CN114189310B - 基于信号侦察和预测的无人机测控信号精准干扰方法 - Google Patents

基于信号侦察和预测的无人机测控信号精准干扰方法 Download PDF

Info

Publication number
CN114189310B
CN114189310B CN202111486345.9A CN202111486345A CN114189310B CN 114189310 B CN114189310 B CN 114189310B CN 202111486345 A CN202111486345 A CN 202111486345A CN 114189310 B CN114189310 B CN 114189310B
Authority
CN
China
Prior art keywords
signal
frequency hopping
unmanned aerial
aerial vehicle
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111486345.9A
Other languages
English (en)
Other versions
CN114189310A (zh
Inventor
刘阳
温志津
李晋徽
晋晓曦
张涵硕
牛余凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
32802 Troops Of People's Liberation Army Of China
Original Assignee
32802 Troops Of People's Liberation Army Of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 32802 Troops Of People's Liberation Army Of China filed Critical 32802 Troops Of People's Liberation Army Of China
Priority to CN202111486345.9A priority Critical patent/CN114189310B/zh
Publication of CN114189310A publication Critical patent/CN114189310A/zh
Application granted granted Critical
Publication of CN114189310B publication Critical patent/CN114189310B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/40Jamming having variable characteristics
    • H04K3/41Jamming having variable characteristics characterized by the control of the jamming activation or deactivation time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/40Jamming having variable characteristics
    • H04K3/42Jamming having variable characteristics characterized by the control of the jamming frequency or wavelength

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种基于信号侦察和预测的无人机测控信号精准干扰方法,其通过通用信号侦察设备、综合信息处理设备和无线电干扰设备来实现;其步骤包括:通用信号侦察设备对其作用区域中的无人机测控信号进行侦察接收;综合信息处理设备对该接收信号进行分析,提取无人机测控信号参数,识别无人机测控信号类型;对接收信号进行跳频频点预测;生成对应的持续时长和信号带宽的基带干扰信号,并将该基带干扰信号上传至无线电干扰设备,无线电干扰设备对其进行处理并射频发射。本发明在不影响其他合法用频设备正常工作的情况下,以最小的代价,实现对无人机测控信号的精准干扰,能在存在跳频漏检情况下,有效对未来一段时间跳频点进行预测。

Description

基于信号侦察和预测的无人机测控信号精准干扰方法
技术领域
本发明属于电子信息技术领域,尤其涉及一种基于信号侦察和预测的无人机测控信号精准干扰方法。
背景技术
利用无线电干扰手段干扰进入禁飞区域的无人机测控信号是无人机防控的重要手段。现阶段所使用的无线电干扰方式主要包括阻塞式干扰和跟踪式干扰两种。
阻塞式干扰是指干扰机直接发送宽带干扰信号,阻断目标通信频段内所有设备的通信。但是,部分无人机使用ISM频段进行数据通信,该频段同时存在大量的用频设备。大功率的阻塞式干扰会同时影响周边用频设备的正常工作,造成较高的社会使用成本。跟踪式干扰是指干扰信号能追踪跳频通信信号的跳变,仅压制跳频的瞬时频谱,是一种节省功率的一种干扰方式。追踪式干需要干扰机具备极强的实时处理能力,能够在很短时间内完成对目标信号频率的侦察捕获、分析,确定干扰对象。此外,还需要干扰机位置满足干扰椭圆条件。由于ISM频段电磁环境的复杂性,在众多信号中,如何通过短时间的侦察,确定干扰目标,进而实施干扰具有很高的难度。
跳频预测干扰方式是指干扰系统可以对未来时刻的跳频点进行预测,并提前做好相关干扰准备工作,从而为干扰机进行精准干扰赢得充分的时间。由于目前市面上各厂商的无人机所使用的通信协议各不相同,其所展现出来的跳频规律也各不相同。因此,在进行跳频预测时,首先需要对目标信号源类型进行识别。目前无人机检测识别方法主要包括:基于雷达的无人机检测方法、基于声音的无人机检测方法、基于光电的无人机检测方法和基于通信信号的无人机检测方法。其中,基于通信信号的无人机检测方法是无人机侦察的重要手段。通过无人机测控信号与同频段其他信号的差别,可以实现对目标无人机测控信号的精准识别。同时,信号特征的分析结果可以为后续的电磁干扰提供先验支撑,实现信号检测和精准干扰的高效结合。
发明内容
针对现有的无人机测控信号跟踪式干扰方法难以在很短时间内完成对目标信号频率的侦察捕获、分析并确定干扰对象的问题,本发明提供了一种基于信号侦察和预测的无人机测控信号精准干扰方法,通过跳频信号分析、基于深度学习的跳频预测、干扰信号生产实现对目标信号的精准灵巧干扰。
本发明公开了一种基于信号侦察和预测的无人机测控信号精准干扰方法,其通过通用信号侦察设备、综合信息处理设备和无线电干扰设备来实现;所述的无人机测控信号为跳频信号形式;
所述通用信号侦察设备负责对进入其作用区域的无人机测控信号进行侦察接收、低噪声功率放大、滤波、A/D变换、数字下变频处理,将该接收信号转换成零中频的时域IQ数据,并通过光纤将该零中频的时域IQ数据上传至综合信息处理设备。
所述综合信息处理设备负责对其接收数据进行参数分析和提取,并进行跳频预测,根据参数分析和提取结果以及跳频预测结果中的信号时间和频点信息,在相应的中心频率和起始时间上,生成对应的持续时长和信号带宽的基带干扰信号;
所述无线电干扰设备负责对综合信息处理系统生成的基带干扰信号进行上变频和功率放大,再进行射频发射。
所述的基于信号侦察和预测的无人机测控信号精准干扰方法,其步骤包括:
S1,通用信号侦察设备对其作用区域中的无人机测控信号进行侦察接收;
综合信息处理设备向通用信号侦察设备下发侦收指令,通用侦察设备收到侦收指令后对其作用区域的无人机测控信号进行侦察接收、低噪声功率放大、滤波、A/D变换、数字下变频处理,将该接收信号转换成零中频的时域IQ数据,并通过光纤将该零中频的时域IQ数据上传至综合信息处理设备。
S2,通用信号侦察设备所侦察接收的无人机测控信号为跳频信号形式,综合信息处理设备对该接收信号进行分析,提取无人机测控信号参数,识别无人机测控信号类型;
所述的步骤S2,其具体包括:
S21,综合信息处理设备对其接收的时域IQ数据信号进行时频分析,得到该接收信号的每一个跳频信号的中心频率、信号带宽、持续时长和起始时间,进而得到相邻的跳频信号的跳频时间间隔,将每一个跳频信号的中心频率、信号带宽、持续时长和起始时间进行整合,从而得到接收信号的跳频图案,再利用高阶谱分析方法和相关谱分析方法得到该接收信号的调制方式、调制速率、符号长度、同步导频的信息,并利用分析得到的信息,对无人机测控信号进行分类,确定其所属的无人机类型;
S22,根据步骤S21分析得到的该接收信号的每一个跳频信号的中心频率、信号带宽、持续时长和起始时间,以及该接收信号的调制方式、调制速率、符号长度、同步导频的信息,构建用于信号分类的特征输入序列,并对每个跳频信号进行类别标注,构建用于无人机信号类型识别的训练数据集。利用该训练集,使用ID3算法训练决策树分类器进行无人机测控信号的分类。
S23,对于通用信号侦察设备实时侦察接收的无人机测控信号,利用步骤S21分析得到其信号参数信息,利用步骤S22训练好的决策树分类器判断无人机测控信号类型。
S3,综合信息处理设备利用其提取的跳频序列和其所确定的无人机类型,利用无人机跳频信号预测网络模型对接收信号进行跳频频点预测;
利用步骤S2所提取的跳频图案,构建跳频信号预测训练数据集。无人机跳频信号预测网络模型采用LSTM时序预测网络来实现。
无人机跳频信号预测网络模型包含12个LSTM层和2个卷积层,其中12个LSTM层用于对接收信号的跳频信号序列进行特征提取,2个卷积层用于对预测结果进行解码输出。该无人机跳频信号预测网络模型通过学习不同无人机跳频信号跳频规律和步骤S2所提取的跳频图案,预测未来一段时间内出现的跳频信号及其起始时间。
无人机跳频信号预测网络模型的输入序列维度为B×N×3,输出序列维度为B×M×3,其中,B表示单次训练的输入样本个数,N和M分别表示输入和输出的跳频频点个数,3表示每个跳频频点包含的三个信号参数信息,即中心频率、信号起始时间和信号终止时间。利用随机梯度下降算法进行无人机跳频信号预测网络模型优化。
该网络模型的输入序列Xin为:
Xin=[x1,x2,...,xN],
其中,N表示输入序列的跳频信号个数,对于任意i=1,2,...,N,对于第i个跳频信号的参数集合xi,xi=(ts,i,te,i,fc,i),ts,i和te,i分别表示第i个跳频信号的起止时间,fc,i表示第i个跳频信号的载频。训练标签序列的表达式为:
Ylabel=[xN+1,xN+2,...,xN+M],
该网络模型的输出Yout为:
Yout=[y1,y2,...,yM],
其中,M表示该无人机跳频信号预测网络模型预测得到的跳频信号个数,yj表示该无人机跳频信号预测网络模型预测得到的第j个跳频信号的中心频率、信号带宽、持续时长和起始时间的参数所构成的集合,j=1,2,...,M。
根据步骤S2中得到无人机跳频信号的跳频时间间隔,推算每个跳频信号出现的跳频时刻,对于在某跳频时刻出现而步骤S2未检测到的某一跳频信号,将其对应的参数集合表示xi′=(0,0,0),将xi′补充到该网络模型的输入序列的相应位置中。
在实时处理过程中,综合信息处理设备将步骤S21所得到的N个跳频信号的参数序列[x1,x2,...,xN],输入至训练好的无人机跳频信号预测网络模型进行频点预测,得到后续时刻的M个跳频信号的参数集合。
S4,利用步骤S2中分析得到的接收信号中的每一个跳频信号的中心频率、信号带宽、持续时长、起始时间、调制方式、调制速率和符号长度,在相应的中心频率和起始时间上,生成对应的持续时长和信号带宽的基带干扰信号,并将该基带干扰信号上传至无线电干扰设备。
S5,无线电干扰设备对该基带干扰信号进行上变频,功率放大并进行射频发射。
本发明的有益效果为:
(1)本发明提出一种基于信号侦察和跳频预测的无人机测控信号精准干扰技术,通过目标无人机测控信号侦察、跳频信号分析、跳频图案预测,在不影响其他合法用频设备正常工作的情况下,以最小的代价,实现对无人机测控信号的精准干扰;
(2)针对复杂电磁环境下,存在无人机测控信号漏检的情况,本发明提出一种针对无人机测控信号,基于深度学习的跳频预测精准干扰技术。根据对无人机测控信号检测识别结果,对跳频时间间隔进行预估,对于未检测到跳频突发以未知形式给出。深度学习跳频预测模型对存在数据缺失的跳频图案进行学习,能在存在跳频漏检情况下,有效对未来一段时间跳频点进行预测。
附图说明
图1为本发明的基于信号侦察和跳频预测的小型无人机测控信号精准干扰技术设备连接示意图;
图2为本发明的基于信号侦察和跳频预测的小型无人机测控信号精准干扰技术流程图;
图3为本发明的基于信号侦察和跳频预测的小型无人机测控信号精准干扰技术无人机测控信号识别流程图;
图4为本发明的基于信号侦察和跳频预测的小型无人机测控信号精准干扰技术跳频信号预测流程图。
具体实施方式
为了更好的了解本发明内容,这里给出一个实施例。
图1为本发明的基于信号侦察和跳频预测的小型无人机测控信号精准干扰技术设备连接示意图;图2为本发明的基于信号侦察和跳频预测的小型无人机测控信号精准干扰技术流程图;图3为本发明的基于信号侦察和跳频预测的小型无人机测控信号精准干扰技术无人机测控信号识别流程图;图4为本发明的基于信号侦察和跳频预测的小型无人机测控信号精准干扰技术跳频信号预测流程图。
本发明公开了一种基于信号侦察和预测的无人机测控信号精准干扰方法,其通过通用信号侦察设备、综合信息处理设备和无线电干扰设备来实现;所述的无人机测控信号为跳频信号形式;
所述通用信号侦察设备负责对进入其作用区域的无人机测控信号进行侦察接收、低噪声功率放大、滤波、A/D变换、数字下变频处理,将该接收信号转换成零中频的时域IQ数据,并通过光纤将该零中频的时域IQ数据上传至综合信息处理设备。
所述综合信息处理设备负责对其接收数据进行参数分析和提取,并进行跳频预测,根据参数分析和提取结果以及跳频预测结果中的信号时间和频点信息,在相应的中心频率和起始时间上,生成对应的持续时长和信号带宽的基带干扰信号;
所述无线电干扰设备负责对综合信息处理系统生成的基带干扰信号进行上变频和功率放大,再进行射频发射。
所述的基于信号侦察和预测的无人机测控信号精准干扰方法,其步骤包括:
S1,通用信号侦察设备对其作用区域中的无人机测控信号进行侦察接收;
综合信息处理设备向通用信号侦察设备下发侦收指令,通用侦察设备收到侦收指令后对其作用区域的无人机测控信号进行侦察接收、低噪声功率放大、滤波、A/D变换、数字下变频处理,将该接收信号转换成零中频的时域IQ数据,并通过光纤将该零中频的时域IQ数据上传至综合信息处理设备。
S2,通用信号侦察设备所侦察接收的无人机测控信号为跳频信号形式,综合信息处理设备对该接收信号进行分析,提取无人机测控信号参数,识别无人机测控信号类型;
所述的步骤S2,其具体包括:
S21,综合信息处理设备对其接收的时域IQ数据信号进行时频分析,得到该接收信号的每一个跳频信号的中心频率、信号带宽、持续时长和起始时间,进而得到相邻的跳频信号的跳频时间间隔,将每一个跳频信号的中心频率、信号带宽、持续时长和起始时间进行整合,从而得到接收信号的跳频图案,再利用高阶谱分析方法和相关谱分析方法得到该接收信号的调制方式、调制速率、符号长度、同步导频的信息,并利用分析得到的信息,对无人机测控信号进行分类,确定其所属的无人机类型;
S22,根据步骤S21分析得到的该接收信号的每一个跳频信号的中心频率、信号带宽、持续时长和起始时间,以及该接收信号的调制方式、调制速率、符号长度、同步导频的信息,构建用于信号分类的特征输入序列,并对每个跳频信号进行类别标注,构建用于无人机信号类型识别的训练数据集。利用该训练集,使用ID3算法训练决策树分类器进行无人机测控信号的分类。
S23,对于通用信号侦察设备实时侦察接收的无人机测控信号,利用步骤S21分析得到其信号参数信息,利用步骤S22训练好的决策树分类器判断无人机测控信号类型。
S3,综合信息处理设备利用其提取的跳频序列和其所确定的无人机类型,利用无人机跳频信号预测网络模型对接收信号进行跳频频点预测;
利用步骤S2所提取的跳频图案,构建跳频信号预测训练数据集。无人机测控信号跳频序列预测本质上是一个时序序列预测的问题,因此,无人机跳频信号预测网络模型采用LSTM时序预测网络来实现。
无人机跳频信号预测网络模型包含12个LSTM层和2个卷积层,其中12个LSTM层用于对接收信号的跳频信号序列进行特征提取,2个卷积层用于对预测结果进行解码输出。该无人机跳频信号预测网络模型通过学习不同无人机跳频信号跳频规律和步骤S2所提取的跳频图案(其中包含的信息包括每一跳信号的中心频率和起止时间),预测未来一段时间内出现的跳频信号及其起始时间。
无人机跳频信号预测网络模型的输入序列维度为B×N×3,输出序列维度为B×M×3,其中,B表示单次训练的输入样本个数,N和M分别表示输入和输出的跳频频点个数,3表示每个跳频频点包含的三个信号参数信息,即中心频率、信号起始时间和信号终止时间。信号终止时间由信号起始时间加持续时长得到。利用随机梯度下降算法进行无人机跳频信号预测网络模型优化。
该网络模型的输入序列Xin为:
Xin=[x1,x2,...,xN],
其中,N表示输入序列的跳频信号个数,对于任意i=1,2,...,N,对于第i个跳频信号的参数集合xi,xi=(ts,i,te,i,fc,i),ts,i和te,i分别表示第i个跳频信号的起止时间,fc,i表示第i个跳频信号的载频。训练标签序列的表达式为:
Ylabel=[xN+1,xN+2,...,xN+M],
该网络模型的输出Yout为:
Yout=[y1,y2,...,yM],
其中,M表示该无人机跳频信号预测网络模型预测得到的跳频信号个数,yj表示该无人机跳频信号预测网络模型预测得到的第j个跳频信号的中心频率、信号带宽、持续时长和起始时间的参数所构成的集合,j=1,2,...,M。
在实际复杂电磁环境下,无人机跳频遥控信号存在漏检的境况。因此,根据步骤S2中得到无人机跳频信号的跳频时间间隔,推算每个跳频信号出现的跳频时刻,对于在某跳频时刻出现而步骤S2未检测到的某一跳频信号,将其对应的参数集合表示xi′=(0,0,0),将xi′补充到该网络模型的输入序列的相应位置中。因此,在网络训练过程中,需要删除部分跳频点,以(0,0,0)的方式代替。此方法可使得网络在训练过程中获得具备降低因信号漏检造成的预测出错的概率。
在实时处理过程中,综合信息处理设备将步骤S21所得到的N个跳频信号的参数序列[x1,x2,...,xN],输入至训练好的无人机跳频信号预测网络模型进行频点预测,得到后续时刻的M个跳频信号的参数集合。
S4,利用步骤S2中分析得到的接收信号中的每一个跳频信号的中心频率、信号带宽、持续时长、起始时间、调制方式、调制速率和符号长度,在相应的中心频率和起始时间上,生成对应的持续时长和信号带宽的基带干扰信号,并将该基带干扰信号上传至无线电干扰设备。
S5,无线电干扰设备对该基带干扰信号进行上变频,功率放大并进行射频发射。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (1)

1.一种基于信号侦察和预测的无人机测控信号精准干扰方法,其特征在于,其通过通用信号侦察设备、综合信息处理设备和无线电干扰设备来实现;所述的无人机测控信号为跳频信号形式;
所述通用信号侦察设备负责对进入其作用区域的无人机测控信号进行侦察接收、低噪声功率放大、滤波、A/D变换和数字下变频处理,将接收信号转换成零中频的时域IQ数据,并通过光纤将该零中频的时域IQ数据上传至综合信息处理设备;
所述综合信息处理设备负责对其接收数据进行参数分析和提取,并进行跳频预测,根据参数分析和提取结果以及跳频预测结果中的信号时间和频点信息,在相应的中心频率和起始时间上,生成对应的持续时长和信号带宽的基带干扰信号;
所述无线电干扰设备负责对综合信息处理设备生成的基带干扰信号进行上变频和功率放大,再进行射频发射;
所述的基于信号侦察和预测的无人机测控信号精准干扰方法,其步骤包括:
S1,通用信号侦察设备对其作用区域中的无人机测控信号进行侦察接收;
综合信息处理设备向通用信号侦察设备下发侦收指令,通用信号侦察设备收到侦收指令后对其作用区域的无人机测控信号进行侦察接收、低噪声功率放大、滤波、A/D变换和数字下变频处理,将接收信号转换成零中频的时域IQ数据,并通过光纤将该零中频的时域IQ数据上传至综合信息处理设备;
S2,通用信号侦察设备所侦察接收的无人机测控信号为跳频信号形式,综合信息处理设备对该接收信号进行分析,提取无人机测控信号参数,识别无人机测控信号类型;所述的无人机测控信号参数包括跳频序列和跳频图案;
S3,综合信息处理设备利用其提取的跳频序列和其所确定的无人机类型,利用无人机跳频信号预测网络模型对接收信号进行跳频频点预测;
S4,利用步骤S2中分析得到的接收信号中的每一个跳频信号的中心频率、信号带宽、持续时长、起始时间、调制方式、调制速率和符号长度,在相应的中心频率和起始时间上,生成对应的持续时长和信号带宽的基带干扰信号,并将该基带干扰信号上传至无线电干扰设备;
S5,无线电干扰设备对该基带干扰信号进行上变频,功率放大并进行射频发射;
所述的步骤S2,其具体包括:
S21,综合信息处理设备对其接收的时域IQ数据进行时频分析,得到该接收信号的每一个跳频信号的中心频率、信号带宽、持续时长和起始时间,进而得到相邻的跳频信号的跳频时间间隔,将每一个跳频信号的中心频率、信号带宽、持续时长和起始时间进行整合,从而得到接收信号的跳频图案,再利用高阶谱分析方法和相关谱分析方法得到该接收信号的调制方式、调制速率、符号长度和同步导频的信息,并利用分析得到的信息,对无人机测控信号进行分类,确定其所属的无人机类型;
S22,根据步骤S21分析得到的该接收信号的每一个跳频信号的中心频率、信号带宽、持续时长和起始时间,以及该接收信号的调制方式、调制速率、符号长度和同步导频的信息,构建用于信号分类的特征输入序列,并对每个跳频信号进行类别标注,构建用于无人机信号类型识别的训练数据集;利用该训练数据集,使用ID3算法训练决策树分类器进行无人机测控信号的分类;
S23,对于通用信号侦察设备实时侦察接收的无人机测控信号,利用步骤S21分析得到其信号参数信息,利用步骤S22训练好的决策树分类器判断无人机测控信号类型;
所述的步骤S3,其具体包括,利用步骤S2所提取的跳频图案,构建无人机跳频信号预测网络模型;无人机跳频信号预测网络模型采用LSTM时序预测网络来实现;
无人机跳频信号预测网络模型包含12个LSTM层和2个卷积层,其中12个LSTM层用于对接收信号的跳频序列进行特征提取,2个卷积层用于对预测结果进行解码输出;该无人机跳频信号预测网络模型通过学习不同无人机跳频信号跳频规律和步骤S2所提取的跳频图案,预测未来一段时间内出现的跳频信号及其起始时间;
无人机跳频信号预测网络模型的输入序列维度为B×N×3,输出序列维度为B×M×3,其中,B表示单次训练的输入样本个数,N和M分别表示输入和输出的跳频频点个数,3表示每个跳频频点包含的三个信号参数信息,即中心频率、信号起始时间和信号终止时间;利用随机梯度下降算法进行无人机跳频信号预测网络模型优化;
该网络模型的输入序列Xin为:
Xin=[x1,x2,...,xN],
其中,N表示输入序列的跳频信号个数,对于任意i=1,2,...,N,对于第i个跳频信号的参数集合xi,xi=(ts,i,te,i,fc,i),ts,i和te,i分别表示第i个跳频信号的起止时间,fc,i表示第i个跳频信号的中心频率;训练标签序列的表达式为:
Ylabel=[xN+1,xN+2,...,xN+M],
该网络模型的输出Yout为:
Yout=[y1,y2,...,yM],
其中,M表示该无人机跳频信号预测网络模型预测得到的跳频信号个数,yj表示该无人机跳频信号预测网络模型预测得到的第j个跳频信号的中心频率、信号带宽、持续时长和起始时间的参数所构成的集合,j=1,2,...,M;
根据步骤S2中得到无人机跳频信号的跳频时间间隔,推算每个跳频信号出现的跳频时刻,对于在某跳频时刻出现而步骤S2未检测到的某一跳频信号,将其对应的参数集合表示xi′=(0,0,0),将xi′补充到该网络模型的输入序列的相应位置中;
在实时处理过程中,综合信息处理设备将步骤S21所得到的N个跳频信号的参数序列[x1,x2,...,xN],输入至训练好的无人机跳频信号预测网络模型进行频点预测,得到后续时刻的M个跳频信号的参数集合。
CN202111486345.9A 2021-12-07 2021-12-07 基于信号侦察和预测的无人机测控信号精准干扰方法 Active CN114189310B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111486345.9A CN114189310B (zh) 2021-12-07 2021-12-07 基于信号侦察和预测的无人机测控信号精准干扰方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111486345.9A CN114189310B (zh) 2021-12-07 2021-12-07 基于信号侦察和预测的无人机测控信号精准干扰方法

Publications (2)

Publication Number Publication Date
CN114189310A CN114189310A (zh) 2022-03-15
CN114189310B true CN114189310B (zh) 2022-06-21

Family

ID=80603713

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111486345.9A Active CN114189310B (zh) 2021-12-07 2021-12-07 基于信号侦察和预测的无人机测控信号精准干扰方法

Country Status (1)

Country Link
CN (1) CN114189310B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114760004B (zh) * 2022-03-18 2023-06-30 杭州麒麟壹零贰安保服务有限公司 一种无人机反制的方法和系统
CN114513278B (zh) * 2022-04-18 2022-08-05 南京邮电大学 基于电磁频谱特征认知的智能干扰方法、装置及系统
CN115102577B (zh) * 2022-07-01 2023-06-16 西安宇飞电子技术有限公司 单载波时频域抗干扰方法、系统及存储介质
CN115833991B (zh) * 2023-02-22 2023-05-02 北京航天华腾科技有限公司 一种共生无线电智能干扰方法
CN117675085A (zh) * 2023-11-27 2024-03-08 国网电力空间技术有限公司 一种电网巡检的无人机自主飞行监控方法及监控系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108988981A (zh) * 2017-06-02 2018-12-11 罗德施瓦兹两合股份有限公司 干扰设备和干扰方法
CN109379161A (zh) * 2018-12-13 2019-02-22 浙江天则通信技术有限公司 一种用于无人机的自适应干扰系统
CN110233695A (zh) * 2019-07-12 2019-09-13 成都能通科技有限公司 一种反无人机的干扰设备及其实现方法
CN110519003A (zh) * 2019-08-29 2019-11-29 中国人民解放军63892部队 一种基于信号特征差异的无人机上下行通信链路识别方法
CN112564735A (zh) * 2020-12-10 2021-03-26 杭州星辰大海科技有限公司 一种基于跳频信号的无人机检测跟踪干扰装置
CN112666517A (zh) * 2020-12-17 2021-04-16 中国人民解放军32802部队 一种基于时差测量的小型无人机信号定位系统及方法
CN113259029A (zh) * 2021-05-04 2021-08-13 中国人民解放军32802部队 一种适用于无人机信号的实时自动检测识别方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108988981A (zh) * 2017-06-02 2018-12-11 罗德施瓦兹两合股份有限公司 干扰设备和干扰方法
CN109379161A (zh) * 2018-12-13 2019-02-22 浙江天则通信技术有限公司 一种用于无人机的自适应干扰系统
CN110233695A (zh) * 2019-07-12 2019-09-13 成都能通科技有限公司 一种反无人机的干扰设备及其实现方法
CN110519003A (zh) * 2019-08-29 2019-11-29 中国人民解放军63892部队 一种基于信号特征差异的无人机上下行通信链路识别方法
CN112564735A (zh) * 2020-12-10 2021-03-26 杭州星辰大海科技有限公司 一种基于跳频信号的无人机检测跟踪干扰装置
CN112666517A (zh) * 2020-12-17 2021-04-16 中国人民解放军32802部队 一种基于时差测量的小型无人机信号定位系统及方法
CN113259029A (zh) * 2021-05-04 2021-08-13 中国人民解放军32802部队 一种适用于无人机信号的实时自动检测识别方法

Also Published As

Publication number Publication date
CN114189310A (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
CN114189310B (zh) 基于信号侦察和预测的无人机测控信号精准干扰方法
CN107124381B (zh) 一种数字通信信号调制方式自动识别方法
CN110166387B (zh) 一种基于卷积神经网络识别信号调制方式的方法及系统
Ozturk et al. RF-based low-SNR classification of UAVs using convolutional neural networks
CN109473119B (zh) 一种声学目标事件监控方法
CN108768562B (zh) 一种基于遥控与图传信号的非法无人机识别方法
WO2021103206A1 (zh) 基于机器学习算法的无线射频设备身份识别方法及系统
CN114154545B (zh) 强互干扰条件下无人机测控信号智能识别方法
Honghao et al. Spectrum anomalies autonomous detection in cognitive radio using hidden markov models
Cai et al. The performance analysis of time series data augmentation technology for small sample communication device recognition
CN112600644A (zh) 具备白名单和精准打击的一体化反无人机系统及方法
Gul et al. Fine-grained augmentation for RF fingerprinting under impaired channels
Medaiyese et al. Semi-supervised learning framework for UAV detection
Alizadeh et al. Human activity recognition and people count for a smart public transportation system
Jagannath et al. RF fingerprinting needs attention: Multi-task approach for real-world WiFi and Bluetooth
Shen et al. Deep learning-powered radio frequency fingerprint identification: Methodology and case study
Wang et al. Specific emitter identification based on deep adversarial domain adaptation
CN113347637B (zh) 基于嵌入式的无线设备rf指纹识别方法及装置
CN105162531B (zh) 一种超短波宽带监测系统及方法
CN113470211A (zh) 一种基于信标识别的巡检轨迹管理方法及装置
CN111795611B (zh) 一种低复杂度无人机调制方式盲识别及其反制方法、系统
Pianegiani et al. Energy-efficient signal classification in ad hoc wireless sensor networks
Li et al. Specific emitter identification based on multi-domain features learning
CN116720062A (zh) 一种智能卫星信号监测识别方法及装置
CN117009328A (zh) 一种基于噪声过滤的模型训练方法、装置以及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant