CN114181428B - 一种具有压电性能的高分子复合膜及其制备和应用 - Google Patents

一种具有压电性能的高分子复合膜及其制备和应用 Download PDF

Info

Publication number
CN114181428B
CN114181428B CN202111497498.3A CN202111497498A CN114181428B CN 114181428 B CN114181428 B CN 114181428B CN 202111497498 A CN202111497498 A CN 202111497498A CN 114181428 B CN114181428 B CN 114181428B
Authority
CN
China
Prior art keywords
water
film
polymer
piezoelectric
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111497498.3A
Other languages
English (en)
Other versions
CN114181428A (zh
Inventor
杨伟
孟森
杨露瑶
包睿莹
刘正英
柯凯
杨鸣波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202111497498.3A priority Critical patent/CN114181428B/zh
Publication of CN114181428A publication Critical patent/CN114181428A/zh
Application granted granted Critical
Publication of CN114181428B publication Critical patent/CN114181428B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/405Impregnation with polymerisable compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1284Application of adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/10Polyamides derived from aromatically bound amino and carboxyl groups of amino carboxylic acids or of polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Sustainable Development (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明属于高分子复合材料技术领域,具体涉及一种具有压电性能的高分子复合膜及其制备和应用。本发明提供一种高分子复合膜,所述复合膜包括外层和内层,所述外层的材料为负载压电粒子的聚合物,所述内层的材料为多孔高分子材料或负载压电粒子的多孔高分子材料。本发明提供一种新型的具有压电性能的复合高分子膜,并且利用压电特性,该膜可连续地将海洋中的波浪能转化成电能,并且利用这种电能来降低水蒸发所需的能量,促进水的蒸发过程;即本发明制备了一种具有压电性能的复合高分子膜,并将该膜用于活化水并促进水的蒸发。

Description

一种具有压电性能的高分子复合膜及其制备和应用
技术领域
本发明属于高分子复合材料技术领域,具体涉及一种具有压电性能的高分子复合膜及其制备和应用。
背景技术
近年来,水资源的缺乏问题越来越显著,到2030年,人们对淡水的需求量将会达到每年69000亿立方。尽管70%的地球表面被水所覆盖,但是仅2.5%的水是淡水,而且这些淡水中又有87%位于极地冰盖和高山冰川中,很难被人类所使用。而太阳能是一种清洁的可再生能源,利用太阳能来加热水产生水蒸气,对海水进行淡化或者对污水进行处理,可以得到清洁水资源。
太阳能转换热能的技术是一种直接获取太阳能用于储能和产热的技术,到目前为止,太阳转化成热能的技术在工业、农业以及日常生活中已经发展了数十年。但是由于水的蒸发是一个高能耗的过程,水在自然光照下的蒸发速率受到了限制。降低蒸发过程中的能量需求是一个简单有效的方式,交流电场可以降低水蒸发的能量需求,促进水的蒸发。但是直接将电场加在水中会额外引入复杂的装置以及巨大的能量,无法满足当前绿色和可持续发展的理念。
现有技术中尚未有将具有压电性能的复合高分子膜应用于促进水的蒸发领域的相关报道。
发明内容
针对上述缺陷,本发明提供一种新型的具有压电性能的复合高分子膜,并且利用压电特性,该膜可连续地将海洋中的波浪能转化成电能,并且利用这种电能来降低水蒸发所需的能量,促进水的蒸发过程;即本发明制备了一种具有压电性能的复合高分子膜,并将该膜用于活化水并促进水的蒸发。
本发明的技术方案:
本发明要解决的第一个技术问题是提供一种高分子复合膜,所述复合膜包括外层和内层,所述外层的材料为负载压电粒子的聚合物,所述内层的材料为多孔高分子材料或负载压电粒子的多孔高分子材料。
进一步,所述外层材料中的聚合物为聚碳酸酯、聚酰胺、聚苯酯和聚间苯二甲酰间苯二胺中的一种。
进一步,所述压电粒子选自压电晶体、压电陶瓷或有机高分子压电材料中的一种;优选为压电陶瓷,压电陶瓷的灵敏度高,压电常数较高,具备更优的压电效果,输出更高的压电电压。
更进一步,所述压电陶瓷选自:氧化铅、氧化锆、氧化钛、碳酸钡、氧化铌、氧化镁、氧化锌中的一种。
进一步,所述压电粒子的负载量占所述高分子复合膜总体积的1.8%~18%。
进一步,所述多孔高分子材料选自:纤维素、聚偏氟乙烯、聚氨酯或三聚氰胺甲醛树脂及其各种衍生物中的一种。所述高分子基体之所以选择多孔高分子,是由于其三维多孔的结构有利于提高压电粒子的负载量以及水的输送。
进一步,所述高分子复合膜中,复合膜外层的厚度<压电粒子的直径;这样可以保证压电粒子尽可能多的暴露出来的同时又被紧密的固定在地外层聚合物上,使其能够用作水活化,适合用以接受波浪的冲击,将波浪能转化为电能进而促进水的蒸发过程。
进一步,所述高分子复合膜具有多层结构。
本发明要解决的第二个技术问题是提供上述高分子复合膜的制备方法,所述制备方法为:以多孔高分子材料膜或负载压电粒子的多孔高分子材料膜为基膜,通过界面聚合将负载压电粒子的聚合物功能层沉积到基膜表面得到所述高分子复合膜。
进一步,上述制备方法为:以多孔高分子材料膜或负载压电粒子的多孔高分子材料为基膜,引入两种互不相溶的单体溶液,通过界面聚合形成了外层为聚合物功能层,内层为多孔高分子材料的高分子复合膜;其中两种互不相溶的单体溶液中的至少一种中含有压电粒子。
进一步,所述互不相溶的单体为水溶性单体和非水溶性单体。由于界面缩聚反应是不平衡缩聚,因此两种不相溶的单体应带有高活性的多官能反应基团,反应在常温下进行,逆反应速率低。
更进一步,所述水溶性单体选自:双酚A钠盐、间苯二胺、哌嗪、三乙烯四胺、乙二胺、苯酚中一种。
更进一步,所述非水溶性单体选自:光气、均苯三甲酰氯、对羟基苯甲酸和间苯二甲酰氯中一种。
进一步,为了使界面聚合反应更加完全,消除残留的溶剂,在界面聚合之后将复合高分子材料置于一定高温下静置一段时间,去除溶剂。
进一步,上述方法中,所述水溶性单体中加入表面活性剂来提高单体的溶解能力,表面活性剂为十二烷基苯磺酸钠、硬脂酸、季铵化物、辛基苯基聚氧乙烯醚中一种;优选的,表面活性剂的加入量为水溶性单体质量的100~400%;为了保证水相单体中较好的溶解能力,上述表面活性剂中的浓度应大于10mg/ml。
本发明要解决的第三个技术问题是指出上述高分子复合膜在海水淡化、污水处理、水提纯、传感器制备、点火器制备或机械设备检测领域中的应用。
本发明要解决的第四个技术问题是提供一种水活化膜,所述水活化膜为高分子复合膜,所述水活化膜包括外层和内层,所述外层的材料为负载压电粒子的聚合物,所述内层的材料为多孔高分子材料或负载压电粒子的多孔高分子材料。所述水活化指:由于高分子复合膜中包括压电材料,压电材料所产生的电场作用,促进了其中水分子运动的碰撞,降低了水中的氢键作用,使水蒸发所需的能量降低。
进一步,所述水活化膜中,水活化膜外层的厚度<压电粒子的直径;这样可以使外层中的压电粒子尽可能多的暴露出来的同时又被紧密地固定在外层聚合物,用以接受波浪的冲击,将波浪能转化为电能进而促进水的蒸发过程。
进一步,所述水活化膜中,100nm≤所述压电粒子的直径≤300nm;如果粒子直径过大,由于重力的作用,无法很好地悬浮在界面聚合反应中的水相中,会直接沉降在底部;这会造成悬浮液中纳米粒子的含量急剧降低,在界面聚合之后的聚合物层中也难以保证高含量的压电粒子,压电性能较差。
进一步,所述压电粒子的负载量占所述水活化膜总体积的1.8%~18%;压电粒子的负载量过少,那么水活化作用较弱;若压电粒子的负载量过多,则会在高分子复合膜中产生大量的团聚体,这种团聚体会在受力后脱落而造成压电性能的大幅降低,不利于波浪能到电能的转化过程。
进一步,水活化膜中内层材料的孔隙率大于80%;孔隙率过低,会导致压电粒子负载量过低,其压电转化能力较弱,输出的电压就会更低,会削弱对水蒸发的促进作用。
进一步,0.1mm<水活化膜内层的厚度<1mm,内层高分子膜主要作用是提供力学支撑,过低的厚度难以保证力学强度,在波浪的冲击下会破损进而失效;但是当高分子膜的厚度过厚,其变形能力会急剧下降,在波浪作用下无法随波浪很好的运动,受到的力减小,导致压电转化得到的电压降低,不利于性能的发挥。
本发明要解决的第五个技术问题是提供上述水活化膜的制备方法,所述制备方法为:以多孔高分子材料膜或负载压电粒子的多孔高分子材料膜为基膜,通过界面聚合将负载压电粒子的聚合物功能层沉积到基膜表面得到所述水活化膜。
进一步,所述制备方法为:以多孔高分子材料膜或负载压电粒子的多孔高分子材料为基膜,引入两种互不相溶的单体溶液,两种互不相溶的单体溶液中至少一种含有压电粒子,通过界面聚合形成了所述水活化膜。
本发明要解决的第六个技术问题是提供一种具有光热转换能力的材料,所述材料包括光热转换层和高分子复合膜,所述高分子复合膜即为上述制得的高分子复合膜。
进一步,所述光热转换层选自碳毡、碳布、碳纳米管膜、石墨烯膜中的一种;其需要具备较好的光热转换能力,用来加热附近被活化的水。
本发明要解决的第七个技术问题是提供上述具有光热转换能力的材料的制备方法,所述制备方法为:将光热转换层和上述高分子复合膜固定在一起即可。光热转换层和高分子复合膜通过胶粘剂固定在一起,胶粘剂可以为环氧树脂、丙烯酸、聚氨酯、氰基丙烯酸乙酯中至少一种。
本发明要解决的第八个技术问题是指出上述具有光热转换能力的材料用于海水淡化、污水处理或水的提纯。
本发明要解决的第九个技术问题是提供上述具有光热转换能力的材料用于海水淡化、污水处理或水的提纯中的使用方法,所述使用方法为:将所述具有光热转换能力的材料置于水中,光照下所述光热转换材料会将太阳能转换为热能,转化而来的热能可以加热所述高分子复合膜附近的水,能够引发所述高分子复合膜中的压电材料产生电场作用,从而促进了其中水分子的运动碰撞,进而降低了水中的氢键作用,使水蒸发所需的能量降低,即促进了水的蒸发(即进行了水活化处理),因此使其能够用于高效地海水淡化,污水处理或水的提纯。
本发明的有益效果:
(1)本发明基于界面聚合法制备的一种具有多层结构的高分子复合膜,膜外层材料为负载压电粒子的聚合物层,内层材料为多孔高分子材料或具有压电粒子的多孔高分子材料;由于外层膜可以将压电粒子紧密地固定在基体表面不脱落,在保证了压电粒子负载量的同时也保证了压电粒子的充分暴露,暴露于外部的压电粒子可以直接将受到的波浪能连续地转化为电能,进而促进了其中水分子运动碰撞的可能性,降低了水中的氢键作用,使水蒸发所需的能量降低,即本发明所得高分子复合膜促进了水的蒸发,能够作为水活化膜。
(2)本发明所述制备的高分子复合膜具备优秀的水活化能力,可以活化附近的水(所述活化指:由于高分子复合膜中包括压电材料,压电材料所产生的电场作用,促进了其中水分子运动碰撞的可能性,降低了水中的氢键作用,使水蒸发所需的能量降低),降低其蒸发焓值,提高水的蒸发速率;在模拟太阳光(一个太阳光强:1KW m-2)的照射下,蒸发速率最高值可以达到2.01kg m-2h-1,相比于不带有活化水功能的对比蒸发器而言,提高20%以上。高的蒸发速率有利于缓解水资源短缺地区的用水问题,对解决全球水资源短缺有重要作用。
(3)本发明采用界面聚合法,一步成型,具有工艺简单,成本低,制品形态结构稳定,可长期使用等优点,利于规模化发展。
附图说明
图1为本发明实施例1所得高分子复合膜(样品1)的外层膜的表面SEM图,其中图1a,1b为不同放大倍率下的SEM,图1c为外层膜的断面SEM图;从图1中可知:外层高分子膜将压电陶瓷粒子固定在高分子膜的表面,并且压电陶瓷粒子不会完全嵌入进外层高分子膜中,而是部分的暴露出来,这种暴露出来的压电陶瓷粒子有助于接受外界所提供的波浪能,可以将波浪能转化为电能进而促进水的蒸发。
图2为本发明实施例1所得高分子复合膜(样品1)的内层膜的断面SEM图,其中图2a,2b为不同放大倍率下的SEM图;从图2中可知:本发明所得的高分子复合膜内层高分子基体中也存在大量压电陶瓷粒子,压电陶瓷粒子包裹在内层高分子的纤维骨架状基体表面,内部大量的压电陶瓷粒子的负载量也可以提高材料的压电性能;因此在复合高分子膜受力变形时,内部的压电粒子也会受到挤压作用产生电能,促进水的蒸发。
具体实施方式
本发明提供了一种复合高分子膜,所述高分子膜具有多层结构,外层聚合物负载有高浓度的压电粒子,具备压电特性;内层聚合物主要提供支撑能力,也可以负一定量的压电粒子,保证材料一定的力学强度的同时提供压电特性。
本发明还提供上述复合高分子膜的制备方法:在两种互不相溶,分别溶解有两种单体的溶液的界面上进行缩聚反应,生成不溶于两种溶液的聚合物层;其中,压电粒子加入到其中一种溶液中,最终基于界面聚合的缩聚反应得到的聚合物层(外层)会负载有高含量的压电粒子;复合高分子膜是在上述所用高分子基体外部进行一次界面聚合得到的多层高分子膜。
本发明所得复合高分子膜整体为分层结构,内层主要用于提供支撑的内层高分子层,外层主要固定压电粒子;内层高分子基体层主要提供支撑的作用,防止被波浪冲击后膜的破裂;外层界面聚合得到的聚合物层主要用来固定表面的压电粒子,基于此方法得到的负载有压电陶瓷粒子的膜具有较强的结构稳定性,有效阻止了粒子在波浪冲击下的脱落;负载有高含量压电陶瓷粒子的复合膜具备优异的压电性能,可以连续高效的将波浪能转化为电能,利用转化而来的电能促进水的蒸发过程,提高水蒸发速率。
实施例1:
一种钛酸钡纳米水活化膜,其制备按照如下步骤进行:
首先制备界面聚合反应的水相体系:取0.5g的间苯二胺粉末和0.5g的十二烷基苯磺酸钠加入到50ml的去离子水中,在室温下搅拌使其充分溶解;再将5g的钛酸钡纳米粒子加入到上述溶液中,超声处理30min制备得到均匀分散的钛酸钡悬浮液;之后将纤维素基体膜浸渍到上述悬浮液中超声处理30min,使钛酸钡纳米粒子分散在整个纤维素基体膜中。
制备界面聚合反应的油相体系:取0.075g的均苯三甲酰氯粉末加入到50ml的正己烷中,在室温下搅拌使其充分溶解;将浸渍水相体系后的纤维素基体膜放入到上述油相体系中进行界面聚合反应,在常温下反应1min取出,得到高分子复合膜;为了使残余溶剂充分反应,将上述复合高分子膜置于60℃的烘箱中静置30min;得到最终高分子复合膜——一种钛酸钡纳米水活化膜(样品1),其呈现出多层高分子膜的结构;外部高分子层的厚度为84nm,压电陶瓷钛酸钡纳米粒子的直径为200nm。
利用同样的方法,改变直径为200nm的压电陶瓷钛酸钡纳米粒子的直径为500nm,制备出样品S1,由于钛酸钡纳米粒子尺寸过大,其无法很好地悬浮在界面聚合的前驱水相液中,因此最终通过界面聚合得到的外层聚合物中碳酸钡纳米粒子的含量极低,因此其压电性能较差。
在模拟太阳光的照射下测试材料的蒸发性能;样品1在一个模拟太阳光的照射下(1KW m-2)可以获得2.01kg m-2h-1的蒸发速率,相比于不带有活化水功能的对比蒸发器而言,提高20%以上。样品S1在一个模拟太阳光的照射下(1KW m-2)可以获得1.76kg m-2h-1的蒸发速率;结果表明表面低的钛酸钡纳米粒子的含量会使其压电性能大幅度下降,使其蒸发促近作用的效果降低,蒸发速率提升不明显。
图1为样品1所得高分子复合膜的外层高分子膜的表面SEM图;由图1可知:其表面含有大量的钛酸钡纳米粒子,其尺寸约为200nm;纳米粒子被界面聚合生成的聚合物层给牢牢地固定住,这层聚合物层的厚度约为80nm;聚合物层的厚度小于纳米粒子的厚度,有助于纳米粒子与水的充分接触,将水中的波浪能转化为电能,促进水的蒸发。
图2为样品1内层高分子膜的断面SEM图,可以看到内层高分子基体膜中也具备大量的钛酸钡纳米粒子,在整个膜受到波浪冲击变形后,其也可以提供一定的压电性能,促进水的蒸发过程。
实施例2:
一种钛酸钡纳米水活化膜,其制备按照如下步骤进行:
首先制备界面聚合反应的水相体系,取0.5g的间苯二胺粉末和0.5g的十二烷基苯磺酸钠加入到50ml的去离子水中,在室温下搅拌使其充分溶解;再将5g的钛酸钡纳米粒子加入到上述溶液中,超声处理30min制备得到均匀分散的钛酸钡悬浮液;之后将纤维素基体膜浸渍到上述悬浮液中超声处理30min,使钛酸钡纳米粒子分散在整个纤维素基体膜中。
制备界面聚合反应的油相体系,取0.075g的均苯三甲酰氯粉末加入到50ml的正己烷中,在室温下搅拌使其充分溶解;将浸渍水相体系后的纤维素基体膜放入到上述油相体系中进行界面聚合反应,在常温下反应10min取出,得到复合高分子膜;为了使残余溶剂充分反应,将上述复合高分子膜置于60℃的烘箱中静置30min。最终得到钛酸钡纳米水活化膜(样品2),其呈现出多层高分子膜的结构。外部高分子层的厚度为300nm,压电陶瓷钛酸钡纳米粒子的直径为200nm。
在模拟太阳光的照射下测试材料的蒸发性能;样品2在一个模拟太阳光的照射下(1KW m-2)可以获得1.78kg m-2h-1的蒸发速率,相比于不带有活化水功能的对比蒸发器而言,提高7%。
实施例3:
一种钛酸钡纳米水活化膜,其制备按照如下步骤进行:
首先制备界面聚合反应的水相体系,取1.0g的乙二胺粉末和0.5g的十二烷基苯磺酸钠加入到50ml的去离子水中,在室温下搅拌使其充分溶解;再将5g的钛酸钡纳米粒子加入到上述溶液中,超声处理30min制备得到均匀分散的钛酸钡悬浮液;之后将纤维素基体膜浸渍到上述悬浮液中超声处理30min,使钛酸钡纳米粒子分散在整个纤维素基体膜中。
制备界面聚合反应的油相体系,取0.075g的均苯三甲酰氯粉末加入到50ml的正己烷中,在室温下搅拌使其充分溶解;将浸渍水相体系后的纤维素基体膜放入到上述油相体系中进行界面聚合反应,在常温下反应1min取出,得到复合高分子膜;为了使残余溶剂充分反应,将上述复合高分子膜置于60℃的烘箱中静置30min。最终得到钛酸钡纳米水活化膜(样品3),其呈现出多层高分子膜的结构。外部高分子层的厚度为130nm,压电陶瓷钛酸钡纳米粒子的直径为200nm。
在模拟太阳光的照射下测试材料的蒸发性能;样品3在一个模拟太阳光的照射下(1KW m-2)可以获得1.89kg m-2h-1的蒸发速率,相比于不带有活化水功能的对比蒸发器而言,提高14%。

Claims (11)

1.一种水活化膜,其特征在于,所述水活化膜为高分子复合膜,所述水活化膜包括外层和内层,所述外层的材料为负载压电粒子的聚合物,所述内层的材料为多孔高分子材料或负载压电粒子的多孔高分子材料;所述外层材料中的聚合物为聚酰胺,所述多孔高分子材料为纤维素,所述压电粒子为钛酸钡,100nm≤所述压电粒子的直径≤300nm,所述压电粒子的负载量占所述水活化膜总体积的1.8%~18%;并且,水活化膜外层的厚度<压电粒子的直径,0.1mm<水活化膜内层的厚度<1mm,水活化膜中内层材料的孔隙率大于80%。
2.权利要求1所述水活化膜的制备方法,其特征在于,所述制备方法为:以多孔高分子材料膜或负载压电粒子的多孔高分子材料膜为基膜,通过界面聚合将负载压电粒子的聚合物功能层沉积到基膜表面得到所述水活化膜。
3.根据权利要求2所述水活化膜的制备方法,其特征在于,所述制备方法为:以多孔高分子材料膜或负载压电粒子的多孔高分子材料膜为基膜,引入两种互不相溶的单体溶液,两种互不相溶的单体溶液中至少一种含有压电粒子,通过界面聚合形成了所述水活化膜。
4.根据权利要求3所述水活化膜的制备方法,其特征在于,所述互不相溶的单体为水溶性单体和非水溶性单体。
5.根据权利要求4所述水活化膜的制备方法,其特征在于,所述水溶性单体选自:间苯二胺、哌嗪、三乙烯四胺、乙二胺中一种;
所述非水溶性单体选自:均苯三甲酰氯、对羟基苯甲酸和间苯二甲酰氯中一种。
6.高分子复合膜在海水淡化、污水处理、水提纯、传感器制备、点火器制备或机械设备检测领域中的应用,所述高分子复合膜为权利要求1所述的水活化膜,或为采用权利要求2~5任一项的方法制得的水活化膜。
7.一种具有光热转换能力的材料,其特征在于,所述材料包括光热转换层和高分子复合膜,所述高分子复合膜为权利要求1所述的水活化膜,或为采用权利要求2~5任一项所述方法制得的水活化膜。
8.根据权利要求7所述的一种具有光热转换能力的材料,其特征在于,所述光热转换层选自碳毡、碳布、碳纳米管膜或石墨烯膜中的一种。
9.权利要求7或8所述具有光热转换能力的材料的制备方法,其特征在于,所述制备方法为:将光热转换层和所述高分子复合膜固定在一起即可。
10.权利要求7或8所述具有光热转换能力的材料用于海水淡化、污水处理或水的提纯。
11.权利要求7或8所述具有光热转换能力的材料在海水淡化、污水处理或水的提纯中的使用方法,所述使用方法为:将所述具有光热转换能力的材料置于水中,光照下所述光热转换材料会将太阳能转换为热能,转化而来的热能加热其中所述高分子复合膜附近的水,能够引发所述高分子复合膜中的压电材料产生电场作用,从而促进了其中水分子的运动碰撞,进而降低了水中的氢键作用,使水蒸发所需的能量降低,促进了水的蒸发。
CN202111497498.3A 2021-12-09 2021-12-09 一种具有压电性能的高分子复合膜及其制备和应用 Active CN114181428B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111497498.3A CN114181428B (zh) 2021-12-09 2021-12-09 一种具有压电性能的高分子复合膜及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111497498.3A CN114181428B (zh) 2021-12-09 2021-12-09 一种具有压电性能的高分子复合膜及其制备和应用

Publications (2)

Publication Number Publication Date
CN114181428A CN114181428A (zh) 2022-03-15
CN114181428B true CN114181428B (zh) 2022-12-23

Family

ID=80542869

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111497498.3A Active CN114181428B (zh) 2021-12-09 2021-12-09 一种具有压电性能的高分子复合膜及其制备和应用

Country Status (1)

Country Link
CN (1) CN114181428B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672117B (zh) * 2022-04-08 2023-06-23 四川大学 具有压电性能的高分子水凝胶膜及其制备和应用
CN115975253B (zh) * 2023-03-22 2023-06-20 之江实验室 可拉伸压电薄膜和超声换能器
CN116023705B (zh) * 2023-03-22 2023-07-18 之江实验室 透明压电薄膜、超声换能器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111170393A (zh) * 2020-01-07 2020-05-19 四川大学 一种具有中空结构的太阳能蒸发器及其制备方法和应用
CN112371177A (zh) * 2020-11-13 2021-02-19 南京晓庄学院 一种掺杂压电催化材料的柔性多孔复合材料及其制备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784600B2 (en) * 2002-05-01 2004-08-31 Koninklijke Philips Electronics N.V. Ultrasonic membrane transducer for an ultrasonic diagnostic probe
ATE427156T1 (de) * 2005-08-05 2009-04-15 Fujifilm Mfg Europe Bv Poríse membran und aufzeichnungsmedium sowie herstellungsverfahren dafur
CN108498868B (zh) * 2018-04-03 2020-09-15 北京大学口腔医学院 具有细胞外基质电学拓扑特征的带电复合膜及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111170393A (zh) * 2020-01-07 2020-05-19 四川大学 一种具有中空结构的太阳能蒸发器及其制备方法和应用
CN112371177A (zh) * 2020-11-13 2021-02-19 南京晓庄学院 一种掺杂压电催化材料的柔性多孔复合材料及其制备

Also Published As

Publication number Publication date
CN114181428A (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
CN114181428B (zh) 一种具有压电性能的高分子复合膜及其制备和应用
CN109096504B (zh) 一种梯度凝胶、其制备方法及应用
Li et al. Solar-powered sustainable water production: state-of-the-art technologies for sunlight–energy–water nexus
Gholami Derami et al. A robust and scalable polydopamine/bacterial nanocellulose hybrid membrane for efficient wastewater treatment
Cao et al. Cellulose nanomaterials in interfacial evaporators for desalination: a “natural” choice
Zhao et al. 3D fibrous aerogels from 1D polymer nanofibers for energy and environmental applications
Zou et al. Flexible and robust polyaniline composites for highly efficient and durable solar desalination
Shi et al. Scalable fabrication of conjugated microporous polymer sponges for efficient solar steam generation
Sun et al. Facile preparation of a carbon-based hybrid film for efficient solar-driven interfacial water evaporation
Li et al. Cellulose nanofibril-stabilized pickering emulsion and in situ polymerization lead to hybrid aerogel for high-efficiency solar steam generation
Li et al. Ionic liquid-assisted alignment of corn straw microcrystalline cellulose aerogels with low tortuosity channels for salt-assistance solar steam evaporators
Wu et al. Underwater mechanically tough, elastic, superhydrophilic cellulose nanofiber-based aerogels for water-in-oil emulsion separation and solar steam generation
Loo et al. 3D photothermal cryogels for solar-driven desalination
Pi et al. Sustainable MXene/PDA hydrogel with core-shell structure tailored for highly efficient solar evaporation and long-term desalination
Ma et al. Polypyrrole–dopamine nanofiber light-trapping coating for efficient solar vapor generation
Guan et al. Efficient recovery of highly viscous crude oil spill by superhydrophobic ocean biomass-based aerogel assisted with solar energy
CN103480343A (zh) 一种氧化石墨烯多孔复合材料及其制备方法
CN114672117B (zh) 具有压电性能的高分子水凝胶膜及其制备和应用
Shan et al. Wood for application in electrochemical energy storage devices
Li et al. Designing flexible CNT/CNF films with highly light-absorbing for solar energy harvesting: Seawater desalination, photothermal power generation and light-driven actuators
Li et al. Hierarchical porous aero-cryogels for wind energy enhanced solar vapor generation
Wang et al. Preparation of carbon nanotube/cellulose hydrogel composites and their uses in interfacial solar-powered water evaporation
Xu et al. A facile approach to fabricate sustainable and large-scale photothermal polydopamine-coated cotton fabrics for efficient interfacial solar steam generation
Jeon et al. Biorenewable polymer-based light-absorbing porous hydrogel for efficient solar steam desalination
Tarek et al. Tailoring surface topography of biochar-based hydrogel for hazardous pollutants removal from contaminated seawater through simultaneous steam-electricity generation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant