CN114184241B - 一种提高压水堆含气泡液体差压流量测量稳定性的方法 - Google Patents

一种提高压水堆含气泡液体差压流量测量稳定性的方法 Download PDF

Info

Publication number
CN114184241B
CN114184241B CN202010961111.4A CN202010961111A CN114184241B CN 114184241 B CN114184241 B CN 114184241B CN 202010961111 A CN202010961111 A CN 202010961111A CN 114184241 B CN114184241 B CN 114184241B
Authority
CN
China
Prior art keywords
pipeline
meter
differential pressure
instrument
root valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010961111.4A
Other languages
English (en)
Other versions
CN114184241A (zh
Inventor
汪达
徐霖野
李宇睿
李军怀
王小波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CNNC Nuclear Power Operation Management Co Ltd
Nuclear Power Qinshan Joint Venture Co Ltd
Original Assignee
CNNC Nuclear Power Operation Management Co Ltd
Nuclear Power Qinshan Joint Venture Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CNNC Nuclear Power Operation Management Co Ltd, Nuclear Power Qinshan Joint Venture Co Ltd filed Critical CNNC Nuclear Power Operation Management Co Ltd
Priority to CN202010961111.4A priority Critical patent/CN114184241B/zh
Publication of CN114184241A publication Critical patent/CN114184241A/zh
Application granted granted Critical
Publication of CN114184241B publication Critical patent/CN114184241B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/42Orifices or nozzles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/48Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by a capillary element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/18Supports or connecting means for meters
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/02Devices or arrangements for monitoring coolant or moderator
    • G21C17/032Reactor-coolant flow measuring or monitoring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

本发明公开了一种提高压水堆含气泡液体差压流量测量稳定性的方法,包括如下步骤:步骤1:关闭仪表根阀,隔离原变送器取压管线;步骤2:拆除仪表根阀下游仪表管线固定支架;步骤3:在仪表根阀下游进行切割;步骤4:将新增法兰及连接管与仪表根阀切口处进行焊接;步骤5:连接仪表管线及安装校验合格的仪表。本发明的有益效果在于:本发明采用毛细管型差压变送器对传统差压流量计中的引压管线进行改进,可永久提高含气泡液体差压流量计测量稳定性。

Description

一种提高压水堆含气泡液体差压流量测量稳定性的方法
技术领域
本发明属于一种测量方法,具体涉及一种提高压水堆含气泡液体差压流量 测量稳定性的方法。
背景技术
安全壳喷淋系统(下文简称安喷系统、EAS系统)为压水堆核电厂专设安全 设施,其作用为:在事故工况(LOCA(冷却剂丧失)或安全壳内蒸汽管道破裂) 下,当安全壳内的压力和温度升高到一定值时,系统将安全壳内压力和温度降 低至可接受的水平,以保持安全壳的完整性,降低安全壳内的气载放射性水平(尤 其是碘)。安喷系统也是大LOCA后唯一用于排出安全壳内热量的系统。安喷系 统由两个完全相同的系列A、B列组成,每个系列均包含一台安喷泵,一条主管线,两组喷淋管及其它辅助设施,主管线中的喷淋水由安喷泵推动至喷淋管, 对安全壳内进行喷淋,安喷泵为立式筒形泵,设置额定流量850m3/h,总扬程131m,主管线流量采用了差压流量计测量方式。
差压式流量测量方式基于伯努利方程和连续性原理,通过测量液体流经节 流元件时产生的压力变化,从而计算出流体流量。推导为:
已知流体密度ρ;流体管道前后截面积A1、A2;截面处流体流速v1、v2; 压强p1、p2。根据不可压缩理想流体的伯努利方程(1)
和流体连续性方程(2)
A1V1=A2V2 (2)
可以推得式(3)
其中A0为孔板开孔面积,μ为流束收缩系数(A2=μA0),d为节流孔直径, D为管道内径。
上述方程均建立在流体不可压缩及流体动量守恒的基础之上,事实上,由 于流体存在摩擦力和黏性,其动量有所损失,而孔板前后流体由于具备可压缩 性,前后密度并不相同,故引入流量系数α和膨胀系数ε(对于不可压缩流体, 其ε为1),并得到孔板前后的实际压差为Δp=p1-p2,实际密度ρ2=ερ1=ερ,得 到可压缩的实际流体方程(式4)
简化公式可以得到流量与差压之间的关系式5
可以看出流量与差压的平方根成线性关系,即
上式作为差压流量测量的理论基础,决定了差压流量计测量的硬件组成, 主要的组成元件包含节流元件、引压管线及差压变送器。差压式流量计可以采 用的节流元件包含标准孔板、节流挡板、文丘里管等,而在现场使用的设备中 则以标准孔板居多。安喷主管线采用了流量孔板搭配引压管线与差压变送器的 测量方式。
安喷系统在机组正常运行期间不投入使用,为确保安喷系统随时可用,机 组会进行定期零流量试验,该实验要求安喷管道内液体流量达到某一定值,多 次试验中均反馈在安喷泵停止运转后,依然存在流量波动的情况,该波动可能 导致现场试验失败,造成安喷管线不可用,对机组安全稳定运行造成影响。
安喷泵为立式筒形泵,具有较高扬程,该泵在运行过程中,会将大量气体 带入安喷管线内,气体在管线内以气泡的形式存在,气泡随液体进入引压管线 并到达差压变送器测量室,差压变送器测量范围小,精度高,灵敏度高,由于 空气相较于水具备较大的压缩系数(接近1),其对于差压变送器的影响较大, 根据连通器原理可知,主管线内气体对于差压变送器内的扰动远小于引压管线 内的气体扰动。
国内同类型压水堆核电厂均有此类设备问题,目前普遍采用人工充水排气 的方法对测量稳定性进行短期改进,每次处理期间需多部门到场协同,设备所 处位置具有一定的辐射强度,重复充水排气工作对于人力成本造成的浪费较大。
发明内容
本发明的目的在于提供一种提高压水堆含气泡液体差压流量测量稳定性的 方法,它能够解决引压管线内气体对于差压变送器的测量扰动问题,同时规避 人工校表的成本与风险问题,提升专设安全装置可靠性与稳定性,确保机组安 全设施随时可用。
本发明的技术方案如下:一种提高压水堆含气泡液体差压流量测量稳定性 的方法,包括如下步骤:
步骤1:关闭仪表根阀,隔离原变送器取压管线;
步骤2:拆除仪表根阀下游仪表管线固定支架;
步骤3:在仪表根阀下游进行切割;
步骤4:将新增法兰及连接管与仪表根阀切口处进行焊接;
步骤5:连接仪表管线及安装校验合格的仪表。
所述的步骤3还包括对切口进行打磨。
所述的步骤3还包括清理灰渣。
所述的步骤3还包括进行好防异物操作。
所述的步骤4包括安装毛细管型压力变送器。
所述的步骤5包括待焊接处冷却后连接仪表管线及安装校验合格的仪表.
所述的步骤5包括恢复仪表接线。
本发明的有益效果在于:本发明采用毛细管型差压变送器对传统差压流量 计中的引压管线进行改进,可永久提高含气泡液体差压流量计测量稳定性。
具体实施方式
下面结合具体实施例对本发明作进一步详细说明。
本发明应用于压水堆核电厂安全壳喷淋系统主管道差压流量计测量稳定性 提升领域,安全壳喷淋泵为立式筒形泵,该泵在运行过程中会将大量气体带入 液体管道,对于此类管道的流量测量,通过采用毛细管差压变送器代替传统差 压流量计中的差压变送器引压管线,避免了气泡随液体一同进入引压管线并滞 留在管线中的情况,消除了管线中液体携带气泡时,气体对于差压变送器测量的干扰,避免了上述管线中差压流量计故障产生的频率,提高了流量测量稳定 性。
一种提高压水堆含气泡液体差压流量测量稳定性的方法,包括如下步骤:
步骤1:关闭仪表根阀,隔离原变送器取压管线。
步骤2:拆除仪表根阀下游仪表管线固定支架。
步骤3:在仪表根阀下游进行切割,对切口进行打磨,清理灰渣,使用堵 头或防护罩封堵切口,做好防异物措施,具体切割位置为流量孔板引压管线 隔离阀出口下游约5公分处。
步骤4:将新增法兰及连接管与仪表根阀切口处进行焊接,安装毛细管型 压力变送器。
步骤5:待焊接处冷却后连接仪表管线及安装校验合格的仪表,恢复仪表 接线。
本发明通过采用毛细管型差压变送器对孔板两侧进行测量,达到了如下的 效果和收益:
消除了测量不稳定的问题,确保了安喷系统试验结果合格。
降低了流量计人为维护的工作需要,降低了集体剂量率。
确保专设安全设施在事故后的可用性以及流量计作为事故后监测仪表的 可靠性。
取消了冗长的仪表管线和压力平衡罐,减少了设备故障点。

Claims (1)

1.一种提高压水堆含气泡液体差压流量测量稳定性的方法,其特征在于,包括如下步骤:
步骤1:关闭仪表根阀,隔离原变送器取压管线;
步骤2:拆除仪表根阀下游仪表管线固定支架;
步骤3:在仪表根阀下游进行切割;
所述的步骤3还包括对切口进行打磨;
所述的步骤3还包括清理灰渣;
所述的步骤3还包括使用堵头或防护罩进行防异物操作;
步骤4:将新增法兰及连接管与仪表根阀切口处进行焊接;
所述的步骤4包括安装毛细管型压力变送器;
步骤5:连接仪表管线及安装校验合格的仪表;
所述的步骤5包括待焊接处冷却后连接仪表管线及安装校验合格的仪表;
所述的步骤5包括恢复仪表接线。
CN202010961111.4A 2020-09-14 2020-09-14 一种提高压水堆含气泡液体差压流量测量稳定性的方法 Active CN114184241B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010961111.4A CN114184241B (zh) 2020-09-14 2020-09-14 一种提高压水堆含气泡液体差压流量测量稳定性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010961111.4A CN114184241B (zh) 2020-09-14 2020-09-14 一种提高压水堆含气泡液体差压流量测量稳定性的方法

Publications (2)

Publication Number Publication Date
CN114184241A CN114184241A (zh) 2022-03-15
CN114184241B true CN114184241B (zh) 2024-08-09

Family

ID=80538988

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010961111.4A Active CN114184241B (zh) 2020-09-14 2020-09-14 一种提高压水堆含气泡液体差压流量测量稳定性的方法

Country Status (1)

Country Link
CN (1) CN114184241B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101187660A (zh) * 2006-07-18 2008-05-28 中国石油天然气集团公司 双槽式孔板型混输计量装置
CN210638744U (zh) * 2019-08-30 2020-05-29 上海孚凌自动化控制系统有限公司 一种差压流量计

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA911996B (en) * 1990-03-16 1992-01-29 Slurry Syst Pty Ltd Method and apparatus for continuous on-line measurement of fluid or slurry rheology
JP3375804B2 (ja) * 1995-10-27 2003-02-10 株式会社山武 リモートシールダイアフラム型差圧発信器の固定構造
CN2681092Y (zh) * 2004-01-21 2005-02-23 李渝川 差压类流量计间接取压装置
US20130269416A1 (en) * 2008-12-04 2013-10-17 Therox, Inc. Method and device for combined measurement of bubbles and flow rate in a system for enriching a bodily fluid with a gas
JP2014048212A (ja) * 2012-08-31 2014-03-17 Toshiba Corp キャピラリーチューブ気泡検出装置およびその気泡検出方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101187660A (zh) * 2006-07-18 2008-05-28 中国石油天然气集团公司 双槽式孔板型混输计量装置
CN210638744U (zh) * 2019-08-30 2020-05-29 上海孚凌自动化控制系统有限公司 一种差压流量计

Also Published As

Publication number Publication date
CN114184241A (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
KR101630395B1 (ko) 운전상태 분석알고리즘에 의한 수충격 방지시스템
US4421716A (en) Safety monitoring and reactor transient interpreter
CN101960280B (zh) 用于安全阀的测试设备和方法
KR101494166B1 (ko) 원자력 발전소 출력운전 중 격납건물 누설율 측정 시스템
CN103578586B (zh) 双层玻璃t型管实验段连接装置
CN105157923B (zh) 安全壳封闭回路上进出口隔离阀组密封性试验方法
CN102426866A (zh) 核电站一回路压力边界泄漏监测方法和系统
KR100942194B1 (ko) 원자로 냉각재 계통의 배수장치 및 배수방법
CN112432744A (zh) 核岛水系统密封测量装置及测量方法
CN114184241B (zh) 一种提高压水堆含气泡液体差压流量测量稳定性的方法
KR100364871B1 (ko) 운전 정지 냉각 펌프의 와류 탐지 시스템
CN111255701B (zh) 核电厂用轴封泵的低压泄漏流量测量装置及测量方法
CN208736633U (zh) 一种安全阀冷态试验系统
CN111192697A (zh) 基于虹吸原理的泄漏报警检测系统
Kopytov et al. Experimental investigation of non-condensable gases effect on Novovoronezh NPP-2 steam generator condensation power under the condition of passive safety systems operation
EP4276854A1 (en) Flow control device, waste heat discharge system, and flow stabilization method
Lv et al. Report on Year-3 of Water NSTF Matrix Testing: Two-Phase Parametric Test Series
CN106766973A (zh) 一种氧化炉工艺联锁控制方法
Lv et al. Report on Year-4 of Water NSTF Matrix Testing: Facility Maintenance and Accident Testing
Chan et al. Qualifying elbow meters for high pressure flow measurements in an operating nuclear power plant
US10157688B2 (en) Nuclear grade air accumulating, isolating, indicating and venting device
CN105179223A (zh) 反应堆主泵的机械密封组件鉴定系统
CN118424605A (zh) 一种逆止阀密封性试验方法和逆止阀检测系统
Cho et al. Prospect for Seal Performance Test of the Localized APR1400’s RCP
Marguet Main Circuits

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant