的距离为Λ(大空气孔3与小空气孔4之间的间距为Λ,大空气孔3与大空气孔3之间的间距为Λ,小空气孔4与小空气孔4之间的间距为Λ),以附图1中的方位显示,小空气孔4位于纤芯1上下端对称设置,且其上端与下端的小空气孔4均呈V字形分布。大空气孔3位于纤芯1左右端对称设置,且其左侧与右侧的大空气孔3均呈菱形分布,本发明设计的晶体保偏光纤打破光晶体光纤原有的结构的对称性,是一种三层气孔非旋转对称结构,实现高双折射特性。
下面针对上述的光纤结构,做如下实施例:
实施例1:
光纤的剖面结构如图1所示:包括纤芯1,纤芯1位于光纤的中心,其中填充有CS2液体,纤芯1直径D=Λ取2.0μm,包层2直径d为125μm±5μm,包层2为纯石英玻璃层。在纤芯1周围的包层2中设置两种尺寸的空气孔,所有气孔呈六边形点阵排列,包层气孔与气孔之间的距离为Λ,大空气孔3的直径d1=0.8Λ,小空气孔4直径d2=0.4Λ时,光纤的数值孔径NA值为0.34~0.52;光纤双折射系数B值为1.9×10-4~5.5×10-3,非线性系数γ值为1.2W-1·m-1~7.1W-1·m-1
实施例2:
光纤的剖面结构图不变,纤芯直径D=Λ取1.5μm,包层2直径d为125μm±5μm,包层2为纯石英玻璃层。大空气孔3的直径d1=0.8Λ,小气孔4直径d2=0.4Λ时,光纤的数值孔径NA值为0.41~0.52;光纤双折射系数B值为6.7×10-4~1.0×10-2,非线性系数γ值为1.2W-1·m-1~10.7W-1·m-1
实施例3:
光纤的剖面结构图不变,纤芯直径D=Λ取1.4μm,包层2直径d为125μm±5μm,包层2为纯石英玻璃层。大空气孔3的直径d1=0.9Λ,小气孔4直径d2=0.42Λ时,光纤的数值孔径NA值为0.42~0.54;光纤双折射系数B值为1.6×10-3~1.7×10-2,非线性系数γ值为1.4W-1·m-1~11.9W-1·m-1
对于上述的实施例3,做如下仿真数据:
对于图2至图4中的非线性系数、双折射以及色散通过如下方式进行计算:
图2中非线性系数是由式(1)计算得出:
Figure BDA0003364294810000031
其中,λ为波长,n2为非线性折射率,对于二硫化碳的非线性折射率n2=1.06×10- 18m2W-1,Aeff为模场有效面积。
图3中模式双折系数B由式(2)计算得出:
Figure BDA0003364294810000032
其中,
Figure BDA0003364294810000033
为x轴(慢轴)有效折射率,
Figure BDA0003364294810000034
为y轴(快轴)有效折射率。
图4中色散曲线由式(3)计算得出:
Figure BDA0003364294810000041
其中,c为光在真空中的速度,neff为光纤的模式的有效折射率,Re表示取实部。
从附图2至附图4可以发现,本发明实施例3设计的光纤具有较高的非线性(参见图2)、较高的模式双折射(参见图3),通过对光纤结构参数优化后能够实现该复合保偏光纤的x轴(慢轴)工作于全正常色散区,y轴(快轴)工作于反常色散区,如图4所示,进而能够实现对超连续光谱的调谐和控制。
上述实施方式只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所做的等效变换或修饰,都应涵盖在本发明的保护范围之内。

Claims (8)

1.一种基于液体填充的高非线性高双折射光子晶体保偏光纤,包括纤芯(1)和包层(2),其特征在于,所述纤芯(1)位于光纤的中心,所述纤芯(1)为CS2液体填充芯,在所述纤芯(1)周围的包层(2)中设置两种尺寸的空气孔,所述空气孔的径向截面均为圆形且其呈六边形点阵排列;小空气孔(4)位于所述纤芯(1)上下端对称设置,且其上端与下端的小空气孔均呈V字形分布,大空气孔(3)位于所述纤芯(1)左右端对称设置,且其左侧与右侧的大空气孔(3)均呈菱形分布;各所述空气孔之间的间距相等。
2.根据权利要求1所述的基于液体填充的高非线性高双折射光子晶体保偏光纤,其特征在于,所述纤芯(1)直径D与各所述空气孔之间的间距Λ相等。
3.根据权利要求2所述的基于液体填充的高非线性高双折射光子晶体保偏光纤,其特征在于,所述纤芯(1)直径D和各所述空气孔之间的间距Λ取值为1.3 μm~2.0 μm,所述纤芯(1)相对折射率差Δn为0.02%~1.29%;所述包层(2)直径d为125 μm±5 μm,且所述包层(2)为纯石英玻璃层。
4.根据权利要求1至3任一所述的基于液体填充的高非线性高双折射光子晶体保偏光纤,其特征在于,所述光纤的数值孔径NA为0.35~0.51,模场有效面积为1.31 μm2~5.21μm2
5.根据权利要求1至3任一所述的基于液体填充的高非线性高双折射光子晶体保偏光纤,其特征在于,所述大空气孔(3)的直径为d1=0.8Λ~0.9Λ,所述小空气孔(4)的直径d2=0.4Λ~0.5Λ。
6.根据权利要求1至3任一所述的基于液体填充的高非线性高双折射光子晶体保偏光纤,其特征在于,所述光纤工作波长为1550 nm时,其截止波长为1000 nm~3000 nm。
7.根据权利要求1至3任一所述的基于液体填充的高非线性高双折射光子晶体保偏光纤,其特征在于,所述光纤双折射系数B值大于等于1.9×10-4
8.根据权利要求7所述的基于液体填充的高非线性高双折射光子晶体保偏光纤,其特征在于,所述光纤双折射系数B值大于等于1.2×10-2
CN202111402069.3A 2021-11-19 2021-11-19 基于液体填充的高非线性高双折射光子晶体保偏光纤 Active CN114200573B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111402069.3A CN114200573B (zh) 2021-11-19 2021-11-19 基于液体填充的高非线性高双折射光子晶体保偏光纤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111402069.3A CN114200573B (zh) 2021-11-19 2021-11-19 基于液体填充的高非线性高双折射光子晶体保偏光纤

Publications (2)

Publication Number Publication Date
CN114200573A CN114200573A (zh) 2022-03-18
CN114200573B true CN114200573B (zh) 2023-01-20

Family

ID=80648655

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111402069.3A Active CN114200573B (zh) 2021-11-19 2021-11-19 基于液体填充的高非线性高双折射光子晶体保偏光纤

Country Status (1)

Country Link
CN (1) CN114200573B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115248475A (zh) * 2022-08-04 2022-10-28 艾菲博(宁波)光电科技有限责任公司 一种微结构保偏光纤

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102854562A (zh) * 2012-10-09 2013-01-02 天津理工大学 一种高双折射光子晶体光纤
CN204287534U (zh) * 2015-01-04 2015-04-22 宝鸡文理学院 一种超连续光谱用光子晶体光纤
CN104678485A (zh) * 2015-03-10 2015-06-03 合肥工业大学 一种高双折射高非线性低限制损耗光子晶体光纤
CN105785504A (zh) * 2016-05-19 2016-07-20 合肥工业大学 一种具有优良慢光特性的液体填充光子晶体光纤
CN107843953A (zh) * 2017-07-27 2018-03-27 西安邮电大学 一种高双折射大非线性光子晶体光纤
CN211293338U (zh) * 2020-01-13 2020-08-18 中国计量大学 一种基于表面等离子体共振的光子晶体光纤偏振滤波器
KR102186972B1 (ko) * 2019-08-26 2020-12-04 한국전력공사 편광 유지 광자 결정 광섬유에 새겨진 장주기 광섬유 격자를 포함하는 온도 및 스트레인 동시 측정용 센서 및 이를 이용한 온도 및 스트레인 동시 측정 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100592114C (zh) * 2007-05-11 2010-02-24 江苏大学 一种微结构保偏光纤

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102854562A (zh) * 2012-10-09 2013-01-02 天津理工大学 一种高双折射光子晶体光纤
CN204287534U (zh) * 2015-01-04 2015-04-22 宝鸡文理学院 一种超连续光谱用光子晶体光纤
CN104678485A (zh) * 2015-03-10 2015-06-03 合肥工业大学 一种高双折射高非线性低限制损耗光子晶体光纤
CN105785504A (zh) * 2016-05-19 2016-07-20 合肥工业大学 一种具有优良慢光特性的液体填充光子晶体光纤
CN107843953A (zh) * 2017-07-27 2018-03-27 西安邮电大学 一种高双折射大非线性光子晶体光纤
KR102186972B1 (ko) * 2019-08-26 2020-12-04 한국전력공사 편광 유지 광자 결정 광섬유에 새겨진 장주기 광섬유 격자를 포함하는 온도 및 스트레인 동시 측정용 센서 및 이를 이용한 온도 및 스트레인 동시 측정 방법
CN211293338U (zh) * 2020-01-13 2020-08-18 中国计量大学 一种基于表面等离子体共振的光子晶体光纤偏振滤波器

Also Published As

Publication number Publication date
CN114200573A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
Jewart et al. Design of a highly-birefringent microstructured photonic crystal fiber for pressure monitoring
Han et al. Control and design of fiber birefringence characteristics based on selective-filled hybrid photonic crystal fibers
Revathi et al. Highly nonlinear and birefringent spiral photonic crystal fiber
Hasan et al. A polarization maintaining single-mode photonic crystal fiber for residual dispersion compensation
CN114200573B (zh) 基于液体填充的高非线性高双折射光子晶体保偏光纤
Hossain et al. Ultra-high birefringent, highly nonlinear Ge20Sb15Se65 chalcogenide glass photonic crystal fiber with zero dispersion wavelength for mid-infrared applications
US6788862B2 (en) Microstructured optical waveguide having large optical nonlinearity
Anas et al. Investigation of highly birefringent and highly nonlinear Hexa Sectored PCF with low confinement loss
Antkowiak et al. Phase and group modal birefringence of triple-defect photonic crystal fibres
Pandey et al. Photonic crystal fiber with high nonlinearity and extremely negative dispersion
CN105700070B (zh) 一种高双折射保偏光纤
CN114001843A (zh) 一种光子晶体光纤温度传感器及其测量方法
Bai et al. An ultrashort length and high extinction ratio polarization beam splitter based on dual-core PCF
Inci et al. Birefringence, dispersion and loss properties for PCFs with rectangular air-holes
Fatema et al. Effect of core infiltration in the birefringence of Photonic Crystal Fiber
Faruk et al. Design and Analysis of Highly Non-linear Dispersion Compensating Photonic Crystal Fiber using Square-Lattice Geometry
Abulibdeh et al. Exploring magnetic fluid sensor using dual circular core elliptical cladding photonic crystal fiber
Mia et al. Highly nonlinear and low confinement loss photonic crystal fiber using GaP slot core
Shah et al. A review on photonic crystal fibers
Man et al. Optimization design of temperature-insensitive Bragg gratings inscribed in ethanol-filled photonic crystal fibers
Urbanczyk et al. Photonic crystal fibers: new opportunities for sensing
Amin et al. Ultrahigh birefringent index guiding photonic crystal fibers
EP3173830B1 (en) Optical fiber and light source device
Li et al. Analysis of the fundamental space-filling mode of photonic crystal fibres: a symmetry point of view
Kumar et al. Analysis of the Confinement Loss and Birefringence of Index-Guided Photonic Crystal Fibres (PCF) in the Visible Spectrum

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20220318

Assignee: Suzhou Shuimu Zhizao Optical Technology Co.,Ltd.

Assignor: HUAIYIN INSTITUTE OF TECHNOLOGY

Contract record no.: X2023980035426

Denomination of invention: High nonlinearity and birefringence photonic crystal polarization maintaining fiber based on liquid filling

Granted publication date: 20230120

License type: Common License

Record date: 20230512