CN114184594A - 一种基于正电性sers基底的负电性分子sers检测方法 - Google Patents

一种基于正电性sers基底的负电性分子sers检测方法 Download PDF

Info

Publication number
CN114184594A
CN114184594A CN202111420172.0A CN202111420172A CN114184594A CN 114184594 A CN114184594 A CN 114184594A CN 202111420172 A CN202111420172 A CN 202111420172A CN 114184594 A CN114184594 A CN 114184594A
Authority
CN
China
Prior art keywords
sers
electropositive
solution
electronegative
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111420172.0A
Other languages
English (en)
Other versions
CN114184594B (zh
Inventor
刘国坤
胡伟晔
王维礼
龚宏波
田中群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202111420172.0A priority Critical patent/CN114184594B/zh
Publication of CN114184594A publication Critical patent/CN114184594A/zh
Application granted granted Critical
Publication of CN114184594B publication Critical patent/CN114184594B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种基于正电性SERS基底的负电性分子SERS检测方法,将待测负电性物质溶液与硫脲类或者巯基乙胺类分子助剂溶液混合均匀得到混合溶液,向正电性SERS基底中加入混合溶液以及团聚剂溶液,使用拉曼光谱仪进行检测,根据目标分子的特征拉曼谱峰位置和谱峰强度对待测负电性分子溶液进行分析。本发明对负电性分子实现高灵敏检出,具有良好的稳定性和重现性。

Description

一种基于正电性SERS基底的负电性分子SERS检测方法
技术领域
本发明属于光谱分析检测技术领域,具体涉及一种快速检测痕量负电性物质的表面增强拉曼光谱方法。
背景技术
实现高灵敏SERS检测主要有以下三种方法:1.选取大拉曼散射截面分子:拉曼散射截面大的分子如R6G,RhB的分子往往有着较高的SERS信号。2.制备超高活性的SERS基底:有着高热点密度的有序阵列固态基底与具有一定尺寸和形状的Au/Ag溶胶基底SERS增强效果远强于电化学表面粗糙化的基底。3.增强分子与基底之间的相互作用,吸附在金属表面第一层分子可以获得最大的增强,含有-SH、-CN等官能团的分子如4-MBA、4-Mpy可通过化学吸附紧贴基底表面,含有-NH2、-NH4+、-COO-等官能团结构的分子如结晶紫,孔雀石绿等可通过物理吸附取代基底表面配体,这两类分子的SERS检测往往有较高的灵敏度,
在实际检测过程中,更多的分子如多氯联苯,DNA,核苷酸等与基底的相互作用非常弱,分子在基底表面的吸附是一个动态过程,此时分子进出热点会极大的影响拉曼信号(尤其是在超低浓度时)。SERS检测面临的最大挑战之一即是如何提高这类弱吸附分子的检测灵敏度。解决此类弱吸附分子检测问题的一种策略是将光谱采集时间设置的尽可能短,这样可以挑选在一系列谱图中信噪比最佳的光谱。而另一种更好检测弱吸附分子的策略是通过化学修饰或物理作用(静电,π键,氢键,以及范德华力)将分子固定在基底表面从而提高分子与基底的表面亲和力实现高灵敏检测。静电作用显著影响弱吸附分子与SERS基底表面的亲和力。柠檬酸钠或者抗坏血酸所制备的Au/Ag NPs基底通过静电引力使正电性弱吸附分子更易进入热点实现高灵敏检测。但对于负电性弱吸附分子,静电斥力反而会阻碍分子进入热点,这制约了负电性弱吸附分子的检测。
发明内容
本发明的目的在于克服现有技术存在的不足,提供一种快速基于正电性SERS基底的负电性分子SERS检测方法。
为了实现以上目的,本发明的技术方案为:
一种基于正电性SERS基底的负电性分子SERS检测方法,包括以下步骤:
1)将待测负电性物质溶液与助剂溶液混合均匀得到混合溶液,所述助剂是硫脲类或者巯基乙胺分子,混合溶液中助剂浓度为10μM~10mM;
2)向正电性的SERS基底中加入所述混合溶液,得到检测样B;
3)向检测样B加入浓度为0.3~1M的团聚剂溶液,得到检测样C;
4)使用拉曼光谱仪检测所述检测样C,根据拉曼特征峰位置和峰强度对待测负电性物质溶液进行分析。
可选的,所述正电性的SERS基底为正电性纳米材料。
可选的,所述正电性纳米材料是金纳米粒子溶胶或银纳米粒子溶胶。
可选的,所述团聚剂溶液为NaF溶液、NaCl溶液、NaBr溶液或NaI溶液。
可选的,所述混合溶液、正电性的SERS基底和团聚剂溶液的体积比为1:0.1~0.4:0.1~0.4。
可选的,所述硫脲类分子包括硫脲、甲基硫脲或苯基硫脲;所述巯基乙胺类分子包括巯基乙胺、半胱氨酸、巯基苯胺、6-氨基-1-己烷硫醇或2-氨基苯硫酚。
可选的,所述混合溶液中助剂的浓度为100μM。
可选的,所述待测负电性物质是日落黄,步骤3)中,根据739cm-1、1345cm-1、1360cm-1和1597cm-1处的特征峰定性为日落黄。
可选的,所述日落黄分子的最低检出浓度为10μg/L。
本发明中,所述溶液为水溶液,以水为溶剂。
本发明的有益效果为:
1、本发明通过选用硫脲类以及巯基乙胺分子作为助剂,正电性金银纳米材料作为基底,低浓度NaF等弱吸附阴离子作为团聚剂,能够对带负电的分子实现低浓度检出,具有良好的稳定性和重现性。
2、本发明的方法具有检测过程简单快速、响应迅速、检测成本低廉、检测灵敏度高等优势。
附图说明
图1为本发明实施例1中硫脲浓度对日落黄检测影响的SERS谱图;
图2为本发明实施例2中加入不同团聚剂后检测日落黄的SERS谱图;
图3为本发明实施例3中团聚剂浓度对日落黄检测影响的SERS谱图;
图4为本发明实施例4中以硫脲为助剂对日落黄检测的SERS谱图;
图5为本发明实施例5中以巯基乙胺为助剂对日落黄检测的SERS谱图。
具体实施方式
以下结合附图和具体实施例对本发明做进一步解释。
实施例1
步骤1,取一定待测日落黄分子标液与硫脲溶液混合,得到待测分子与助剂分子混合液,其中日落黄分子浓度为100μg/L,硫脲浓度分别为10/50/100/500/1000/10000μM;
步骤2,取200μL上述的(1)中待测分子与硫脲混合液,将其加入到50μL的正电性银纳米粒子溶胶中;本实施例中,正电性银纳米粒子的合成方法为:1)在容器内加入质量分数为0.05%~0.2%的聚乙烯亚胺溶液,放置3h后,用超纯水超声清洗后用于下一步合成;2)在容器中先后加入50mL超纯水,240μL 0.1M抗坏血酸溶液,240μL 0.1M精胺溶液,200μL0.5M氢氧化钠溶液,400μL 0.1M硝酸银溶液,上述混合液反应半小时后,得到平均粒径为47nm的第一正电性银纳米粒子;3)将10mL第一正电性银纳米粒子、20mL超纯水、1mL 0.1M抗坏血酸溶液、200μL 0.1M精胺类溶液混合得到混合溶液,利用蠕动泵将1mL 0.1M硝酸银溶液稀释至20mL缓慢滴加入混合溶液中,利用蠕动泵控制滴加时间超过1小时,得到粒径约为78nm的正电性银纳米粒子溶胶。此外,也可以采用其他已知的正电性银纳米粒子;
步骤3,配置1M NaF。取50μL NaF溶液加入上述2步骤所得溶液中;
步骤4,将96孔板置于便携式拉曼光谱仪器显微镜下,调整镜头与96孔板的垂直距离,使激光在液面聚焦为一个明亮的圆形光点进行检测。测试前扫描暗电流,以减少背景的干扰;使用波长为785nm的激光,积分时间为3s,累计次数为5次;记录待测分子的拉曼峰位置。
图1为100μg/L日落黄分子与不同浓度硫脲混合液加入负电性银溶胶后以NaF作为团聚剂的SERS谱图。以1597cm-1峰作为判断依据,当硫脲浓度为100μM时其信号最强。
实施例2
步骤1,取一定待测日落黄分子标液与硫脲溶液混合,得到待测分子与助剂分子混合液,其中日落黄分子浓度为1000μg/L,硫脲浓度为100μM;
步骤2,同实施例1;
步骤3,配置1M NaF/NaCl/NaBr/NaI溶液。取50μL不同种类团聚剂溶液加入到正电性银纳米粒子溶胶中;
步骤4,同实施例1。
图2为以NaF/NaCl/NaBr/NaI作为团聚剂,硫脲浓度为100μM时对100μg/L日落黄分子检测的SERS谱图。以1597cm-1峰作为判断依据,从图中可以看到以NaF作为团聚剂时对日落黄分子的检出效果达到最佳,其原因是因为强吸附阴离子会与负电性分子在银表面形成竞争吸附,隔绝分子进入SERS热点。因此弱吸附阴离子团聚剂对可以显著提高负电性分子的SERS检测灵敏度。
实施例3
步骤1,同实施例2;
步骤2,同实施例1;
步骤3,配置0.1/0.3/0.5/1M NaF溶液;取50μL不同浓度NaF团聚剂溶液加入到正电性银纳米粒子溶胶中;
步骤4,同实施例1。
图3为以0.1/0.3/0.5/1M NaF作为团聚剂,硫脲浓度为100μM时对100μg/L日落黄分子检测的SERS谱图。以1597cm-1峰作为判断依据,从图中可以看到NaF浓度为0.3M时对日落黄分子的检出效果达到最佳。
实施例4
步骤1,取一定待测日落黄分子标液与硫脲溶液混合,得到待测分子与助剂分子混合液,其中日落黄分子浓度为1/10/100μg/L,硫脲浓度为100μM;
步骤2,同实施例1;
步骤3,配置0.3M NaF溶液,将其加入步骤2所得溶液中;
步骤4,同实施例1。
图4为以0.3M NaF作为团聚剂,正电性Ag-Spe作为基底,硫脲浓度为100μM时对不同浓度日落黄分子的检测谱图。根据739cm-1、1345cm-1、1360cm-1和1597cm-1处的特征峰定性为日落黄,以1597cm-1为判断依据,对日落黄分子的检出限为10μg/L。该结果表明在正电性SERS基底上以硫脲与低浓度NaF作为助剂可以有效的提高对负电性分子的检测灵敏度,其原因为:1)正电性SERS基底表面正电通过静电引力将分子拉入SERS热点,2)强吸附氨基分子吸附在正电性SERS基底表面时可诱导负电性分子共吸附,3)弱吸附团聚剂NaF破坏正电性SERS基底表面双电层结构,诱发团聚构筑大量SERS热点,同时不会与目标分子形成竞争吸附。助剂、基底、团聚剂三者共同作用实现了对痕量负电性分子的高灵敏检出。
实施例5
步骤1,取一定待测日落黄分子标液与巯基乙胺溶液混合,得到待测分子与助剂分子混合液,其中日落黄分子浓度为1/10/100μg/L,巯基乙胺浓度为100μM;
步骤2,取200μL上述的(1)中待测分子与硫脲混合液,将其加入到50μL的正电性银纳米粒子溶胶中;
步骤3,同实施例3;
步骤4,同实施例1;
图5为以0.3M NaF作为团聚剂,正电性Ag-Spe作为基底,巯基乙胺浓度为100μM时对不同浓度日落黄分子的检测谱图。根据1228cm-1、1385cm-1、1496cm-1和1596cm-1处的特征峰定性为日落黄,以1596cm-1为判断依据,对日落黄分子的检出限为10μg/L。本实施例中,同样的,巯基乙胺是强吸附氨基分子,吸附在正电性SERS基底表面时可诱导负电性分子共吸附。
上述实施例仅用来进一步说明本发明的一种基于正电性SERS基底的负电性分子SERS检测方法,但本发明并不局限于实施例,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均落入本发明技术方案的保护范围内。

Claims (9)

1.一种基于正电性SERS基底的负电性分子SERS检测方法,其特征在于,包括以下步骤:
1)将待测负电性物质溶液与助剂溶液混合均匀得到混合溶液,所述助剂是硫脲或者巯基乙胺类分子,混合溶液中助剂浓度为10μM~10mM;
2)向正电性SERS基底中加入所述混合溶液,得到检测样B;
3)向检测样B加入浓度为0.3~1M的团聚剂溶液,得到检测样C;
4)使用拉曼光谱仪检测所述检测样C,根据拉曼特征峰位置和峰强度对待测负电性物质溶液进行分析。
2.根据权利要求1所述的基于正电性SERS基底的负电性分子SERS检测方法,其特征在于:所述正电性SERS基底为正电性纳米材料。
3.根据权利要求2所述的基于正电性SERS基底的负电性分子SERS检测方法,其特征在于:所述正电性纳米材料是金纳米粒子溶胶或银纳米粒子溶胶。
4.根据权利要求2所述的基于正电性SERS基底的负电性分子SERS检测方法,其特征在于,所述团聚剂溶液为NaF溶液、NaCl溶液、NaBr溶液或NaI溶液。
5.根据权利要求3所述的基于正电性SERS基底的负电性分子SERS检测方法,其特征在于:所述混合溶液、正电性的SERS基底和团聚剂溶液的体积比为1:0.1~0.4:0.1~0.4。
6.根据权利要求1所述的基于正电性SERS基底的负电性分子SERS检测方法,其特征在于:所述硫脲类分子包括硫脲、甲基硫脲或苯基硫脲;所述巯基乙胺类分子包括巯基乙胺、半胱氨酸、巯基苯胺、6-氨基-1-己烷硫醇或2-氨基苯硫酚。
7.根据权利要求1所述的基于正电性SERS基底的负电性分子SERS检测方法,其特征在于:所述混合溶液中助剂的浓度为100μM。
8.根据权利要求1所述的基于正电性SERS基底的负电性分子SERS检测方法,其特征在于:所述待测负电性物质是日落黄,步骤3)中,根据739cm-1、1345cm-1、1360cm-1和1597cm-1处的特征峰定性为日落黄。
9.根据权利要求8所述的基于正电性SERS基底的负电性分子SERS检测方法,其特征在于:所述日落黄分子的最低检出浓度为10μg/L。
CN202111420172.0A 2021-11-24 2021-11-24 一种基于正电性sers基底的负电性分子sers检测方法 Active CN114184594B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111420172.0A CN114184594B (zh) 2021-11-24 2021-11-24 一种基于正电性sers基底的负电性分子sers检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111420172.0A CN114184594B (zh) 2021-11-24 2021-11-24 一种基于正电性sers基底的负电性分子sers检测方法

Publications (2)

Publication Number Publication Date
CN114184594A true CN114184594A (zh) 2022-03-15
CN114184594B CN114184594B (zh) 2023-11-14

Family

ID=80602717

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111420172.0A Active CN114184594B (zh) 2021-11-24 2021-11-24 一种基于正电性sers基底的负电性分子sers检测方法

Country Status (1)

Country Link
CN (1) CN114184594B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340836A (ja) * 2005-06-08 2006-12-21 Jfe Kankyo Solutions Kk 有害物分子の処理方法及びこの処理方法に用いられる薬剤
CN103335995A (zh) * 2013-07-13 2013-10-02 福州大学 一种利用拉曼增强光谱检测食品中合成色素的方法
CN103521754A (zh) * 2013-10-14 2014-01-22 厦门大学 一种表面增强拉曼光谱基底材料的制备方法
CN109570485A (zh) * 2018-11-08 2019-04-05 安徽中科赛飞尔科技有限公司 一种金纳米棒及其制备方法和应用
CN110125437A (zh) * 2019-05-29 2019-08-16 浙江工业大学 一种正电荷修饰的粒径可控金纳米颗粒的制备方法
CN110501323A (zh) * 2019-09-03 2019-11-26 绍兴谱分科技有限公司 一种基于增强拉曼光谱技术的二噁英类污染物快速检测方法
CN112285092A (zh) * 2020-10-29 2021-01-29 浙江大学 一种基于表面增强拉曼光谱技术的红花染色快速检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340836A (ja) * 2005-06-08 2006-12-21 Jfe Kankyo Solutions Kk 有害物分子の処理方法及びこの処理方法に用いられる薬剤
CN103335995A (zh) * 2013-07-13 2013-10-02 福州大学 一种利用拉曼增强光谱检测食品中合成色素的方法
CN103521754A (zh) * 2013-10-14 2014-01-22 厦门大学 一种表面增强拉曼光谱基底材料的制备方法
CN109570485A (zh) * 2018-11-08 2019-04-05 安徽中科赛飞尔科技有限公司 一种金纳米棒及其制备方法和应用
CN110125437A (zh) * 2019-05-29 2019-08-16 浙江工业大学 一种正电荷修饰的粒径可控金纳米颗粒的制备方法
CN110501323A (zh) * 2019-09-03 2019-11-26 绍兴谱分科技有限公司 一种基于增强拉曼光谱技术的二噁英类污染物快速检测方法
CN112285092A (zh) * 2020-10-29 2021-01-29 浙江大学 一种基于表面增强拉曼光谱技术的红花染色快速检测方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AGNIESZKA MICHOTA等: "Chemisorption of Cysteamine on Silver Studied by Surface-Enhanced Raman Scattering", 《LANGMUIR》, vol. 26, no. 16, pages 10236 - 10242 *
SIMON BLOXHAM等: "Adsorption of Cysteamine at Copper Electrodes as Studied by Surface‐Enhanced Raman Spectroscopy", 《SPECTROSCOPY LETTERS》, vol. 36, no. 3, pages 211 - 226 *
XIE LIFANG等: "Key Role of Direct Adsorption on SERS Sensitivity: Synergistic Effect among Target, Aggregating Agent, and Surface with Au or Ag Colloid as Surface-Enhanced Raman Spectroscopy Substrate", 《THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS》, vol. 11, pages 1022 - 1029 *
ZHOU ZHI-MING等: "Improving SERS Sensitivity toward Trace Sulfonamides:The Key Role of Trade-Off Interfacial Interactions among the Target Molecules, Anions, and Cations on the SERS Active Surface", 《ANALYTICAL CHEMISTRY》, vol. 93, pages 8603 - 8612 *
钟起玲等: "硫脲与多种阴离子共吸附行为的拉曼光谱研究", 《物理化学学报》, vol. 14, no. 6, pages 562 - 568 *

Also Published As

Publication number Publication date
CN114184594B (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
US9658163B2 (en) Assaying substrate with surface-enhanced raman scattering activity
Walekar et al. Functionalized fluorescent nanomaterials for sensing pollutants in the environment: A critical review
Lin et al. Silver nanoprobe for sensitive and selective colorimetric detection of dopamine via robust Ag–catechol interaction
Masteri-Farahani et al. Molecularly imprinted polymer containing fluorescent graphene quantum dots as a new fluorescent nanosensor for detection of methamphetamine
Yang et al. Controllable in situ fabrication of portable AuNP/mussel-inspired polydopamine molecularly imprinted SERS substrate for selective enrichment and recognition of phthalate plasticizers
Safavi et al. Construction of a carbon nanocomposite electrode based on amino acids functionalized gold nanoparticles for trace electrochemical detection of mercury
Ge et al. Layer-by-layer self-assembly CdTe quantum dots and molecularly imprinted polymers modified chemiluminescence sensor for deltamethrin detection
Lin et al. D-penicillamine-templated copper nanoparticles via ascorbic acid reduction as a mercury ion sensor
Alizadeh et al. A review on gold nanoparticles aggregation and its applications
Tian et al. Simultaneous detection of trace Hg2+ and Ag+ by SERS aptasensor based on a novel cascade amplification in environmental water
Lin et al. AuNPs@ mesoSiO2 composites for SERS detection of DTNB molecule
Li et al. Highly sensitive and selective method for detection of trace amounts of nitrite in aquaculture water by SERRS coupled with diazo reaction
Liu et al. Ultrasensitive and facile detection of multiple trace antibiotics with magnetic nanoparticles and core-shell nanostar SERS nanotags
Patra et al. RETRACTED: An imprinted Ag@ CdS core shell nanoparticle based optical-electrochemical dual probe for trace level recognition of ferritin
Wu et al. Bimodal counterpropagating-responsive sensing material for the detection of histamine
Zhang et al. Label-free immunosensor based on Au@ Ag2S nanoparticles/magnetic chitosan matrix for sensitive determination of ractopamine
Tian et al. Recent advances of plasmonic nanoparticle-based optical analysis in homogeneous solution and at the single-nanoparticle level
Li et al. Rapid and ultrasensitive detection of mercury ion (II) by colorimetric and SERS method based on silver nanocrystals
Ghosh et al. Probing of ascorbic acid by CdS/dendrimer nanocomposites: a spectroscopic investigation
Karfa et al. Retracted Article: A battle between spherical and cube-shaped Ag/AgCl nanoparticle modified imprinted polymer to achieve femtogram detection of alpha-feto protein
CN109799220B (zh) 基于金属螯合物拉曼标签技术检测组织液中组胺的方法
CN114184593A (zh) 一种动态表面增强拉曼光谱检测方法
Song et al. Inner filter effect between upconversion nanoparticles and Fe (ii)–1, 10-phenanthroline complex for the detection of Sn (ii) and ascorbic acid (AA)
Choi et al. Gold nanoparticle-based fluorescent “turn-on” sensing system for the selective detection of mercury ions in aqueous solution
Lin et al. A reversible optical sensor based on chitosan film for the selective detection of copper ions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant