CN114199806A - A method for detecting organic matter distribution on the surface of micro-nano rough copper foil by AFM-IR - Google Patents
A method for detecting organic matter distribution on the surface of micro-nano rough copper foil by AFM-IR Download PDFInfo
- Publication number
- CN114199806A CN114199806A CN202111513883.2A CN202111513883A CN114199806A CN 114199806 A CN114199806 A CN 114199806A CN 202111513883 A CN202111513883 A CN 202111513883A CN 114199806 A CN114199806 A CN 114199806A
- Authority
- CN
- China
- Prior art keywords
- copper foil
- coupling agent
- silane coupling
- infrared
- afm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 46
- 239000011889 copper foil Substances 0.000 title claims abstract description 44
- 238000009826 distribution Methods 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims description 17
- 239000005416 organic matter Substances 0.000 title abstract description 5
- 239000006087 Silane Coupling Agent Substances 0.000 claims abstract description 27
- 238000002329 infrared spectrum Methods 0.000 claims abstract description 11
- 238000001514 detection method Methods 0.000 claims abstract description 8
- 238000001228 spectrum Methods 0.000 claims abstract description 5
- 238000010521 absorption reaction Methods 0.000 claims description 6
- 238000004566 IR spectroscopy Methods 0.000 abstract description 5
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract description 5
- 229910000077 silane Inorganic materials 0.000 abstract description 5
- 238000000862 absorption spectrum Methods 0.000 abstract description 2
- 238000004630 atomic force microscopy Methods 0.000 abstract description 2
- 239000007822 coupling agent Substances 0.000 abstract description 2
- 239000011888 foil Substances 0.000 description 9
- 239000000523 sample Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- -1 polydithio-dipropyl Polymers 0.000 description 3
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- RMKZLFMHXZAGTM-UHFFFAOYSA-N [dimethoxy(propyl)silyl]oxymethyl prop-2-enoate Chemical compound CCC[Si](OC)(OC)OCOC(=O)C=C RMKZLFMHXZAGTM-UHFFFAOYSA-N 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3563—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q60/00—Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
- G01Q60/24—AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
用AFM‑IR检测微纳米粗糙的铜箔表面有机物分布的方法,应用基于原子力显微成像‑红外光谱技术对PCB用铜箔表面任意一点进行红外光谱全谱扫描,获取铜箔表面吸附的硅烷偶联剂的红外特征吸收谱图,选择谱图中的硅烷偶联剂强度最大的特征峰作为AFM‑IR的红外检测波长,然后用这一检测波长对5μm×5μm区域进行扫描以获取该区域内的硅烷偶联剂的信号强度分布数据,使用数据处理软件进行数据处理,生成铜箔表面硅烷偶联剂的三维立体分布图像,表征硅烷偶联剂的空间分布状态。
AFM-IR is used to detect the distribution of organic matter on the surface of micro-nano rough copper foil. Atomic force microscopy imaging-infrared spectroscopy is used to scan the full spectrum of infrared spectrum at any point on the surface of copper foil for PCB to obtain the silane molecules adsorbed on the surface of copper foil. Infrared characteristic absorption spectrum of the coupling agent, select the characteristic peak with the highest intensity of the silane coupling agent in the spectrum as the infrared detection wavelength of AFM‑IR, and then use this detection wavelength to scan the 5μm×5μm area to obtain the area within this area. The signal intensity distribution data of the silane coupling agent was processed using data processing software to generate a three-dimensional distribution image of the silane coupling agent on the copper foil surface to characterize the spatial distribution state of the silane coupling agent.
Description
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111513883.2A CN114199806B (en) | 2021-12-10 | 2021-12-10 | Method for detecting organic matter distribution on micro-nano roughened copper foil surface by AFM-IR |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111513883.2A CN114199806B (en) | 2021-12-10 | 2021-12-10 | Method for detecting organic matter distribution on micro-nano roughened copper foil surface by AFM-IR |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114199806A true CN114199806A (en) | 2022-03-18 |
CN114199806B CN114199806B (en) | 2024-04-09 |
Family
ID=80652676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111513883.2A Active CN114199806B (en) | 2021-12-10 | 2021-12-10 | Method for detecting organic matter distribution on micro-nano roughened copper foil surface by AFM-IR |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114199806B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118150510A (en) * | 2024-05-11 | 2024-06-07 | 中国地质大学(北京) | A method for determining the adsorption capacity of organic matter |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005105158A (en) * | 2003-09-30 | 2005-04-21 | Choshun Jinzo Jushisho Kofun Yugenkoshi | Organic-inorganic hybrid film material and method for producing the same |
JP2007137041A (en) * | 2005-10-17 | 2007-06-07 | Hitachi Chem Co Ltd | Copper foil with adhesion assistant, printed wiring board and valuation method for curing degree |
JP2010212470A (en) * | 2009-03-11 | 2010-09-24 | Hitachi Cable Ltd | Copper foil for printed wiring board and method of manufacturing the same, and printed wiring board |
WO2011030626A1 (en) * | 2009-09-11 | 2011-03-17 | Jx日鉱日石金属株式会社 | Copper foil for lithium ion battery current collector |
US20120167261A1 (en) * | 2007-05-15 | 2012-06-28 | Mikhail Belkin | High Frequency Deflection Measurement of IR Absorption |
JP2014208893A (en) * | 2013-03-28 | 2014-11-06 | 古河電気工業株式会社 | Surface-treated copper foil, method of treating surface of the copper foil, copper-clad laminate sheet and method of producing the laminate sheet |
JP2018122587A (en) * | 2017-02-02 | 2018-08-09 | 東レ株式会社 | Laminate and method for manufacturing the laminate |
CN108603303A (en) * | 2016-02-10 | 2018-09-28 | 古河电气工业株式会社 | Surface treatment copper foil and the copper-clad laminated board being fabricated using it |
CN110121644A (en) * | 2016-08-22 | 2019-08-13 | 布鲁克纳米公司 | It is characterized using the infrared light of the sample of oscillation mode |
JP2019155684A (en) * | 2018-03-12 | 2019-09-19 | 東レ株式会社 | Laminate film |
WO2019230569A1 (en) * | 2018-05-30 | 2019-12-05 | Agc株式会社 | Method for producing resin-clad metal foil, resin-clad metal foil, laminate, and printed circuit board |
JP2020181897A (en) * | 2019-04-25 | 2020-11-05 | 株式会社Sumco | Semiconductor wafer analysis method, semiconductor wafer manufacturing process evaluation method, and semiconductor wafer manufacturing method |
US20210011053A1 (en) * | 2018-09-06 | 2021-01-14 | Bruker Nano, Inc. | Method And Apparatus Of Atomic Force Microscope Based Infrared Spectroscopy With Controlled Probing Depth |
US20210080484A1 (en) * | 2018-05-25 | 2021-03-18 | The Regents Of The University Of Colorado, A Body Corporate | Methods And Systems For Scanning Probe Sample Property Measurement And Imaging |
US20210213705A1 (en) * | 2018-05-31 | 2021-07-15 | Osaka University | Joined body and method for manufacturing same |
CN114107974A (en) * | 2021-12-10 | 2022-03-01 | 南京大学 | A process for coating silane coupling agent on the surface of copper foil for PCB |
CN114182264A (en) * | 2021-12-10 | 2022-03-15 | 南京大学 | Method for removing trace impurities on the surface of copper foil for PCB with sodium carbonate/citric acid aqueous solution |
-
2021
- 2021-12-10 CN CN202111513883.2A patent/CN114199806B/en active Active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005105158A (en) * | 2003-09-30 | 2005-04-21 | Choshun Jinzo Jushisho Kofun Yugenkoshi | Organic-inorganic hybrid film material and method for producing the same |
JP2007137041A (en) * | 2005-10-17 | 2007-06-07 | Hitachi Chem Co Ltd | Copper foil with adhesion assistant, printed wiring board and valuation method for curing degree |
US20120167261A1 (en) * | 2007-05-15 | 2012-06-28 | Mikhail Belkin | High Frequency Deflection Measurement of IR Absorption |
JP2010212470A (en) * | 2009-03-11 | 2010-09-24 | Hitachi Cable Ltd | Copper foil for printed wiring board and method of manufacturing the same, and printed wiring board |
WO2011030626A1 (en) * | 2009-09-11 | 2011-03-17 | Jx日鉱日石金属株式会社 | Copper foil for lithium ion battery current collector |
JP2014208893A (en) * | 2013-03-28 | 2014-11-06 | 古河電気工業株式会社 | Surface-treated copper foil, method of treating surface of the copper foil, copper-clad laminate sheet and method of producing the laminate sheet |
CN108603303A (en) * | 2016-02-10 | 2018-09-28 | 古河电气工业株式会社 | Surface treatment copper foil and the copper-clad laminated board being fabricated using it |
CN110121644A (en) * | 2016-08-22 | 2019-08-13 | 布鲁克纳米公司 | It is characterized using the infrared light of the sample of oscillation mode |
JP2018122587A (en) * | 2017-02-02 | 2018-08-09 | 東レ株式会社 | Laminate and method for manufacturing the laminate |
JP2019155684A (en) * | 2018-03-12 | 2019-09-19 | 東レ株式会社 | Laminate film |
US20210080484A1 (en) * | 2018-05-25 | 2021-03-18 | The Regents Of The University Of Colorado, A Body Corporate | Methods And Systems For Scanning Probe Sample Property Measurement And Imaging |
WO2019230569A1 (en) * | 2018-05-30 | 2019-12-05 | Agc株式会社 | Method for producing resin-clad metal foil, resin-clad metal foil, laminate, and printed circuit board |
US20210213705A1 (en) * | 2018-05-31 | 2021-07-15 | Osaka University | Joined body and method for manufacturing same |
US20210011053A1 (en) * | 2018-09-06 | 2021-01-14 | Bruker Nano, Inc. | Method And Apparatus Of Atomic Force Microscope Based Infrared Spectroscopy With Controlled Probing Depth |
JP2020181897A (en) * | 2019-04-25 | 2020-11-05 | 株式会社Sumco | Semiconductor wafer analysis method, semiconductor wafer manufacturing process evaluation method, and semiconductor wafer manufacturing method |
CN114107974A (en) * | 2021-12-10 | 2022-03-01 | 南京大学 | A process for coating silane coupling agent on the surface of copper foil for PCB |
CN114182264A (en) * | 2021-12-10 | 2022-03-15 | 南京大学 | Method for removing trace impurities on the surface of copper foil for PCB with sodium carbonate/citric acid aqueous solution |
Non-Patent Citations (12)
Title |
---|
"Self-assembled multilayer films of poor water-soluble copper(II) complexes constructed from dipyrido[3, 2-d : 2 \", 《JOURNAL OF SOLID STATE CHEMISTRY》, vol. 180, no. 10, pages 2950 - 2957 * |
ALMAJHADI, MOHAMMAD A. 等: "Observation of nanoscale opto-mechanical molecular damping as the origin of spectroscopic contrast in photo induced force microscopy", 《NATURE COMMUNICATIONS》, vol. 11, no. 1, 16 December 2020 (2020-12-16), pages 5691 * |
BADEN, NAOKI等: "New method for chemical characterization of polymer materials in industrial devices : AFM-IR with FIB sample preparation", 《PROCEEDINGS OF THE 22ND INTERNATIONAL SYMPOSIUM ON THE PHYSICAL AND FAILURE ANALYSIS OF INTEGRATED CIRCUITS》, pages 496 - 499 * |
CHO, SANG-JIN 等: "Surface Plasma Treatment of Polyimide Film for Cu Metallization", 《JAPANESE JOURNAL OF APPLIED PHYSICS》, vol. 50, no. 1, 1 January 2011 (2011-01-01), pages 01 * |
SANG, JING 等: "Hybrid joining of polyamide and hydrogenated acrylonitrile butadiene rubber through heat-resistant functional layer of silane coupling agent", 《APPLIED SURFACE SCIENCE》, vol. 412, 15 June 2017 (2017-06-15), pages 121 - 130, XP029988038, DOI: 10.1016/j.apsusc.2017.03.254 * |
冯古雨 等: "表面处理对三维浅交弯联机织复合材料界面及弯曲性能的影响", 《宇航材料工艺》, no. 02, 15 April 2016 (2016-04-15), pages 22 - 25 * |
史浩飞 等: "《石墨烯薄膜与柔性光电器件》", vol. 1, 30 April 2021, 华东理工大学出版社, pages: 123 - 126 * |
孙婷婷 等: "ARGET ATRP合成大分子偶联剂PMMA-b-PTMSPMA及其对玻璃表面的接枝", 《高分子材料科学与工程》, vol. 29, no. 6, 15 June 2013 (2013-06-15), pages 5 - 9 * |
李林玲: "受限态对高分子的玻璃化转变及扩散行为影响的研究", 《中国博士学位论文全文数据库工程科技Ⅰ辑》, no. 6, pages 014 - 49 * |
王保柱 等: "蓝宝石衬底上单晶InAlGaN外延膜的RF-MBE生长", 《半导体学报》, vol. 27, no. 8, pages 1382 - 1385 * |
高峰: "5G PCB板材及基础核心原材料需求和挑战", 《第二十一届中国覆铜板技术研讨会论文集》, pages 1 - 41 * |
黎青霞 等: "基于振动光谱成像技术的聚合物共混体系研究进展", 《光散射学报》, vol. 27, no. 04, pages 364 - 373 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118150510A (en) * | 2024-05-11 | 2024-06-07 | 中国地质大学(北京) | A method for determining the adsorption capacity of organic matter |
Also Published As
Publication number | Publication date |
---|---|
CN114199806B (en) | 2024-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gao et al. | Rapid and highly sensitive SERS detection of fungicide based on flexible “wash free” metallic textile | |
Huang et al. | Rational fabrication of silver-coated AFM TERS tips with a high enhancement and long lifetime | |
CN109141224B (en) | An Interferometric Reflection Optical Thin Film Microscopic Measurement Method Based on Structured Light | |
CN104764712A (en) | Method for detecting quality of inner wall of via hole of PCB | |
Chi et al. | Highly reusable nanoporous silver sheet for sensitive SERS detection of pesticides | |
CN102506754A (en) | Confocal measurement device for simultaneously measuring surface appearance and color of object and using method thereof | |
Chen et al. | Plasmonic gratings with nano-protrusions made by glancing angle deposition for single-molecule super-resolution imaging | |
CN102628985B (en) | Nano surface layer optical microscopic imaging device and imaging method by utilizing super-diffraction off-axis illumination technology | |
CN114199806A (en) | A method for detecting organic matter distribution on the surface of micro-nano rough copper foil by AFM-IR | |
Cejkova et al. | Characterization of copper SERS-active substrates prepared by electrochemical deposition | |
CN110455775A (en) | Superhydrophobic surface-enhanced substrates for surface-enhanced Raman spectroscopy detection | |
Luo et al. | Analyzing ancient Chinese handmade Lajian paper exhibiting an orange-red color | |
CN112116583B (en) | SEM image processing-based insulation paperboard aging discrimination inspection method | |
US20190262947A1 (en) | Fabrication of Fluorescence-Raman Dual Enhanced Modal Biometal Substrate | |
CN101324528B (en) | Thin film with local field enhancement function and preparing method thereof | |
Liang et al. | Optical coherence tomography in archaeological and conservation science-a new emerging field | |
CN102135448A (en) | Surface reflectance spectrum measuring method capable of preventing ambient light interference | |
Gerken et al. | Visualising iron gall ink underdrawings in sixteenth century paintings in-situ by micro-XRF scanning (MA-XRF) and LED-excited IRR (LEDE-IRR) | |
CN114182264B (en) | Method for removing trace impurities on surface of copper foil for PCB (printed circuit board) by using sodium carbonate/citric acid aqueous solution | |
Cheng et al. | Revealing local, enhanced optical field characteristics of Au nanoparticle arrays with 10 nm gap using scattering-type scanning near-field optical microscopy | |
CN114200164A (en) | Method for removing trace impurities on surface of copper foil by using dichloromethane/methanol mixed solvent under AFM-IR monitoring | |
Diaz-Granados et al. | Identification of Surface Coatings on Central African Wooden Sculptures Using Nano-FTIR Spectroscopy | |
Balbas et al. | Non-invasive stratigraphic analyzes of gelatine-based modern painting materials with linear and nonlinear optical methods | |
RU2522724C2 (en) | Method of metallographic analysis | |
TWI866414B (en) | Metal-nanoparticle-free surface-enhanced raman scattering substrate, and a method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |