CN114196876B - 高安全性热轧钢筋及其生产方法 - Google Patents
高安全性热轧钢筋及其生产方法 Download PDFInfo
- Publication number
- CN114196876B CN114196876B CN202111307794.2A CN202111307794A CN114196876B CN 114196876 B CN114196876 B CN 114196876B CN 202111307794 A CN202111307794 A CN 202111307794A CN 114196876 B CN114196876 B CN 114196876B
- Authority
- CN
- China
- Prior art keywords
- steel bar
- rolling
- phi
- rolled steel
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/065—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/08—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires for concrete reinforcement
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
本发明提供了一种高安全性热轧钢筋的生产方法,所述高安全性热轧钢筋的生产方法包括:钢筋的成分配方,按质量分数Wt%为:C:0.21~0.25Wt%,Si:0.40~0.60Wt%,Mn:1.35~1.50Wt%,V:0.025~0.035Wt%,N:0.0070~0.0100Wt%,B:0.0012~0.0025Wt%,P、S均不大于0.040;其余为Fe;轧制规格为Φ12~Φ22mm。所述热轧钢筋采用以上生产方法获得。本发明解决了钢筋使用过程中性能波动带来的较大的安全隐患的问题。
Description
技术领域
本发明涉及轧钢领域,具体涉及一种高安全性热轧钢筋及其生产方法。
背景技术
热轧钢筋按GB/T1499.1或GB/T1499.2标准生产,不同牌号或强度级别,钢筋生产采用的工艺不尽相同,有微合金化、有控轧控冷,或两种工艺兼有的,尽管如此,不管何种工艺,钢筋均面临着同样的问题,即钢筋经自然时效后,屈服强度会有一定幅度的下降,一般有10~30Mpa的降幅。
钢筋性能经自然时效后出现变化、时效后屈服强度下降,是因钢筋的残余应力形成及随后的时效变化引起。残余应力也就是钢筋的内应力,其产生因素主要有不均匀的机械变形、不均匀的温度变化和不均匀的相变,目前的热轧钢筋由于多数均在奥氏体再结晶区以上温度变形、没有发生B或M转变、组织为F+P,生产结束后其残余应力主要以温度应力为主:钢筋的表面冷却快于芯部,冷至常温后,钢筋表面产生压应力、芯部则为拉应力。钢筋生产结束后立即取样进行出厂检验,此时的拉伸试验其拉伸载荷由夹具通过钢筋表面传递至整个钢筋截面,这个载荷由于与钢筋表面残余应力方向相反,因此,要使钢筋达到屈服,除了需要克服材料本身的屈服极限外,还要克服钢筋的表面压应力,此时得到的钢筋出厂性能,其屈服强度叠加有钢筋的残余应力,而非材料真实的屈服强度,在钢筋随后使用过程的自然时效,交变的温度变化及微应变将产生应力松驰,导致残余应力不断下降,钢筋的屈服也随之下降。例如图1为目前钢筋经历自然时效屈服强度的变化,时效后钢筋真正服役强度已低于标准下限值400MPa,强度降幅为25MPa。
消除钢筋的残余应力,如采用人工热时效及振动时效等,可以较短的时间加快钢筋残余应力释放,这些方法可作为钢筋出厂检验前的试样处理,但是由于需要增加时间及装备,目前基本上没有厂家使用以上方法进行出厂检验,因此出厂检验的钢筋性能与钢筋实际服役、经长时间时效的真实性能存在较大偏差,钢筋使用的安全隐患仍然存在。
综上所述,现有技术中存在以下问题:钢筋出厂性能与钢筋服役时的实际性能,存在较大的偏差,由此带来钢筋使用过程较大的安全隐患。
发明内容
本发明提供一种高安全性热轧钢筋的生产方法,以解决钢筋出厂性能与钢筋服役时的实际性能存在较大的偏差,由此带来钢筋使用过程较大的安全隐患的问题。
为此,本发明提出一种高安全性热轧钢筋的生产方法,所述高安全性热轧钢筋的生产方法包括:
钢筋的成分,按质量分数为:C:0.21~0.25Wt%,Si:0.40~0.60Wt%,Mn:1.35~1.50Wt%,V:0.025~0.035Wt%,N:0.0070~0.0100Wt%,B:0.0012~0.0025Wt%,P、S均不大于0.040;其余为Fe;
轧制规格为Φ12~Φ22mm;
生产方法包括以下步骤:转炉炼钢、方坯连铸、加热、连续轧制、轧后冷却、和冷床自然冷却;
采用步进式连续加热炉加热,均热段加热温度1150-1180℃,加热时间68-75min;
所述热轧钢筋自然时效与出厂力学性能检验屈服值Rel的差值在±10MPa以内。
进一步地,Φ20mm规格采用二切分工艺。
进一步地,Φ12mm规格采用四切分工艺。
进一步地,成品机架轧制速度11~15m/s。
进一步地,轧后采用穿水冷却,上冷床温度920-955℃。
进一步地,开轧温度1030℃-1050℃。
进一步地,钢上冷床后自然冷却。
本发明还提供一种高安全性热轧钢筋,所述热轧钢筋的成分,按质量分数为:C:0.21~0.25Wt%,Si:0.40~0.60Wt%,Mn:1.35~1.50Wt%,V:0.025~0.035Wt%,N:0.0070~0.0100Wt%,B:0.0012~0.0025Wt%,P、S均不大于0.040;其余为Fe;其余为Fe和不可避免的杂质;轧制规格为Φ12~Φ22mm。
进一步地,所述热轧钢筋的轧制规格为Φ12或Φ20mm。
进一步地,所述热轧钢筋为HRB400E热轧钢筋,成品钢筋芯部组织B+M含量为2-6%。
进一步地,所述热轧钢筋为HRB400E热轧钢筋,所述热轧钢筋自然时效与出厂力学性能检验屈服值Rel的差值在±10MPa以内。
本发明通过添加V、B(硼)及提高Mn量等可以迟滞铁素体相变的合金化手段并辅以与成分相配合的轧制工艺,通过控制铸坯拉速、加热温度、轧制温度、轧制速度、冷却温度、冷却速度,使得钢筋芯部贝氏体含量或B+M量可以控制在2%~6%,其余组织为F+P,芯部贝氏体或马氏体产生的组织应力与温度应力达到平衡并相互抵消,此方法得到的钢筋残余应力极低,经自然时效,钢筋的屈服强度变化幅度很小,在出厂力学性能检验(0d时效)屈服值Rel±10MPa以内,即高安全性:钢筋的出厂性能更帖近实际服役性能,有效消除了服役过程的安全风险。。
附图说明
图1为现有的钢筋经历自然时效屈服强度的变化图;
图2为本发明实施例1的钢筋金相组织照片;
图3为本发明的实施例1的钢筋的屈服强度的自然时效图;d是指天;
图4为本发明实施例2的钢筋金相组织照片;
图5为本发明的实施例2的钢筋的屈服强度的自然时效图;d是指天。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图说明本发明。
本发明通过使钢筋初始残余应力大幅下降后,在正常服役过程中或经历自然时效,钢筋不会因为应力松驰而导致屈服强度下降或者变化幅度很小,从而提高了钢筋使用过程的安全性。
本发明的工艺控制点、技术参数控制及检测方法:
1)钢筋按GB/T1499.2-2018标准中的HRB400E牌号组织生产,工艺路线:转炉炼钢—方坯连铸—加热—连续轧制—轧后冷却—冷床自然冷却。
2)炼钢工序采用微合金化工艺,钢中添加V、B(硼)及提高Mn量等合金化手段,配方1(质量分数%)C:0.21~0.25Wt%,Si:0.40~0.60Wt%,Mn:1.35~1.50Wt%,V:0.025~0.035Wt%,N:0.0070~0.0100Wt%,B:0.0012~0.0025Wt%,P、S均不大于0.040;其余为Fe;V(N)及B合金在出钢至1/3时加入,以保证收得率和成分均匀性。
3)连铸工序:铸坯尺寸为165×165mm方坯,铸坯拉速2.3~3.0m/min,以便控制坯料裂纹。由于加B有致裂倾向,因此铸坯拉速要控制合理速度。
4)步进式连续加热炉加热,均热段加热温度1150-1180℃,加热时间68-75min。
5)开轧温度1030℃-1050℃,轧制规格为Φ12~Φ22mm。
6)成品机架轧制速度11~15m/s,轧后采用穿水冷却,上冷床温度920-955℃。
7)钢上冷床后自然冷却。
8)检测方法:钢筋取样进行金相显微组织分析、人工热时效或自然时效、拉伸试验。金相观察钢筋横截面组织分布,放大500倍下检测B+M含量;钢筋轧制完成后现场取拉伸样(钢温≤200℃,在同一支钢筋上截取若干试样),待钢温冷却至室温时部分进行拉伸试验(模拟出厂检验,时效0d),部分拉伸试样入炉加热至300℃进行人工热时效,保温2h后随炉冷却至50℃出炉、至室温时进行拉伸试验,部分试样进行自然时效,自然环境下分别露天放置至7d(天)、15d、30d、120d、360d后再进行拉伸试验,对比0d时效与人工热时效或自然时效拉伸试验力学性能,分析评估屈服强度时效前后的变化趋势。试样尺寸及拉伸试验按GB/T1499.2-2018标准。
实施例1
在柳钢生产的二切分Φ20mm(该规格采用二切分轧制是确保晶粒度,有利于组织转变)规格按GB/T1499.2-2018标准生产的HRB400E热轧钢筋中得到应用,具体步骤为:
在柳钢生产的二切分Φ20mm规格按GB/T1499.2-2018标准生产的HRB400E热轧钢筋中得到应用,具体步骤为:
1)炼钢工序采用微合金化工艺,钢中添加V、B(硼)及提高Mn量等合金化手段,钢的化学成分(质量分数%):C:0.21,Si:0.45,Mn:1.42,V:0.026,B:0.0016,P、S均不大于0.040;V、B合金在出钢至1/3时加入。
2)连铸工序:铸坯尺寸为165×165mm方坯,铸坯拉速2.8m/min;
3)步进式连续加热炉加热,均热段加热温度1160℃,加热时间60min;
4)开轧温度1035℃,轧制规格为Φ20mm,采用二切分工艺、连续轧制;
5)成品机架轧制速度12m/s,轧后采用穿水冷却,上冷床温度950℃,钢上冷床后自然冷却;
6)按照上述工艺参数控制炼钢及轧制,成品钢筋芯部组织B(贝氏体)+M(马氏体)含量为3%(见图2),其余组织为F+P;0d时效(出厂检验)屈服强度为463MPa,人工热时效后屈服强度为459MPa,自然时效结果如图3,屈服强度在0d时效屈服强度值463MPa的±10MPa以内小范围波动。
实施例2
在柳钢生产的四切分Φ12mm(该规格采用四切分轧制是确保晶粒度,有利于组织转变)规格按GB/T1499.2-2018标准生产的HRB400E热轧钢筋中得到应用,具体步骤为:
1)炼钢工序采用微合金化工艺,钢中添加V、B(硼)及提高Mn量等合金化手段,钢的化学成分(质量分数%):C:0.24,Si:0.50,Mn:1.32,V:0.025,B:0.0014,P、S均不大于0.040;V、B合金在出钢至1/3时加入。
2)连铸工序:铸坯尺寸为165×165mm方坯,铸坯拉速2.9m/min;
3)步进式连续加热炉加热,均热段加热温度1170℃,加热时间63min;
4)开轧温度1045℃,轧制规格为Φ12mm,采用四切分工艺、连续轧制;
5)成品机架轧制速度13.5m/s,轧后采用穿水冷却,上冷床温度920℃,钢上冷床后自然冷却;
6)按照上述工艺参数控制炼钢及轧制,成品钢筋芯部组织B+M含量为6%(见图4),其余组织为F+P;0d时效(出厂检验)屈服强度为430MPa,人工热时效后屈服强度为440MPa,自然时效结果如图5,屈服强度在0d时效屈服强度值430MPa的±10MPa以内小范围波动。
以上所述仅为本发明示意性的具体实施方式,并非用以限定本发明的范围。为本发明的各组成部分在不冲突的条件下可以相互组合,任何本领域的技术人员,在不脱离本发明的构思和原则的前提下所作出的等同变化与修改,均应属于本发明保护的范围。
Claims (4)
1.一种高安全性热轧钢筋的生产方法,其特征在于,所述高安全性热轧钢筋的生产方法包括:
钢筋的成分,按质量分数为:C:0.21~0.25Wt%,Si:0.40~0.60Wt%,Mn:1.35~1.50Wt%,V:0.025~0.035Wt%,N:0.0070~0.0100Wt%,B:0.0012~0.0016Wt%,P、S均不大于0.040;其余为Fe;
轧制规格为Φ12~Φ22mm;
生产方法包括以下步骤:转炉炼钢、方坯连铸、加热、连续轧制、轧后冷却、和冷床自然冷却;
采用步进式连续加热炉加热,均热段加热温度1150-1180℃,加热时间68-75min;
成品机架轧制速度11~15m/s,轧后采用穿水冷却,上冷床温度920-955℃;
钢筋芯部贝氏体含量或B+M量控制在2%~6%,其余组织为F+P;
所述热轧钢筋自然时效与出厂力学性能检验屈服值Rel的差值在±10MPa以内。
2.如权利要求1所述的高安全性热轧钢筋的生产方法,其特征在于,Φ20mm规格采用二切分工艺。
3.如权利要求1所述的高安全性热轧钢筋的生产方法,其特征在于,Φ12mm规格采用四切分工艺。
4.如权利要求1所述的高安全性热轧钢筋的生产方法,其特征在于,开轧温度1030℃-1050℃。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210693963.9A CN115181904B (zh) | 2021-11-05 | 2021-11-05 | 高安全性热轧钢筋 |
CN202111307794.2A CN114196876B (zh) | 2021-11-05 | 2021-11-05 | 高安全性热轧钢筋及其生产方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111307794.2A CN114196876B (zh) | 2021-11-05 | 2021-11-05 | 高安全性热轧钢筋及其生产方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210693963.9A Division CN115181904B (zh) | 2021-11-05 | 2021-11-05 | 高安全性热轧钢筋 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114196876A CN114196876A (zh) | 2022-03-18 |
CN114196876B true CN114196876B (zh) | 2022-06-24 |
Family
ID=80646955
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111307794.2A Active CN114196876B (zh) | 2021-11-05 | 2021-11-05 | 高安全性热轧钢筋及其生产方法 |
CN202210693963.9A Active CN115181904B (zh) | 2021-11-05 | 2021-11-05 | 高安全性热轧钢筋 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210693963.9A Active CN115181904B (zh) | 2021-11-05 | 2021-11-05 | 高安全性热轧钢筋 |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN114196876B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115627410B (zh) * | 2022-10-31 | 2024-06-14 | 南京钢铁股份有限公司 | 一种钒氮合金设计满足核电建筑用螺纹钢的控制方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109097690A (zh) * | 2018-09-14 | 2018-12-28 | 柳州钢铁股份有限公司 | 高速铁路用hrb400钢筋的生产方法 |
CN113444968A (zh) * | 2021-06-10 | 2021-09-28 | 广西柳钢华创科技研发有限公司 | 抗拉强度700Mpa以上的HRB400E普速热轧带肋钢筋及其生产方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3022280B2 (ja) * | 1995-10-04 | 2000-03-15 | 住友金属工業株式会社 | 耐震性に優れる鉄筋用鋼材の製造方法 |
CN103898408B (zh) * | 2014-01-24 | 2016-01-20 | 江苏省沙钢钢铁研究院有限公司 | 一种700MPa级螺纹钢筋及其生产方法 |
CN110423948B (zh) * | 2019-08-21 | 2021-05-18 | 莱芜泰铼经贸有限公司 | 耐低温热轧钢筋及其生产方法 |
CN110885952A (zh) * | 2019-12-16 | 2020-03-17 | 本钢板材股份有限公司 | 400MPa级热轧带肋钢筋及其制备方法 |
CN112139240B (zh) * | 2020-08-11 | 2023-04-07 | 柳州钢铁股份有限公司 | 缩小钢筋性能线差的生产方法 |
CN112779460A (zh) * | 2020-12-24 | 2021-05-11 | 武钢集团昆明钢铁股份有限公司 | 一种hrb500e细晶高强抗震防锈蚀钢筋的生产方法 |
CN114836686B (zh) * | 2021-06-10 | 2022-09-13 | 广西柳钢华创科技研发有限公司 | 强屈比大于1.26的hrb600e普速热轧带肋钢筋 |
-
2021
- 2021-11-05 CN CN202111307794.2A patent/CN114196876B/zh active Active
- 2021-11-05 CN CN202210693963.9A patent/CN115181904B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109097690A (zh) * | 2018-09-14 | 2018-12-28 | 柳州钢铁股份有限公司 | 高速铁路用hrb400钢筋的生产方法 |
CN113444968A (zh) * | 2021-06-10 | 2021-09-28 | 广西柳钢华创科技研发有限公司 | 抗拉强度700Mpa以上的HRB400E普速热轧带肋钢筋及其生产方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115181904A (zh) | 2022-10-14 |
CN115181904B (zh) | 2023-02-24 |
CN114196876A (zh) | 2022-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103080353B (zh) | 特殊钢钢丝及特殊钢线材 | |
Merwin | Low-carbon manganese TRIP steels | |
US10301700B2 (en) | Method for producing a steel component | |
Wang et al. | Microstructure and mechanical properties of hot-rolled and heat-treated TRIP steel with direct quenching process | |
CN114196876B (zh) | 高安全性热轧钢筋及其生产方法 | |
CA1133364A (en) | Method for providing strong wire | |
CN114182167B (zh) | 时效性能稳定的热轧钢筋及其生产方法 | |
EP0031800B1 (en) | Austenitic, precipitation hardenable stainless steel | |
RU2434949C1 (ru) | Способ обработки горячекатаного проката под холодную объемную штамповку крепежных изделий | |
JP7238282B2 (ja) | Pc鋼棒 | |
KR102427244B1 (ko) | 강 제품 및 강 제품의 제조 방법 | |
Wang et al. | Hot stamped parts with desirable properties in medium Mn TRIP steels | |
Arlazarov et al. | Characterization of microstructure formation and mechanical behavior of an advanced medium Mn steel | |
Allam et al. | Development of a New Concept for Hot‐Rolled Weathering–DP Steel: Thermo‐mechanical Simulation, Microstructure Adjustment, and Mechanical Properties | |
Das et al. | Metallurgical investigation of welding wire rod grade during processing | |
Staiger et al. | Multistage strain aging of low-carbon steels | |
WO2016002414A1 (ja) | 鋼線用線材および鋼線 | |
Podany et al. | Thermomechanical processing of micro-alloyed steel | |
Pang et al. | Plastic Deformation Mechanism of Dual-phase Steel at Different Strain Rates | |
US3615925A (en) | Heat-treatment of steels | |
Al Shahrani et al. | Effects of processing parameters on microstructure development in X70 pipeline steel | |
Soliman et al. | Metallurgical phenomena during processing of cold rolled TRIP steel | |
Berdjane et al. | Deformation behavior of a Nb-Ti-V microalloyed steel to achieve the HSLA X80 grade by simulation with a torsion test and pilot hot rolling mill | |
Musonda et al. | Standard requirements of hot rolled thermo-mechanically treated reinforcement bars | |
RU2735308C1 (ru) | Способ термомеханической обработки |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |