CN114187924A - 数据处理方法、装置、电子设备及介质 - Google Patents
数据处理方法、装置、电子设备及介质 Download PDFInfo
- Publication number
- CN114187924A CN114187924A CN202111490985.7A CN202111490985A CN114187924A CN 114187924 A CN114187924 A CN 114187924A CN 202111490985 A CN202111490985 A CN 202111490985A CN 114187924 A CN114187924 A CN 114187924A
- Authority
- CN
- China
- Prior art keywords
- voice data
- text
- determining
- spoken
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003672 processing method Methods 0.000 title abstract description 12
- 238000012545 processing Methods 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims description 35
- 238000004590 computer program Methods 0.000 claims description 17
- 230000004044 response Effects 0.000 claims description 4
- 238000005516 engineering process Methods 0.000 abstract description 13
- 238000013473 artificial intelligence Methods 0.000 abstract description 7
- 238000004891 communication Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 5
- 238000013459 approach Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 230000001755 vocal effect Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008451 emotion Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000003924 mental process Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003058 natural language processing Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/48—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
- G10L25/51—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination
- G10L25/60—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination for measuring the quality of voice signals
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/20—Natural language analysis
- G06F40/279—Recognition of textual entities
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Computational Biology (AREA)
- General Health & Medical Sciences (AREA)
- Quality & Reliability (AREA)
- Signal Processing (AREA)
- Human Computer Interaction (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
本公开提供了一种数据处理方法、装置、电子设备及介质,涉及人工智能领域,尤其涉及语音技术领域。实现方案为:确定与第一对象相关联的多个语音数据,其中,多个语音数据中的每一个语音数据具有用于标识第一对象的标签;以及针对多个语音数据中的任意一个语音数据,基于该语音数据与多个语音数据中的其它语音数据的相似度值,确定该语音数据是否为第一对象的合格语音数据。
Description
技术领域
本公开涉及人工智能技术领域,尤其涉及语音技术领域,具体涉及一种数据处理的方法、装置、电子设备、计算机可读存储介质和计算机程序产品。
背景技术
人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,既有硬件层面的技术也有软件层面的技术。人工智能硬件技术一般包括如传感器、专用人工智能芯片、云计算、分布式存储、大数据处理等技术、人工智能软件技术主要包括计算机视觉技术、语音识别技术、自然语言处理技术以及机器学习/深度学习、大数据处理技术、知识图谱技术等几大方向。
在此部分中描述的方法不一定是之前已经设想到或采用的方法。除非另有指明,否则不应假定此部分中描述的任何方法仅因其包括在此部分中就被认为是现有技术。类似地,除非另有指明,否则此部分中提及的问题不应认为在任何现有技术中已被公认。
发明内容
本公开提供了一种数据处理的方法、装置、电子设备、计算机可读存储介质和计算机程序产品。
根据本公开的一方面,提供了一种数据处理方法,包括:确定与第一对象相关联的多个语音数据,其中,多个语音数据中的每一个语音数据具有用于标识第一对象的标签;以及针对多个语音数据中的任意一个语音数据,基于该语音数据与多个语音数据中的其它语音数据的相似度值,确定该语音数据是否为第一对象的合格语音数据。
根据本公开的另一方面,提供了一种数据处理装置,包括:第一确定单元,被配置用于确定与第一对象相关联的多个语音数据,其中,多个语音数据中的每一个语音数据具有用于标识第一对象的标签;以及第二确定单元,被配置用于针对多个语音数据中的任意一个语音数据,基于该语音数据与多个语音数据中的其它语音数据的相似度值,确定该语音数据是否为第一对象的合格语音数据。
根据本公开的另一方面,提供了一种电子设备,包括:至少一个处理器;以及与至少一个处理器通信连接的存储器;其中存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行上述的方法。
根据本公开的另一方面,提供了一种存储有计算机指令的非瞬时计算机可读存储介质,其中,计算机指令用于使计算机执行上述的方法。
根据本公开的另一方面,提供了一种计算机程序产品,包括计算机程序,其中,计算机程序在被处理器执行时实现上述的方法。
根据本公开的一个或多个实施例,能够快速有效地筛选出能够反映对象的语音特点的合格语音数据。
应当理解,本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的说明书而变得容易理解。
附图说明
附图示例性地示出了实施例并且构成说明书的一部分,与说明书的文字描述一起用于讲解实施例的示例性实施方式。所示出的实施例仅出于例示的目的,并不限制权利要求的范围。在所有附图中,相同的附图标记指代类似但不一定相同的要素。
图1示出了根据本公开的实施例的可以在其中实施本文描述的各种方法的示例性系统的示意图;
图2示出了根据本公开的实施例的数据处理方法的流程图;
图3示出了根据本公开的实施例的另一种数据处理方法的流程图;
图4示出了根据本公开的实施例的数据处理装置的结构框图;
图5示出了能够用于实现本公开的实施例的示例性电子设备的结构框图。
具体实施方式
以下结合附图对本公开的示范性实施例做出说明,其中包括本公开实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本公开的范围。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。
在本公开中,除非另有说明,否则使用术语“第一”、“第二”等来描述各种要素不意图限定这些要素的位置关系、时序关系或重要性关系,这种术语只是用于将一个要素与另一要素区分开。在一些示例中,第一要素和第二要素可以指向该要素的同一实例,而在某些情况下,基于上下文的描述,它们也可以指代不同实例。
在本公开中对各种示例的描述中所使用的术语只是为了描述特定示例的目的,而并非旨在进行限制。除非上下文另外明确地表明,如果不特意限定要素的数量,则该要素可以是一个也可以是多个。此外,本公开中所使用的术语“和/或”涵盖所列出的项目中的任何一个以及全部可能的组合方式。
为了支持模型训练等应用场景的需求,需要大量高质量的数据。例如,在语音合成技术领域,为了能够训练出关于特定对象的语音合成模型,以使得训练得到的语音合成模型能够自动合成符合特定对象的发声特点的合成语音,需要大量的能够准确反映该特定对象的语音特点的语音数据。然而,在真实的场景中,由于环境、设备或误操作等问题的影响,所得到的语音数据中往往存在少数的不合格的语音数据,例如,具有错误的标签的语音数据,或者存在较大环境噪声的语音数据等。将这样不合格的语音数据应用于模型训练,将导致模型训练的收敛速度变慢,模型准确度降低。
相关技术中,通过对得到的语音数据与已知的标准数据之间的比对,来判断该语音数据是否合格,在无法得到标准数据的情况下,尚没有行之有效的语音筛选方法。
基于此,本公开提出一种数据处理方法,针对多个语音数据中的每一个语音数据,基于该语音数据与多个语音数据中的其它语音数据中的每一者的相似度值,确定该语音数据是否合格。由此,能够将多个语音数据中少数的受环境、设备等影响的不合格的语音数据剔除,快速有效地筛选出能够反映第一对象的语音特点的合格语音数据。
下面将结合附图详细描述本公开的实施例。
图1示出了根据本公开的实施例可以将本文描述的各种方法和装置在其中实施的示例性系统100的示意图。参考图1,该系统100包括一个或多个客户端设备101、102、103、104、105和106、服务器120以及将一个或多个客户端设备耦接到服务器120的一个或多个通信网络110。客户端设备101、102、103、104、105和106可以被配置为执行一个或多个应用程序。
在本公开的实施例中,服务器120可以运行使得能够执行数据处理的方法的一个或多个服务或软件应用。
在某些实施例中,服务器120还可以提供可以包括非虚拟环境和虚拟环境的其他服务或软件应用。在某些实施例中,这些服务可以作为基于web的服务或云服务提供,例如在软件即服务(SaaS)模型下提供给客户端设备101、102、103、104、105和/或106的用户。
在图1所示的配置中,服务器120可以包括实现由服务器120执行的功能的一个或多个组件。这些组件可以包括可由一个或多个处理器执行的软件组件、硬件组件或其组合。操作客户端设备101、102、103、104、105和/或106的用户可以依次利用一个或多个客户端应用程序来与服务器120进行交互以利用这些组件提供的服务。应当理解,各种不同的系统配置是可能的,其可以与系统100不同。因此,图1是用于实施本文所描述的各种方法的系统的一个示例,并且不旨在进行限制。
用户可以使用客户端设备101、102、103、104、105和/或106来获取多个语音数据。客户端设备可以提供使客户端设备的用户能够与客户端设备进行交互的接口。客户端设备还可以经由该接口向用户输出信息。尽管图1仅描绘了六种客户端设备,但是本领域技术人员将能够理解,本公开可以支持任何数量的客户端设备。
客户端设备101、102、103、104、105和/或106可以包括各种类型的计算机设备,例如便携式手持设备、通用计算机(诸如个人计算机和膝上型计算机)、工作站计算机、可穿戴设备、智能屏设备、自助服务终端设备、服务机器人、游戏系统、瘦客户端、各种消息收发设备、传感器或其他感测设备等。这些计算机设备可以运行各种类型和版本的软件应用程序和操作系统,例如MICROSOFT Windows、APPLE iOS、类UNIX操作系统、Linux或类Linux操作系统(例如GOOGLE Chrome OS);或包括各种移动操作系统,例如MICROSOFT WindowsMobile OS、iOS、Windows Phone、Android。便携式手持设备可以包括蜂窝电话、智能电话、平板电脑、个人数字助理(PDA)等。可穿戴设备可以包括头戴式显示器(诸如智能眼镜)和其他设备。游戏系统可以包括各种手持式游戏设备、支持互联网的游戏设备等。客户端设备能够执行各种不同的应用程序,例如各种与Internet相关的应用程序、通信应用程序(例如电子邮件应用程序)、短消息服务(SMS)应用程序,并且可以使用各种通信协议。
网络110可以是本领域技术人员熟知的任何类型的网络,其可以使用多种可用协议中的任何一种(包括但不限于TCP/IP、SNA、IPX等)来支持数据通信。仅作为示例,一个或多个网络110可以是局域网(LAN)、基于以太网的网络、令牌环、广域网(WAN)、因特网、虚拟网络、虚拟专用网络(VPN)、内部网、外部网、公共交换电话网(PSTN)、红外网络、无线网络(例如蓝牙、WIFI)和/或这些和/或其他网络的任意组合。
服务器120可以包括一个或多个通用计算机、专用服务器计算机(例如PC(个人计算机)服务器、UNIX服务器、中端服务器)、刀片式服务器、大型计算机、服务器群集或任何其他适当的布置和/或组合。服务器120可以包括运行虚拟操作系统的一个或多个虚拟机,或者涉及虚拟化的其他计算架构(例如可以被虚拟化以维护服务器的虚拟存储设备的逻辑存储设备的一个或多个灵活池)。在各种实施例中,服务器120可以运行提供下文所描述的功能的一个或多个服务或软件应用。
服务器120中的计算单元可以运行包括上述任何操作系统以及任何商业上可用的服务器操作系统的一个或多个操作系统。服务器120还可以运行各种附加服务器应用程序和/或中间层应用程序中的任何一个,包括HTTP服务器、FTP服务器、CGI服务器、JAVA服务器、数据库服务器等。
在一些实施方式中,服务器120可以包括一个或多个应用程序,以分析和合并从客户端设备101、102、103、104、105和/或106的用户接收的数据馈送和/或事件更新。服务器120还可以包括一个或多个应用程序,以经由客户端设备101、102、103、104、105和/或106的一个或多个显示设备来显示数据馈送和/或实时事件。
在一些实施方式中,服务器120可以为分布式系统的服务器,或者是结合了区块链的服务器。服务器120也可以是云服务器,或者是带人工智能技术的智能云计算服务器或智能云主机。云服务器是云计算服务体系中的一项主机产品,以解决传统物理主机与虚拟专用服务器(VPS,Virtual Private Server)服务中存在的管理难度大、业务扩展性弱的缺陷。
系统100还可以包括一个或多个数据库130。在某些实施例中,这些数据库可以用于存储数据和其他信息。例如,数据库130中的一个或多个可用于存储诸如音频文件和视频文件的信息。数据库130可以驻留在各种位置。例如,由服务器120使用的数据库可以在服务器120本地,或者可以远离服务器120且可以经由基于网络或专用的连接与服务器120通信。数据库130可以是不同的类型。在某些实施例中,由服务器120使用的数据库例如可以是关系数据库。这些数据库中的一个或多个可以响应于命令而存储、更新和检索到数据库以及来自数据库的数据。
在某些实施例中,数据库130中的一个或多个还可以由应用程序使用来存储应用程序数据。由应用程序使用的数据库可以是不同类型的数据库,例如键值存储库,对象存储库或由文件系统支持的常规存储库。
图1的系统100可以以各种方式配置和操作,以使得能够应用根据本公开所描述的各种方法和装置。
本公开的技术方案中,所涉及的用户个人信息的收集、存储、使用、加工、传输、提供和公开等处理,均符合相关法律法规的规定,且不违背公序良俗。
图2示出了根据本公开示例性实施例的一种数据处理方法,包括:步骤S201、确定与第一对象相关联的多个语音数据,其中,多个语音数据中的每一个语音数据具有用于标识第一对象的标签;以及步骤S202、针对多个语音数据中的任意一个语音数据,基于该语音数据与多个语音数据中的其它语音数据的相似度值,确定该语音数据是否为第一对象的合格语音数据。
由此,基于每个语音数据与多个语音数据中的其它语音数据中的每一者的相似度值,能够在多个语音数据出找出少数的受环境、设备等影响的不合格的语音数据,并进而快速有效地筛选出能够反映第一对象的语音特点的合格语音数据。
针对步骤S201,根据一些实施例,第一对象可以为有声文本中的一个角色。其中,有声文本包括相互对应的文本数据和音频数据,在有声文本中,针对文本中的每一句话都配有对应的语音数据。对于有声文本中的不同角色的对白,会通过不同的对象进行声情并茂的演艺,其中加入了对角色的性格、年龄等特点的理解,表现在听感上就是为不同的角色调整不同的声线。
根据一些实施例,与第一对象相关联的多个语音数据可以为从有声文本的整个音频数据中截取而得到的。
根据一些实施例,有声文本至少包括多段对白音频,方法还可以包括:确定多段对白音频中的每一段对白音频的角色标签,并且其中,确定与第一对象相关联的多个语音数据可以包括:针对多段对白音频中的每一段对白音频,响应于该对白音频的角色标签为第一对象,将该对白音频确定为与第一对象相关联的语音数据。由此,基于每一段对白音频的角色标签,能够方便地将每个对白音频与对应的角色进行关联,便于对每个角色的对白音频执行汇聚、整理和修正。
其中,该多段对白音频可以为有声文本中的全部对白音频,也可以为有声文本中的部分对白音频,本公开对此不作限定。
根据一些实施例,有声文本还可以包括分别对应于多段对白音频的多个对白文本,并且如图3所示,确定多段对白音频中的每一段对白音频的角色标签可以包括:步骤S301、针对多个对白文本中的每一个对白文本,对有声文本中该对白文本所在的文本段落执行文字识别,以得到对该对白文本的识别结果;以及步骤S302、基于多个对白文本中的每一个对白文本的识别结果,确定该对白文本所对应的对白音频的角色标签。由此,基于有声文本中文本与音频之间的对应性,能够通过对对白文本的文字识别,来确定相应的对白音频的角色标签。
例如,在有声文本的文本数据中包括如下段落:张三不开心的说到:“你把钱留下再走”。针对其中的对白文本“你把钱留下再走”,对有声文本中该对白文本所在的文本段落,即“张三不开心的说到:‘你把钱留下再走’”的整体执行文字识别,以得到对该对白文本的识别结果,即识别到角色名“张三”。基于识别到的角色名“张三”,可以确定该对白文本所对应的对白音频的角色标签为“张三”。
根据一些实施例,确定多段对白音频中的每一段对白音频的角色标签可以包括:通过经过训练的语音识别模型,确定多段对白音频中的每一段对白音频的角色标签。由此可以通过经过训练的模型方便地确定对白音频的角色标签
针对步骤S202,根据一些实施例,可以针对多个语音数据中的每一个语音数据,基于该语音数据与多个语音数据中的其它语音数据中的每一者的相似度值,确定该语音数据是否为所述第一对象的合格语音数据。
根据一些实施例,基于该语音数据与多个语音数据中的其它语音数据的相似度值,确定该语音数据是否为第一对象的合格语音数据可以包括:确定其它语音数据中与该语音数据的相似度值高于预设阈值的语音数据的数量;以及基于数量确定该语音数据是否为第一对象的合格语音数据。
该语音数据与多个语音数据中的越多语音数据的相似度满足预设阈值要求,则说明该语音数据与第一对象的匹配度越高,即该语音数据越能够代表第一对象的语音特点,反之,则该语音数据无法体现第一对象的语音特点。由此,通过确定其它语音数据中与该语音数据的相似度值高于预设阈值的语音数据的数量,可以对该语音数据的质量进行量化,进而方便地确定该语音数据是否为第一对象的合格语音数据。
其中,多个语音数据中的其它语音数据可以为多个语音数据中除该语音数据以外的所有语音数据,也可以为多个语音数据中除该语音数据以外的部分语音数据。
根据一些实施例,该方法还包括:在确定该语音数据是否为第一对象的合格语音数据之前,从多个语音数据中除去该语音数据以外的所有语音数据中选择部分语音数据,并且其中,基于该语音数据与多个语音数据中的其它语音数据中的每一者的相似度值,确定该语音数据是否为第一对象的合格语音数据可以包括:基于该语音数据与所选择的部分语音数据中的每一者的相似度值,确定该语音数据是否为第一对象的合格语音数据。
根据一些实施例,从多个语音数据中选择的部分语音数据可以基于预设数量从多个语音数据中随机选择得到。
根据一些实施例,相似度值包括音色相似度值。
图4示出了根据本公开示例性实施例的一种数据处理装置400,该装置400包括:第一确定单元401,被配置用于确定与第一对象相关联的多个语音数据,其中,多个语音数据中的每一个语音数据具有用于标识第一对象的标签;以及第二确定单元402,被配置用于针对多个语音数据中的任意一个语音数据,基于该语音数据与多个语音数据中的其它语音数据的相似度值,确定该语音数据是否为第一对象的合格语音数据。
根据一些实施例,第二确定单元包括:用于确定其它语音数据中与该语音数据的相似度值高于预设阈值的语音数据的数量的子单元;以及用于基于数量确定该语音数据是否为第一对象的合格语音数据的子单元。
根据一些实施例,相似度值包括音色相似度值。
根据一些实施例,第一对象为有声文本中的一个角色。
根据一些实施例,有声文本至少包括多段对白音频,装置还包括:第三确定单元,被配用用于确定多段对白音频中的每一段对白音频的角色标签,并且其中,第一确定单元还包括:用于针对多段对白音频中的每一段对白音频,响应于该对白音频的角色标签为第一对象,将该对白音频确定为与第一对象相关联的语音数据的子单元。
根据一些实施例,有声文本还包括分别对应于多段对白音频的多个对白文本,并且其中,第三确定单元包括:用于针对多个对白文本中的每一个对白文本,对有声文本中该对白文本所在的文本段落执行文字识别,以得到对该对白文本的识别结果的子单元;以及用于基于多个对白文本中的每一个对白文本的识别结果,确定该对白文本所对应的对白音频的角色标签的子单元。
根据一些实施例,第三确定单元包括:用于通过经过训练的语音识别模型,确定多段对白音频中的每一段对白音频的角色标签的子单元。
根据本公开的实施例,还提供了一种电子设备,包括:至少一个处理器;以及与至少一个处理器通信连接的存储器;其中存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行上述任意一种方法。
根据本公开的实施例,还提供了一种存储有计算机指令的非瞬时计算机可读存储介质,其中,计算机指令用于使计算机执行上述任意一种方法。
根据本公开的实施例,还提供了一种计算机程序产品,包括计算机程序,其中,计算机程序在被处理器执行时实现上述任意一种方法。
参考图5,现将描述可以作为本公开的服务器或客户端的电子设备500的结构框图,其是可以应用于本公开的各方面的硬件设备的示例。电子设备旨在表示各种形式的数字电子的计算机设备,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本公开的实现。
如图5所示,电子设备500包括计算单元501,其可以根据存储在只读存储器(ROM)502中的计算机程序或者从存储单元508加载到随机访问存储器(RAM)503中的计算机程序,来执行各种适当的动作和处理。在RAM503中,还可存储电子设备500操作所需的各种程序和数据。计算单元501、ROM 502以及RAM 503通过总线504彼此相连。输入/输出(I/O)接口505也连接至总线504。
电子设备500中的多个部件连接至I/O接口505,包括:输入单元506、输出单元507、存储单元508以及通信单元509。输入单元506可以是能向电子设备500输入信息的任何类型的设备,输入单元506可以接收输入的数字或字符信息,以及产生与电子设备的用户设置和/或功能控制有关的键信号输入,并且可以包括但不限于鼠标、键盘、触摸屏、轨迹板、轨迹球、操作杆、麦克风和/或遥控器。输出单元507可以是能呈现信息的任何类型的设备,并且可以包括但不限于显示器、扬声器、视频/音频输出终端、振动器和/或打印机。存储单元508可以包括但不限于磁盘、光盘。通信单元509允许电子设备500通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据,并且可以包括但不限于调制解调器、网卡、红外通信设备、无线通信收发机和/或芯片组,例如蓝牙TM设备、802.11设备、WiFi设备、WiMax设备、蜂窝通信设备和/或类似物。
计算单元501可以是各种具有处理和计算能力的通用和/或专用处理组件。计算单元501的一些示例包括但不限于中央处理单元(CPU)、图形处理单元(GPU)、各种专用的人工智能(AI)计算芯片、各种运行机器学习模型算法的计算单元、数字信号处理器(DSP)、以及任何适当的处理器、控制器、微控制器等。计算单元501执行上文所描述的各个方法和处理,例如数据处理方法。例如,在一些实施例中,数据处理方法可被实现为计算机软件程序,其被有形地包含于机器可读介质,例如存储单元508。在一些实施例中,计算机程序的部分或者全部可以经由ROM 502和/或通信单元509而被载入和/或安装到电子设备500上。当计算机程序加载到RAM 503并由计算单元501执行时,可以执行上文描述的数据处理方法的一个或多个步骤。备选地,在其他实施例中,计算单元501可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行数据处理方法。
本文中以上描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、芯片上系统的系统(SOC)、复杂可编程逻辑设备(CPLD)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。
用于实施本公开的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,也可以为分布式系统的服务器,或者是结合了区块链的服务器。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本公开中记载的各步骤可以并行地执行、也可以顺序地或以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本文在此不进行限制。
虽然已经参照附图描述了本公开的实施例或示例,但应理解,上述的方法、系统和设备仅仅是示例性的实施例或示例,本发明的范围并不由这些实施例或示例限制,而是仅由授权后的权利要求书及其等同范围来限定。实施例或示例中的各种要素可以被省略或者可由其等同要素替代。此外,可以通过不同于本公开中描述的次序来执行各步骤。进一步地,可以以各种方式组合实施例或示例中的各种要素。重要的是随着技术的演进,在此描述的很多要素可以由本公开之后出现的等同要素进行替换。
Claims (17)
1.一种数据处理方法,包括:
确定与第一对象相关联的多个语音数据,其中,所述多个语音数据中的每一个语音数据具有用于标识所述第一对象的标签;以及
针对所述多个语音数据中的任意一个语音数据,基于该语音数据与所述多个语音数据中的其它语音数据的相似度值,确定该语音数据是否为所述第一对象的合格语音数据。
2.根据权利要求1所述的方法,其中,所述基于该语音数据与所述多个语音数据中的其它语音数据的相似度值,确定该语音数据是否为所述第一对象的合格语音数据包括:
确定所述其它语音数据中与该语音数据的相似度值高于预设阈值的语音数据的数量;以及
基于所述数量确定该语音数据是否为所述第一对象的合格语音数据。
3.根据权利要求1或2所述的方法,其中,所述相似度值包括音色相似度值。
4.根据权利要求1至3中任意一项所述的方法,其中,所述第一对象为有声文本中的一个角色。
5.根据权利要求4所述的方法,其中,所述有声文本至少包括多段对白音频,所述方法还包括:
确定所述多段对白音频中的每一段对白音频的角色标签,
并且其中,所述确定与第一对象相关联的多个语音数据包括:
针对所述多段对白音频中的每一段对白音频,响应于该对白音频的角色标签为第一对象,将该对白音频确定为与第一对象相关联的语音数据。
6.根据权利要求5所述的方法,其中,所述有声文本还包括分别对应于所述多段对白音频的多个对白文本,并且其中,所述确定所述多段对白音频中的每一段对白音频的角色标签包括:
针对所述多个对白文本中的每一个对白文本,对所述有声文本中该对白文本所在的文本段落执行文字识别,以得到对该对白文本的识别结果;以及基于所述多个对白文本中的每一个对白文本的识别结果,确定该对白文本所对应的对白音频的角色标签。
7.根据权利要求5所述的方法,其中,所述确定所述多段对白音频中的每一段对白音频的角色标签包括:
通过经过训练的语音识别模型,确定所述多段对白音频中的每一段对白音频的角色标签。
8.一种数据处理装置,包括:
第一确定单元,被配置用于确定与第一对象相关联的多个语音数据,其中,所述多个语音数据中的每一个语音数据具有用于标识所述第一对象的标签;以及
第二确定单元,被配置用于针对所述多个语音数据中的任意一个语音数据,基于该语音数据与所述多个语音数据中的其它语音数据的相似度值,确定该语音数据是否为所述第一对象的合格语音数据。
9.根据权利要求8所述的装置,其中,所述第二确定单元包括:
用于确定所述其它语音数据中与该语音数据的相似度值高于预设阈值的语音数据的数量的子单元;以及
用于基于所述数量确定该语音数据是否为所述第一对象的合格语音数据的子单元。
10.根据权利要求8或9所述的装置,其中,所述相似度值包括音色相似度值。
11.根据权利要求8至10中任意一项所述的装置,其中,所述第一对象为有声文本中的一个角色。
12.根据权利要求11所述的装置,其中,所述有声文本至少包括多段对白音频,所述装置还包括:
第三确定单元,被配用用于确定所述多段对白音频中的每一段对白音频的角色标签,
并且其中,所述第一确定单元还包括:
用于针对所述多段对白音频中的每一段对白音频,响应于该对白音频的角色标签为第一对象,将该对白音频确定为与第一对象相关联的语音数据的子单元。
13.根据权利要求12所述的装置,其中,所述有声文本还包括分别对应于所述多段对白音频的多个对白文本,并且其中,所述第三确定单元包括:
用于针对所述多个对白文本中的每一个对白文本,对所述有声文本中该对白文本所在的文本段落执行文字识别,以得到对该对白文本的识别结果的子单元;以及
用于基于所述多个对白文本中的每一个对白文本的识别结果,确定该对白文本所对应的对白音频的角色标签的子单元。
14.根据权利要求12所述的装置,其中,所述第三确定单元包括:
用于通过经过训练的语音识别模型,确定所述多段对白音频中的每一段对白音频的角色标签的子单元。
15.一种电子设备,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-7中任一项所述的方法。
16.一种存储有计算机指令的非瞬时计算机可读存储介质,其中,所述计算机指令用于使所述计算机执行根据权利要求1-7中任一项所述的方法。
17.一种计算机程序产品,包括计算机程序,其中,所述计算机程序在被处理器执行时实现权利要求1-7中任一项所述的方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111490985.7A CN114187924A (zh) | 2021-12-08 | 2021-12-08 | 数据处理方法、装置、电子设备及介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111490985.7A CN114187924A (zh) | 2021-12-08 | 2021-12-08 | 数据处理方法、装置、电子设备及介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114187924A true CN114187924A (zh) | 2022-03-15 |
Family
ID=80542731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111490985.7A Pending CN114187924A (zh) | 2021-12-08 | 2021-12-08 | 数据处理方法、装置、电子设备及介质 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114187924A (zh) |
-
2021
- 2021-12-08 CN CN202111490985.7A patent/CN114187924A/zh active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112579909A (zh) | 对象推荐方法及装置、计算机设备和介质 | |
CN114443989B (zh) | 排序方法、排序模型的训练方法、装置、电子设备及介质 | |
CN115470381A (zh) | 信息交互方法、装置、设备及介质 | |
CN113824899A (zh) | 视频处理方法、装置、电子设备及介质 | |
US11842726B2 (en) | Method, apparatus, electronic device and storage medium for speech recognition | |
CN114547252A (zh) | 文本识别方法、装置、电子设备和介质 | |
CN114219046B (zh) | 模型训练方法、匹配方法、装置、系统、电子设备和介质 | |
CN115862031A (zh) | 文本处理方法、神经网络的训练方法、装置和设备 | |
CN115578501A (zh) | 图像处理方法、装置、电子设备和存储介质 | |
CN115345969A (zh) | 虚拟形象的控制方法、装置、设备及介质 | |
CN114065737A (zh) | 文本处理方法、装置、设备及介质 | |
CN114999449A (zh) | 数据处理方法和装置 | |
CN114429678A (zh) | 模型训练方法及装置、电子设备和介质 | |
CN113722594A (zh) | 推荐模型的训练方法、推荐方法、装置、电子设备及介质 | |
CN113596011A (zh) | 流量识别方法及装置,计算设备和介质 | |
CN114187924A (zh) | 数据处理方法、装置、电子设备及介质 | |
CN116842156B (zh) | 数据生成方法及装置、设备和介质 | |
CN114860836B (zh) | 失效兴趣点的挖掘方法及装置、设备和介质 | |
CN114169440A (zh) | 模型训练方法、数据处理方法、装置、电子设备及介质 | |
CN114048759A (zh) | 模型训练方法、数据处理方法、装置、设备及介质 | |
CN115617968A (zh) | 对话方法及装置、设备和介质 | |
CN115564992A (zh) | 图像分类方法和图像分类模型的训练方法 | |
CN115577081A (zh) | 对话方法及装置、设备和介质 | |
CN114627860A (zh) | 模型训练方法、语音处理方法、装置、设备及介质 | |
CN114758114A (zh) | 模型更新方法、图像处理方法、装置、电子设备及介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |