CN1141803C - 快速功率控制在多址联接信道上发送的信号的方法 - Google Patents

快速功率控制在多址联接信道上发送的信号的方法 Download PDF

Info

Publication number
CN1141803C
CN1141803C CNB998139599A CN99813959A CN1141803C CN 1141803 C CN1141803 C CN 1141803C CN B998139599 A CNB998139599 A CN B998139599A CN 99813959 A CN99813959 A CN 99813959A CN 1141803 C CN1141803 C CN 1141803C
Authority
CN
China
Prior art keywords
mobile radio
radio station
power control
base station
access channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB998139599A
Other languages
English (en)
Other versions
CN1329780A (zh
Inventor
J��R���ֶ���
J·R·沃尔顿
��������ķ������
J·W·凯彻姆
S·J·霍华德
M·S·瓦蕾斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN1329780A publication Critical patent/CN1329780A/zh
Application granted granted Critical
Publication of CN1141803C publication Critical patent/CN1141803C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Abstract

一种方法,用于控制在多个M多址联接信道上从多个移动站(1300)中的一个或多个移动站到基站(1400)的信号发送。从基站(1400)到一个或多个移动站(1300)发送从多个功率控制位形成的功率控制信息分组。在功率控制信息分组中的每个功率控制位具有一个位置,使所述位置映射到所选择的接入信道和在所选择的接入信道内的时间偏移。在第一移动站(1300)处接收功率控制信息分组。然后在第一接入信道上和与第一接入信道相关联的第一时间偏移处把消息从第一移动站(1300)发送到基站(1400)。在根据功率控制信息分组中的第一功率控制位确定的功率电平处从第一移动站(1300)发送消息。使第一功率控制位位于功率控制信息分组中的第一位置,所述第一位置是映射到第一接入信道和第一时间偏移的。

Description

快速功率控制在多址联接信道上发送信号的方法
发明领域
本发明一般涉及移动无线电电话系统。尤其,本发明涉及一种系统和方法,用于快速控制信号的输出发射功率,以及从许多移动站中确定哪个移动站已经适当地获得到多址联接信道(multiple access channel)的接入,所述信号是在移动无线电电话系统内的多址联接信道上从移动站发送到基站的。
现有技术的描述
在根据TIA/EIA-95标准(IS-95标准)操作的CDMA无线电电话系统中,当没有把移动站分配到诸如话务信道(TCH)之类的专用信道时,从移动站到基站的通信使用接入信道(access channel)(R-ACH)。R-ACH把始发端、寻呼响应、注册和确认送载到在寻呼信道上的基站发送的消息上。以4800bps的恒定速率来发送R-ACH。这与话务信道相反,话务信道是可变速率。在题为“使用卫星和地面中继器的扩频多址通信系统”的美国专利第4,901,307号中可以找到示例CDMA系统的详述,该专利已转让给本发明的受让人,并为了完整性而在此引用作为参考。在1993年7月提出的题为“用于双-模式宽带扩频蜂窝系统的移动站-基站兼容性标准”的TIA/EIA暂定标准中规定IS-95标准(TIA/EIA/IS-95),在此也引用其内容作为参考。
在R-ACH上,移动站使用对基站特定的长代码扩展掩码(spreadingmask)。尤其,基站可以有多达7个寻呼信道。与每个寻呼信道相关联的是一个或多个R-ACH(最多允许32个)。每个R-ACH有确定扩展序列的长代码掩码。掩码包括与信道相关联的标识(identity)、与R-ACH相关联的寻呼信道以及R-ACH的数目。这提供了唯一的长代码掩码,因此对特定的R-ACH提供了唯一的长代码序列。
虽然确有可能,但不在软越区切换中操作R-ACH。这与在软越区切换中操作的话务信道不同。此外,在IS-95话务信道上,R-ACH不具有快速功率控制。在话务信道上,基站以800bps向移动站发送功率控制流。将BPSK调制用于功率控制比特流。位的一相表示移动站要增加它的发射功率;位的另一相表示移动站要降低它的发射功率。通过在基站中把所接收到的能量对噪声密度控制到门限值,基站确定是否要移动站增加或降低它的发射功率。如果所接收到的能量对噪声密度小于门限值,则基站要移动站增加它的发射功率;如果所接收到的能量对噪声密度大于门限值,则基站要移动站降低它的发射功率。在IS-95中和题为“在CDMA蜂窝电话系统中控制发射功率的方法和装置”的两个美国专利第5,056,109号和5,265,119号中有更详细的描述,所述专利已转让给本发明的受让人,并在此引用作为参考。
在R-ACH上没有快速功率控制的一个原因是多个移动站可能在相同的R-ACH上发送,因此用一个功率控制流难于控制。此外,如果有许多功率控制流控制一个信道,则怎样把功率控制流映射到移动站是不清楚的。转让给本发明的受让人的美国专利第5,604,730号描述怎样使用一个功率控制流来控制许多移动站。如下所述,在该专利中讲述的技术也可以应用于这里描述的本发明。
在根据IS-95标准操作的CDMA系统中,根据通过某些额外开销参数调节的开环功率控制估计,移动站确定在R-ACH上发送的一个电平。尤其,在IS-95标准下,移动站通过发送一个或多个接入探针(access probe)试图在R-ACH上接入。接入探针是移动站试图发送到基站的消息。移动站从发送接入探针开始;如果移动站没有接收到对于该接入探针的确认,则移动站增加它的发射功率(增加在额外开销消息中给出的一个值),并再次发送探针。继续这样进行直到移动站接收到确认或移动站已经到达所允许的接入探针的极限。
在任何多址系统中,系统设计的一个关键方面是拥塞控制。从R-ACH的观点来看,拥塞控制的责任是控制同时接入R-ACH的移动站的数目。拥塞控制是很重要的,因为当接入系统的移动站太多时,系统不能够处理它们。特别,在反向链路上的发送可能比基站能够接收的更多。这是物理硬件极限。其次,反向CDMA信道有容量极限。当到达容量极限时,移动站所要求的发射功率趋向无穷大-因此,不允许通信。因此,必须使信道上的负载保持在极限内。由于R-ACH一般与话务信道共享反向信道,所以一般把反向容量的某个部分分配给R-ACH。应该注意,在R-ACH上的过度负载可能在反向链路上产生相当大的负载,因此限制了已经分配到话务信道的移动站的性能。还应该注意,当在某些负载到达反向链路之后R-ACH的实际通过量可能降低时,R-ACH本身有些不稳定。为了控制这些负载,IS-95标准有许多拥塞控制机理。这包括接入探针补偿(backoff)、接入序列补偿、信道随机化和PN随机化。然而,IS-95缺少为了控制拥塞的快速启动和禁止接入R-ACH。
在下述方法中,本发明考虑到,并解决了这些问题和缺点。
发明概要
本发明的一个方面针对一种方法和装置,用于控制在多个M多址联接信道上从多个移动站中的一个或多个移动站到基站的信号发送。把由多个功率控制位形成的功率控制信息分组从基站发送到一个或多个移动站。在功率控制信息分组中的每个功率控制位具有一个位置,把所述位置映射到所选接入信道,并映射到在所选接入信道中的一个时间偏移。在第一移动站处接收功率控制信息分组。然后,在第一接入信道上和在与第一接入信道相关联的第一时间偏移处把消息从第一移动站发送到基站。在根据功率控制信启分组中的第一功率控制位确定的功率电平处从第一移动站发送消息。使第一功率控制位位于功率控制信息分组中的第一位置,把第一位置映射到第一接入信道和第一时间偏移。
根据又一个方面,本发明针对一种方法和装置,用于控制在多个M多址联接信道上从多个移动站中的两个或多个移动站到基站的信号传输。把由多个功率控制位形成的功率控制信息分组从基站发送到一个或多个移动站。在功率控制信息分组中的每个功率控制位具有一个位置,把所述位置映射到所选接入信道。在第一移动站和第二移动站处接收功率控制信息分组。然后,在第一接入信道上同时把消息从第一和第二移动站发送到基站。在只根据功率控制信息分组中的第一功率控制位确定的功率电平处,在第一接入信道上从第一和第二移动站发送消息,其中,使第一功率控制位位于功率控制信息分组中的第一位置,并把第一位置映射到第一接入信道。
根据又一个方面,本发明针对一种方法和装置,用于控制在多个多址联接信道中的一个或多个信道上从多个移动站中的一个或多个移动站到基站的信号发送。把由多个功率控制位形成的功率控制信息分组从基站发送到一个或多个移动站。使用调制来发送功率控制信息分组中的功率控制位,所述调制允许每个功率控制位假设第一、第二和第三不同状态中的一种状态。在第一移动站处接收功率控制信息分组,然后第一移动站识别与第一接入信道相关联的第一功率控制位的状态。如果第一功率控制位的状态相应于第一状态,则在第一移动站处执行第一、第二或第三操作之一,其中,第一操作相应于启动在第一接入信道上从第一移动站到基站的消息信息的发送;第二操作相应于禁止在第一接入信道上从第一移动站到基站的消息信息发送的启动;而第三操作相应于停止在第一接入信道上从第一移动站到基站的消息信息的发送。如果第一功率控制位的状态相应于第二状态,则增加在第一接入信道上第一移动站的输出功率电平;如果第一功率控制位的状态相应于第三状态,则降低在第一接入信道上的第一移动站的输出功率电平。
根据再另一个方面,本发明针对一种方法和装置,用于控制在多个M多址联接信道上从多个移动站中的一个或多个移动站到基站的信号发送。把由多个功率控制位形成的功率控制信息分组从基站发送到一个或多个移动站。在功率控制信息分组中的每个功率控制位具有一个位置,把所述位置映射到所选接入信道,并映射到在所选接入信道中的一个时间偏移。其次,基站确定在相应于第一时间偏移的时间间隔内移动站是否接入第一接入信道。如果在相应于第一时间偏移的时间间隔内移动站接入第一接入信道,则把在功率控制信息分组中具有第一位置的第一功率控制位映射到第一接入信道和第一时间偏移。如果在相应于第一时间偏移的时间间隔内移动站接入第一接入信道失败,则把在功率控制信息分组中具有第一位置的第一功率控制位映射到第一接入信道和与第一接入信道相关的第二时间偏移。
根据还是再另一个方面,本发明针对一种方法和装置,用于当移动无线电单元从移动无线电电话系统中的第一小区移动到在移动无线电系统中的第二小区时对移动无线电单元执行接入信道越区切换。把来自与第一小区相关联的第一基站的至少一个功率控制位发送到移动无线电单元。在相应于与第一基站相关联的第一接入信道的第一时间间隔处发送来自第一基站的功率控制位。把来自与第二小区相关联的第二基站的至少一个功率控制位也发送到移动无线电单元。在第二时间间隔处发送来自第二基站的功率控制位,所述第二时间间隔可以相应于第一基站所使用的第一时间间隔。来自第二基站的功率控制位相应于与第一基站相关联的接入信道。在功率控制信息分组中的每个功率控制位具有一个位置,把所述位置映射到所选接入信道,并映射到与所选接入信道相关联的基站。移动无线电单元接收来自第一基站的功率控制分组和第二基站的功率控制分组,确定相应的功率控制位,然后确定功率控制位的状态。如果状态指示要发送消息,而且移动站有消息发送,则移动站在所选接入信道上发送消息。预定的基站组中的每一个基站试图接收在所选接入信道上的发送,然后根据所接收到的信噪比设置在功率控制信息分组中的相应的位。
附图简述
从下面结合附图对本发明的实施例的详细描述中,对本发明的特性、目的和优点将更为明了,在所有的附图中,用相同的标记作相应的识别,其中:
图1示出根据本发明的比特流的结构图,所述比特流是从多个功率控制信息分组形成的;
图2是时序图,示出使用本发明的功率控制信息分组的移动站接入信道的示例;
图3是根据本发明的时序图,示出在接入信道中不同偏移处的交错的接入信道时隙;
图4示出根据本发明的具有空闲时间间隔的接入信道时隙的结构图;
图5是根据本发明的时序图,示出用于禁止移动站接入到接入信道的一种方法;
图6是根据本发明的时序图,示出几个交错接入信道时隙,每个接入信道时隙都有与其相关联的空闲时间周期,用于调整到各交错接入信道时隙的接入;
图7、7A、8和8A是根据本发明的系统的流程图,用于使用功率控制位来调整接入信道的接入,所述功率控制位可以假设三种不同状态;
图9是根据本发明的系统的流程图,用于再--使用功率控制位;
图10示出根据本发明在蜂窝电话系统中的数个小区的图,已经把每个小区分成多个部分;
图11A、11B和11C示出根据本发明从多个功率控制信息分组形成比特流的结构图,使用所述功率控制信息分组进行从第一基站到第二基站的越区切换接入信道发送;
图12是根据本发明的一种方法的流程图,用于进行从第一基站到第二基站的越区切换接入信道发送;
图13是方框图,示出执行本发明的快速接入信道功率控制系统所使用的示例移动站的元件;
图14是方框图,示出执行本发明的快速接入信道功率控制系统所使用的示例基站的元件;
图15示出一种方法,其中,根据本发明的一个实施例配置功率控制信道和多址联接信道;
图16是根据本发明的移动站1600的简化方框图。
较佳实施例的详述
基本快速接入信道功率控制
现在参考图1,图中示出根据本发明从多个功率控制信息分组110形成的比特流100的结构。如下面更详细的描述,在本发明中,为了控制在一个或多址联接信道(例如,诸如在CDMA蜂窝系统上根据IS-95标准操作的反向接入信道(R-ACH))上从移动站到基站的发送的输出功率,在无线电电话系统中把包括在功率控制信息分组110中的信息从基站发送到移动站。此外,如下所述,使用包括在功率控制信息分组中的信息来调整移动站到多址联接信道的接入。功率控制信息分组可以是在分立信道上连续的(如图1所示那样),或可以在分立信道上与数据混合。熟悉本技术领域的人员会理解这种混合。
由N个功率控制位120组成每个功率控制信息分组110。在图1所示的实施例中,在功率控制信息分组110中的每个功率控制位120映射到单个R-ACH,并用于控制在R-ACH上的输出功率。因此,标号为1的功率控制位120控制在R-ACH(1)上发送的移动站的输出功率电平,标号为2的功率控制位控制在R-ACH(2)上发送的移动站的输出功率,依此类推。在一个实施例中,根据OOK(通-断键控)和BPSK调制的组合来调制每个功率控制位,因此可以假设三种状态,即,断开,0度和180度。分别使用第二和第三种状态(即,0度和180度)把通电状态(on status)和功率上升(power-on)和功率下降(power-down)命令传递到移动站,例如,移动站根据这些命令将使它的输出发射功率上升1dB(如果接收到功率上升命令)或使它的输出发射功率下降1dB(如果接收到功率下降命令)。可以较好地使用其它功率控制步长(step size)以便系统最佳。在本发明中使用在第一状态(即,0度)下功率控制位120的发送,用于调整移动站到与功率控制位相关联的(即,映射到的)R-ACH的接入。在一个较佳实施例中,每个功率信息控制分组110的持续期是1.25ms,并在前向链路命令控制信道或功率控制信道上将控制分组110从基站发送到由基站服务的移动站。
在本发明的一种简单形式中,从基站连续地发送功率控制位120作为BPSK调制码元流。当移动站开始接入特定的R-ACH时,移动站开始注意功率控制比特流100,尤其,注意映射到移动站已经开始接入的特定R-ACH的功率控制位120。如果相应于移动站接入的R-ACH的功率控制位120指示移动站增加它的发射功率,则移动站就如此操作;相似地,如果功率控制位120指示移动站降低它的发射功率,则移动站就如此操作。在一个较佳实施例中,当基站在与功率控制位相关联的R-ACH上没有接收到任何发送时(即,在移动站试图接入相应于特定功率控制位120的R-ACH之前),基站就发送功率控制位120作为增加功率命令。当基站在与功率控制位相关联的R-ACH上没有接收到任何发送时将功率控制位120作为增加功率命令发送会导致,例如,如果移动站正在以太低的功率电平发送,那么移动站在接入开始时就增加它的功率电平。
使用如这里所述的快速功率控制允许对在R-ACH上的移动站进行精确的功率控制,相似于在CDMA系统的反向话务信道(R-TCH)上可以进行的那样。这种快速功率控制对于使移动无线电电话系统的容量最大化是很重要的。快速控制的另一个优点是它允许移动站通过以比所需功率更大的功率发送来开始R-ACH接入,然后,一旦基站已经捕获移动站的发送,就快速地将移动站校正到所需功率电平。
现在参考图2,在图中示出时序图,说明移动站运用本发明的功率控制信息分组110的示例R-ACH接入。如在图2中所示,在接入信道时隙期间发生移动单元接入到R-ACH。虽然较佳实施例将时隙用于R-ACH,但应注意,本发明的教义并不要求R-ACH是有时隙的(time-slotted),而是可用于没有时隙的系统。
在接入信道时隙的开始处,移动站最初在起始功率电平PO处发送消息先导序列(preamble)。在一个实施例中,在消息先导序列发送期间使用的起始功率电平相应于比第一接入探针的功率电平(在IS-95标准下移动站用来接入R-ACH的)约高3dB的一个功率电平。在发送消息先导序列之后,移动站开始对功率控制信息分组110进行解调,尤其,移动站开始监视在相应于现由移动站使用的R-ACH的每个功率控制信息分组中的功率控制位120的值。根据存储在这些功率控制位中的值,根据与移动站正使用的R-ACH相关联的每个功率控制位120,移动站把它的输出发射功率或向上调节或向下调节(UP或DOWN)(例如,加或减1dB)。
根据又一个方面,基站将等待,直到它检测到来自移动站的发送(即,移动站将等待到它检测到消息先导序列)而且在打开功率控制比特流之前已经捕获来自移动站的发送。基站将根据来自移动站的接收信号的功率电平确定是否命令移动站功率上升或功率下降。更具体地,基站将把接收到的信号的功率电平与门限值进行比较;如果接收到的信号低于门限值,则基站将使用功率控制信息分组把功率上升命令发送到移动站,否则,基站将使用功率控制信息分组把功率下降命令发送到移动站。
在上述实施例中,把在功率控制信息分组110中的每个功率控制位120映射到单个R-ACH。在这种实施例中,如果在每个功率控制信息分组110中有N个功率控制位120,则可以认为这种信息分组形成N个比特流,可以使用每个比特流来控制一个R-ACH,如上所述。诸如R-ACH之类的多址联接信道的一个方面是多个移动站可以在这种信道上同时接入和发送。美国专利5,604,730(已转让给本发明的受让人并作为参考资料在此引入)描述了一种方法,其中可用单个功率控制比特流来控制同时操作的多个移动站的功率。因此将美国专利第5,604,730号的教义与上述功率控制信息分组110的实施例组合(即,存在功率控制位120对R-ACH的一一映射),以允许使用单个功率控制比特流同时快速控制在相同R-ACH上操作的多个移动站的功率电平。
作为上述紧接着的实施例的一个变通,可以使用多于一个的功率控制比特流来控制在相同R-ACH上操作的多个移动站的工作功率。在这个变通的实施例中,使用不同的映射结构把功率控制位120映射到在特定R-ACH上接入的移动站。尤其,在该变通的实施例中,在每个R-ACH内,将用于移动站发送的接入信道时隙在时间上交错开多个偏移(offset),如图3所示。每个偏移表示移动站可开始在特定R-ACH上发送的时间。为了避免在确定哪个功率控制比特流相应于特定的R-ACH和偏移过程中产生混淆,在连续时间偏移之间的时间间隔最好大于与从基站到移动站的发送相关联的最大路径延迟范围(包括最大多路径延迟)。在本发明的一个实施例中,如在IS-95中那样把接入信道时隙分割成帧。在IS-95的情况下,帧的持续期是20ms。因此,-个时隙包括S个帧,以致时隙的持续期是20×Sms,其中S或是一个固定值,或是在系统额外开销信息中被发送到移动站。为了简化系统设计,最好选择在时间偏移之间的时间间隔为整数W个帧,其中W小于S。
在该实施例中,使用一个功率控制位120来控制移动站的功率,其中所述移动站在第一接入时隙(即,在偏移1之后)中在给定R-ACH上开始它们的发送,用另一个功率控制位120来控制移动站的功率120,其中所述移动站在第二接入时隙(即,在偏移2之后)中在相同R-ACH上开始它们的发送,并依此类推。虽然图3示出在给定R-ACH上的4种交错接入,但是熟悉本技术领域的人员会理解,可以在单个信道上使用任意数目的交错接入。
仍参考上面段落中描述的实施例,其中,用多个偏移划分每个R-ACH以产生供移动站发送用多个交错接入时间,在下面表I中示出功率控制位120到可用于移动站发送的单个R-ACH的示例映射,以及可用于这种发送的交错接入时间。在表I中所示的映射假设有M个R-ACH可用于移动站,而且每个R-ACH有K个交错(stagger)(或偏移),并且在给定R-ACH内,每个功率控制位120和每个偏移之间是一一对应的。给出这个一一对应的映射,在本发明的这个实施例中,在每个功率控制信息分组110中需要M×K个功率控制位120。
                      表I
  功率控制位位置   接入信道号     偏移位置
    1     R-ACH1     第1偏移
    2     R-ACH1     第2偏移
    3     R-ACH1     第3偏移
    ...     ...      ...
    k     R-ACH1     第k偏移
    k+1     R-ACH2     第1偏移
    k+2     R-ACH2     第2偏移
    k+3     R-ACH2     第3偏移
    ...     ...     ...
    2k     R-ACH2     第k偏移
    2k+1     R-ACH3     第1偏移
    2k+2     R-ACH3     第2偏移
    2k+3     R-ACH3     第3偏移
    ...      ...     ...
    3k     R-ACH3     第k偏移
    ...     ...     ...
    (M-1)*k     R-ACH(M)     第1偏移
    ((M-1)*k)+1     R-ACH(M)     第2偏移
    ((M-1)*k)+2     R-ACH(M)     第3偏移
    M*k     R-ACH(M)     第k偏移
为了降低前向链路负载和稍增加容量,在一个较佳实施例中,使用功率控制系统(所述功率控制系统符合上述表I示出的映射)的基站将制止发送与特定R-ACH和给定偏移相关联的功率控制位,直到基站在特定R-ACH和偏移上接收到来自移动站的发送。在这种情况下,如果基站正使用BPSK调制发送功率控制位,则基站将简单地不发送对于给定功率控制位的经调制码元,直到基站在与功率控制位相关联的特定R-ACH和偏移上接收到来自移动站的发送。因此,参考图2,直到基站已经检测到R-ACH发送的先导序列,基站才开始发送相应的功率控制位。例如,在IS-95标准的6.1.3.2.2.1节中定义R-ACH先导序列。
在对上面段落中的实施例的小修改中,基站在接入信道时隙的开始处开始发送与特定R-ACH和偏移相关联的功率控制位;如果在给定时间间隔中基站没有检测到在特定R-ACH和偏移上的接入,则基站停止发送与特定R-ACH和偏移相关联的功率控制位。这个实施例允许基站指示移动站在接入信道时隙上开始发送处增加它的发射功率。特别,基站运用在时隙的开始处零度相移发送功率上升命令。如果检测到接入,则基站将按需要发送功率上升和功率下降命令序列,以控制接入移动站或多个站的功率。如果没有检测到接入,则为了降低基站的发射功率并因此增加容量,基站将停止发送功率控制位。
运用功率控制位启动/禁止接入到接入信道
根据本发明的又一个方面,可将在功率控制信息分组中的功率控制位120用于在R-ACH上的拥塞控制,即,可以使用功率控制位来启动/禁止移动站在R-ACH上的接入。在一个这样的实施例中,当无移动站接入给定的R-ACH时,基站不发送相应于特定R-ACH的功率控制位,因此表示该信道是空闲的。当可接受数目的移动站正接入给定的R-ACH时,基站开始发送与给定R-ACH相关联的功率控制位,并用它来向接入系统的移动站指示,它们应增加/降低它们的发射功率(即,如果基站正使用BPSK调制来发送功率控制位,则基站将简单地对给定的功率控制位发送加或减180度BPSK调制码元。)例如,当因为太多移动站在信道上操作而使给定R-ACH变得拥塞时,基站不开始或停止发送与给定R-ACH相关联的功率控制位,以向移动站指示要它们停止在R-ACH上的发送。可以容易地把本发明的这个方面扩展到多个偏移划分每个R-ACH的情况(如图3所示)。在该情况中,当没有移动站正在接入运用给定偏移的给定R-ACH时,基站不发送相应于特定R-ACH和偏移的功率控制位,因此表示R-ACH和偏移是空闲的。当可接受数目的移动站正在接入给定的R-ACH和偏移时,则基站开始发送与给定R-ACH和偏移相关联的功率控制位,并用它向接入系统的移动站指示它们应增加/降低它们的发射功率。当因为太多移动站在信道上操作而使给定R-ACH和偏移变得拥塞时,基站停止发送与给定R-ACH和偏移相关联的功率控制位,以向移动站指示要它们停止在R-ACH和偏移上的发送。
一般在图7和7A中示出在上面段落中讨论的实施例,图7和7A描绘系统的流程图,用于调整到使用功率控制位(可以假设三种状态)的接入信道的接入。在步骤710中,将由多个功率控制位形成的功率控制信息分组从基站发送到一个或多个移动站。使用包括OOK和BPSK的调制来发送在功率控制信息分组中的功率控制位,所述包括OOK和BPSK的调制允许每个功率控制位假设第一、第二和第三不同状态中的一种状态(即,状态1=断开度(off degree),状态2=0度,以及状态3=180度)。在步骤720中,在移动站处接收功率控制信息分组,在步骤730中,移动站就识别与给定接入信道相关联的功率控制位。在步骤740中,如果功率控制位的状态相应于第一状态,那么在移动站处执行第一、第二和第三操作中的一种操作,其中,第一操作相应于启动在给定信道上从移动站到基站的消息信息发送,第二操作相应于禁止启动在给定信道上从移动站到基站的消息信息发送,而第三操作相应于停止在给定信道上从移动站到基站的消息信息发送。在图7A所示的较佳实施例中(步骤标号741a-743a),如果功率控制位在第一状态(没有发送),并且移动站尚未开始在给定接入信道上的发送,则在步骤742a中,允许移动站接入信道,否则,命令移动站停止在给定接入信道上的发送(步骤743a)。再参考图7,如果使移动站配合在给定接入信道上的发送,而基站对信道发送在它的第二或第三状态中的功率控制位,如果功率控制位的状态相应于第二状态(步骤750),则增加在接入信道上的移动站的输出功率电平,如果功率控制位的状态相应于第三状态(步骤760),则降低在接入信道上的移动站的输出功率电平。
如上所示,本发明的某些变通不需要基站在接入信道发送的先导序列部分期间发送。因此,在图7A示出的较佳实施例中(步骤标号741a-743a),如果功率控制位是在第一状态(不发送功率控制位),并且移动站尚未开始在给定的接入信道上发送,则在步骤742a中允许移动站接入信道;如果功率控制位是在第一状态(不发送功率控制位),并且移动站正在给定的接入信道上发送先导序列,则在步骤742a中允许移动站继续在给定的接入信道上发送;否则命令移动站停止在给定的接入信道上发送(步骤743a)。再参考图7,如果使移动站从事在给定的接入信道上发送,而基站对信道发送在第二或第三状态中的功率控制位,则如果功率控制位的状态相应于第二状态,则增加在接入信道上的移动站的输出功率电平(步骤750);而如果功率控制位的状态相应于第三状态,则降低在接入信道上的移动站的输出功率电平(步骤760)。
现在参考图4,根据又一个方面,为了让基站能够关断功率控制位,最好在每个接入信道时隙的结束处包括一小段空闲时间间隔,因此,表示该信道是空闲的,而且移动站可以在下一个时隙中接入该信道。如果在该空闲期间基站不关断相应于该信道的功率控制位,则不允许移动站在下一个时隙期间发送。在该实施例中,在空闲时间间隔信令(idle interval signaling)期间,基站一般不把对于给定R-ACH的功率控制位发送到在下一个时隙期间可以接入R-ACH的移动站。如果在下一个接入信道时隙期间一个或多个移动站开始接入R-ACH,则基站将开始发送相应于R-ACH的功率控制位(例如,基站将发送功率控制位的0或180度BPSK码元),因此导致移动站增加或降低它的发射功率。仍参考图4,在基站不希望对R-ACH的接入允准的情况下,或基站要一个或多个移动站停止在R-ACH上发送的情况下,基站将在空闲时间间隔内发送功率控制位(例如,基站将发送功率控制位的0或180度BPSK码元)一因此向移动站表示在接着的时隙期间它们准备不接入R-ACH。一般在图8中示出本发明的这个实施例。在图8A中示出又一个另外的实施例。图8A的实施例和图8的实施例相似,除了在图8A中,基站在空闲时间间隔内发送功率控制位,以表示允许移动站在下一个时隙期间接入R-ACH。
上述实施例使用的空闲时间间隔最好是至少数个功率控制信息分组的长度加上在接着的接入信道时隙之前的一些允许处理时间,以致移动站可以确定在时隙期间是否允许发送。这是最佳长度是因为这样一个事实,即,不以纠错或检测信息编码单个功率控制位,并以相对较低功率下发送以增强系统的容量。因此,单个功率控制位在它的发送中不是很可靠的。在正进行消息信息发送期间(即,在接入信道时隙的当中),这对于功率控制的运用是十分可接受的,因为,虽然在该期间内的单个误码将导致移动站按错误的方向改变它的功率,但是这个差错将被接着的功率控制位快速地纠正。然而,由于移动站不能可靠地检测是否发送单个功率控制位,所以为了可靠地确定是否允许移动站接入R-ACH,或命令移动站停止在R-ACH上的发送,在空闲时间间隔内应该积累相应于给定R-ACH的数个功率控制位。
根据本发明的再一个方面,图5示出一种用于在接入控制时隙中间禁止接入到R-ACH的系统。当在接入信道时隙中对R-ACH的接入比基站要求处理的更多时,在时隙中间的某些时间间隔T之后,基站最好关断相应于R-ACH的功率控制位。时间间隔T是基站确定是否存在比所需更多的接入所需要的时间。在积累了数个这样的位之后,移动站确定基站没有发送相应于R-ACH的功率控制位,而且移动站禁止它在R-ACH上的发送(在时隙中间期间)。
应该注意,在另一个实施例中,空闲时间间隔可以在先导序列发送期间,因此不要求在信道上的任何空载时间(dead time)。既然是这样,在先导序列期间基站不把信号发送到可能发送的移动站。然而,该实施例具有这样的缺点,即,在先导序列期间不能对移动站进行功率控制。又一个变通方法是如果允许移动站接入系统,则在先导序列期间使移动站发送。因此,基站在先导序列期间不发送是对移动站的一种指示,即,不允许它们在时隙期间发送。
上述实施例使用单个功率控制位的三种状态:关断(off)、增加功率和降低功率。此外,在不同时刻发送功率控制位表示给定R-ACH是否空闲,以及移动站是否可以接入R-ACH,是否不允许移动站接入R-ACH,是否要移动站停止在R-ACH上的发送。在上述实施例中,使用BPSK调制来得到单个功率控制位的这三种状态,如上所述。应该注意,可以使用其它调制方案来指示各种状态。例如,可以使用QPSK调制对每个功率控制位进行编码。这可以提供多达4个不同指示。熟悉本技术领域的人员会理解,另外还可以使用其它调制方案对功率控制位进行编码。在又另一个实施例中,可以使用单个功率控制位来管理所有的R-ACH,并将指示是否允许任何移动站接入系统。可以使用这单个位来管理所有的R-ACH。可以使用这种方法而避免使用上述空闲时间。
再使用功率控制位
上述图3示出使用交错R-ACH的一种布局。通过这些交错的R-ACH,可以把功率控制位分配给(或映射到)每个R-ACH的每个交错时隙。根据本发明的又一个方面,没有在一个交错的时隙(即,与特定偏移相关联的时隙)使用的功率控制位可被再使用,以控制在接着的交错时隙(即,与后一个偏移相关联的时隙)上的接入。
图6示出一种情况,其中,对每个R-ACH有两个功率控制位,并且对该R-ACH有四种可能的开始时间(即,每个R-ACH有4个相关联的时间偏移,即,偏移1、偏移2、偏移3和偏移4)。最初,分别把对于给定R-ACH的功率控制位1和2分配给R-ACH的偏移1和偏移2。如果移动站在相应于偏移1的时间间隔内接入给定的R-ACH,则对于给定R-ACH的偏移1使用功率控制位1。另一方面,如果移动站在相应于偏移1的时间间隔内没有接入给定的R-ACH,则使用功率控制位1来控制在与R-ACH相关联的偏移3上开始的发送。相似地,如果在偏移2期间没有R-ACH的接入,则用于偏移2的功率控制位可以用于偏移4。根据本发明的这个方面,希望在偏移2处接入给定R-ACH的移动站将在对于偏移2的空闲时间内检查,以确定是否正在发送相应于偏移2的功率控制位。如果正在发送功率控制位(例如,如果基站正在发送功率控制位的0或180度BPSK码元),则移动站在偏移2期间将不接入。这正好是上述规则的延伸,即,如果不发送功率控制位,则允许移动站在偏移2期间接入。一般以在图9中的流程图的形式来示出上述功率控制位再使用方法。
接入控制信道的软越区切换
在根据IS-95标准工作的CDMA系统中,单个基站接收R-ACH。相应地,在这种系统中,数个基站将不以软越区切换(即,先合后断越区切换)方式接收来自特定移动站的R-ACH,诸如当移动站从第一基站移动到第二基站时在CDMA话务信道上所进行的那样。在题为“在CDMA蜂窝电话系统的通信中提供软越区切换的方法和装置”的美国专利第5,101,501号中揭示在CDMA话务信道上执行软越区切换的示例CDMA系统的细节,该专利已转让给本发明的受让人,并为了完整性而在此引用作为参考。虽然IS-95标准不禁止R-ACH的软越区切换,但是众知未曾执行过。在R-ACH上不执行软越区切换是因为有两个缺点。第一个缺点是不使用位置分集,因此降低了信道的性能。第二个缺点是没有使用来自多个区站的反向功率控制。结果,移动站将发射比要求功率更多的功率。
在R-ACH上执行软越区切换有几个困难。一个困难是由于系统事先不知道在越区切换期间接入系统的移动站需要哪些基站,因此系统会要求围绕当前基站的区域中的所有基站都支持软越区切换。这在图10中示出。考虑在扇区A1中的移动站的R-ACH软越区切换情况。为了完成这种越区切换,扇区B3和C2同样地接收R-ACH,而B2、C3、D1、E1、A2、A3、D3和E2可能接收扇区A1的R-ACH。在每一个这些其它区站处确实要可观数目的附加解调器,但是很可能每个扇区或它们的某些子集都具有解调器。但是,为了得到充分的益处,要求在前向链路上使用少量的功率控制位。然而,应该注意,在相同位置(site)(例如,扇区A2和A3)处的扇区不需要附加的功率控制位。这是因为相同硬件接收R-ACH,因此可以根据在区站处的接收产生单个功率控制位。因此,在扇区A1中的基站可以指示还在发送来自其它扇区的功率控制位,这是通过与功率控制位的位置一起的额外开销消息指示的。例如,考虑图11A、11B和11C中所示的功率控制比特流。这里,特定的R-ACH正在使用扇区A1的位置1上的功率控制位,扇区B3的位置2上的功率控制位和扇区C2的位置4上的功率控制位。应该注意,这些功率控制位将在不同的时刻到达移动站,以致它们必须是不歪斜的(deskewed)。这与CDMA系统中在话务信道上的功率控制位不同,那些功率控制位从所有基站同时到达移动站。
现在参考图12,在图中示出根据本发明用于接入信道的软越区切换的一种方法的流程图。在步骤1210中,把来自第一基站的至少一个功率控制位发送到移动无线电。在相应于与第一基站相关联的功率控制信息分组中的第一时间间隔处发送来自第一基站的功率控制位。在步骤1220中,把来自第二基站的至少一个功率控制位发送到移动无线电单元。在功率控制信息分组中的不同位置上,在第二时间间隔处发送来自第二基站的功率控制位,其中上述分组对应于与第一基站相同的接入信道,但是与第二基站相关联。从第一基站发送第一功率控制分组,并从第二基站发送第二功率控制分组。在步骤1230中,移动无线电单元接收在功率控制信息分组中来自第一基站的功率控制位(诸如在图11A中所示)和在第二功率控制信息分组中来自第二基站的功率控制位(诸如在图11B中所示)。在步骤1240中,移动站通过使在步骤1230中接收的位不歪斜而形成一个功率控制位结果。
对功率控制位的处理如前所述。然而,有几个不同处。在较佳实施例中,在移动站检测是否正在发送信道的情况下,移动站应该分别检测是否正在每个分开的功率控制流上发送功率控制位。如上所述,这是通过观察位的序列来进行的。如果所有基站指示允许移动站发送(通过不发送功率控制位),则移动站可以根据上述方法启动它的发射机。在较佳实施例中,要求移动站分别检查来自每个基站的功率控制流。这是因为特殊基站可能不能够接收移动站在R-ACH上的发送。作为例子,参考图10,移动站可接近基站A2覆盖的小区中心,因此其它基站(例如,B3、C2、B2、C3、D1、E1、A2、A3、D3、和E2)不能接收。相似地,当移动站正在R-ACH上发送时,一个特定的基站不能发送相应于R-ACH的位,因此移动站将不组合基站正在发送的位。应该注意,后面一种考虑与在话务信道上的IS-95系统有些不同。在IS-95系统中,移动站确定地知道正在R-ACH上发送的基站集。然而,在这种情况下,移动站必须检测是否正在发送流。一旦移动站已经不歪斜,已经确定功率控制位的相位(以及是否正在发送它们),则移动站确定是否增加或降低它的发射功率。这是对IS-95方法的延伸。如果正在发送功率控制位的这些基站全部指示移动站要增加它的发射功率,则移动站增加它的发射功率;如果正在发送功率控制位的任何基站指示移动站要降低它的发射功率,则移动站降低它的发射功率。在步骤1260中,在越区切换期间从移动无线电单元发送消息。在接入信道上的第一和第二基站都接收到所述消息。
系统详述
现在参考图13,在图中示出示例移动站1300的元件的方框图,所述示例移动站1300用于实施本发明的快速接入信道功率控制系统。移动站包括通过双工器1332耦合到模拟接收机1334和发射功率放大器1336的天线1330。天线1330和双工器1332是标准设计的,并允许通过单个天线同时接收和发送。天线30收集从一个或多个基站发送到移动站的信号,并通过双工器1332把信号提供给模拟接收机1334。接收机1334还配备有模数转换器(未示出)。接收机1334接收来自双工器1332的RF信号,对信号放大并下变频相互,并把数字化输出信号提供给数字数据接收机1340、1342和搜索器接收机1344。将会理解,虽然在图13的实施例中只示出两台数字数据接收机,但是低性能移动站可能只有单个数字数据接收机,而高性能单元将有两个或多个数字数据接收机以允许分集接收。把接收机1340和1342的输出提供给分集和组合器电路1338,该电路对从接收机1340和1342接收到的两个数据流进行时间调节,把流相加在一起,并对结果进行解码。在题为“在CDMA蜂窝电话系统的通信中提供软越区切换的方法和装置”的美国专利第5,101,501号中描述有关数字数据接收机1340、1342、搜索器接收机1344和分集和组合器电路1348的操作的详细说明,该专利已转让给本发明的受让人,并在此引用作为参考。
从解码器1348把输出信号提供给控制处理器1346。控制处理器1346根据该输出信号确定从一个或多个基站提供给移动站的功率控制位120的值。根据本发明,控制处理器1346使用接收到的功率控制位启动、禁止在R-ACH上的功率控制信号。因此,根据指示移动站应功率上升或功率下降的功率控制位的接收(如上所述),控制处理器1346将把信号发送到发射功率控制器1338,例如,命令控制器1338通过加或减1dB而增加或降低发射放大器1336的输出功率电平。
现在参考图14,在图中示出示例基站1400的元件的方框图,所述示例基站1400用于实施本发明的快速接入信道功率控制系统。在基站处,使用两个接收机系统,每个系统具有分立的天线和用于分集接收的模拟接收机。在每个接收机系统中,相同地处理信号直到信号进行分集组合过程。在虚线中的单元相当于一些单元,这些单元相应于在基站和一个移动站之间的通信的单元。仍参考图14,第一接收机系统包括天线1460、模拟接收机1462、搜索器接收机1464和数字数据接收机1466和1468。第二接收机系统包括天线1470、模拟接收机1472。搜索器接收机1474和数字数据接收机1476。使用区站控制处理器1478,用于信号处理和越区切换期间的控制。把两个接收机系统耦合到分集组合器和解码器电路1480。在控制处理器1478的控制下使用数字链路1482从和到移动电话交换局(MTSO)传递信号。
把在天线1460上接收到的信号提供给模拟接收机1462,在那里,在一个等同于描述有关移动站模拟接收机的过程中,放大信号,频率变换和数字化。把从模拟接收机1462的输出提供给数字数据接收机1466和1468和搜索器接收机1464。第二接收机系统(即,模拟接收机1472、搜索器接收机1474和数字数据接收机1476)以相似于第一接收机系统的方式处理接收到的信号。把数字数据接收机1466、1476的输出提供给分集组合器和解码器电路1480,分集组合器和解码器电路1480根据维特比算法处理信号。在上面引用的,题为“在CDMA蜂窝电话系统的通信中提供软越区切换的方法和装置”的美国专利第5,101,501号中描述有关第一和第二接收机系统和分集组合器和解码器电路1480的操作的详细说明。在控制处理器1478的控制下把发送到移动单元的信号提供给发射调制器1484。发射调制器1484对发送到指定接收移动站的数据进行调制。其中,来自发射调制器1484的数据信号输出将包括属于本发明的功率控制信息位120。
虽然上面已经联系在CDMA移动无线电系统上的R-ACH信道描述了各种实施例,但是熟悉本技术领域的人员会理解,本发明的学说可以应用于具有可以由多个用户接入的接入信道的任何无线电电话系统。
图15是一种方法的示例,其中根据本发明的一个实施例配置功率控制信道和多址联接信道。图15示出工作于9600位每秒(bps)的功率禁止检测控制信道(power inhibit sense control channel)(“PICCH”)1501,并且三个多址联接信道之一与PICCH1501相关联,这里把三个多址联接信道中的每一个称为反向控制信道(“R-CCCH”)1503。应该理解,PICCH 1501的工作速率是设计要选择的内容。可以使用其它位速率而不改变这里正在揭示的原理。然而,最好在PICCH 1501的位速率和待在PICCH 1501上传递到移动站(所述移动站正在试图接入特定的R-CCCH 1503)的功率控制信息的速率之间存在一定的关系。根据该关系,为了使每“PICCH迷你时隙”的位是整数,位速率应该是功率控制速率的整数倍。PICCH迷你时隙是一个时间周期,该时间周期等于功率控制速率的倒数。
例如,800Hz的功率控制速率(如在图15中所示)导致PICCH迷你时隙1505,它具有1/800=1.25毫秒(ms)的持续期。图15示出一个R-CCCH1503和一个PICCH1501。然而,根据图15所示的实施例,PICCH1501与三个R-CCCH相关联。可以与PICCH1501相关联的这种R-CCCH1503的数目有赖于位速率、功率控制速率和一个在这里称为“L”的参数。L是在每个PICCH迷你时隙1505中与每个特定R-CCCH1503相关联的位的数目。例如,在图15中示出的位速率等于9600bps,功率控制速率是800Hz,所示出的位L的数目等于4。因此,可被支持的R-CCCH1503的数量等于3。这是因为功率控制速率等于800Hz。相应地,每个PICCH迷你时隙1505的持续期等于1.25ms。此外,位速率是9600bps。因此,在1.25ms(即,在一个PICCH迷你时隙中)的周期中将有12位。如果有4位与每个R-CCCH1503相关联,则对于3个R-CCCH1503,在每个PICCH迷你时隙中有足够的位。
另一方面,可以使用R-CCCH1503的数目来确定L的值。在图15中,由于PICCH1501在9600bps处操作,并假定功率控制速率为800Hz,则在每个PICCH迷你时隙1505中有12位。由于在图15中有3个R-CCCH(只示出一个)与PICCH1501相关联,L的值=4=12/3。最好,对于与PICCH1501相关联的每个R-CCCH1503,每个PICCH迷你时隙1505提供相等数目的位L。在图15示出的实施例中,每个PICCH迷你时隙1505包括3个“子迷你时隙”1507。子迷你时隙1507对于L位。第一子迷你时隙1507a在PICCH迷你时隙1505的开始处开始。每个接着的子迷你时隙1507a在接着前面一个子迷你时隙1507的最后位的位置处开始。一般,每个子迷你时隙1507包括由L-I“散列”值位1511跟随的第一功率控制位1509。在下面进一步提供通过散列值位1511携带的散列值的定义。应该注意,可以调制PICCH1501以与系统的另外的信道正交。
把与PICCH1501相关联的每个R-CCCH1503分割成R-CCCH迷你时隙(未示出)。R-CCCH迷你时隙表示在R-CCCH中可能发生特定事件的相对时间。最好把R-CCCH迷你时隙与PICCH中的PICCH迷你时隙1505对准。然而,可以执行一个对准延迟(“D1”),它使每个R-CCCH迷你时隙的起始偏移PICCH迷你时隙1505的起始。此外,根据本发明的实施例,每个R-CCCH在相对于子迷你时隙1507的起始确定的时间处开始。因此,与第二子迷你时隙1507相关联的R-CCCH的定时将和与第一子迷你时隙1507a相关联的R-CCCH的定时偏移一个子迷你时隙的持续期。
R-CCCH迷你时隙所具有的持续期最好等于PICCH1501的PICCH迷你时隙1505的持续期。然而,在另一个实施例中,R-CCCH迷你时隙具有的持续期等于PICCH迷你时隙1505的整数倍。应该注意,在图15中示出的某些位比其它位较高。指定较高位表示正在发送能量,而指定较低位来表示不发送任何能量。无论如何不指定每一个位的相对高度来传递一位相对于其它位的相对功率。
子迷你时隙1507的每个位的功能有赖于相关联的R-CCCH的状态。根据本发明的一个实施例,使用通-断(ON-OFF)二进制相移键控(BPSK)对这些位进行调制。BPSK意味着可能在每个位时间处发送能量。一般对能量进行调制,作为具有相对于正弦相位基准的两相关系中的一个关系的正弦波(例如,从基准相位0度或从基准相位180度)。信息是“通-断”BPSK的这个事实进一步涉及在位时间期间还有可能不发送能量的这个事实。
定义子迷你时隙位功能如下。在每个PICCH迷你时隙1505的第一子迷你时隙1507中的每个位相关联于,并专用于第一R-CCCH1503。在每个PICCH迷你时隙1505的第二子迷你时隙1507中的每个位相关联于,并专用于第二R-CCCH1503。每个接着的子迷你时隙1507专用于一个相关联的R-CCCH1503。
起初,当任何移动站没有使用相关联的R-CCCH1503时,在子迷你时隙1507中的每个位是“空闲”的(即,在这个位时间期间不发送能量)。在子迷你时隙1507的第一位位置1508中发送空闲位表示这样的事实,即,尚未有移动站试图获得到相关联的R-CCCH1503的接入。
为了获得到R-CCCH1503的接入,移动站确定与R-CCCH1503相关联的子迷你时隙1505的第一位是否为空闲的。根据本发明的一个实施例,移动站通过把软判定的绝对值加在控制位上,计算所产生的能量总干扰比值,并把它和系统指定的门限值比较而确定信道是空闲的还是忙碌的。如果所测量的比值超过门限值,则认为信道是“忙碌”的。
如果与R-CCCH1503相关联的子迷你时隙1505中的第一位是忙碌的(正在该位位置中发送能量),则移动站找寻另一个可接入的R-CCCH1503。根据本发明的一个实施例,移动站在根据系统参数选择的随机补偿(random backoff)时间内什么也不做,在该时间之后,它重复该算法开始选择R-CCCH1503中的一个。
如果与R-CCCH1503相关联的子迷你时隙1507中的第一位是空闲的,则移动站在它希望接入的R-CCCH1503上发送初始先导序列1510。根据本发明的一个实施例,不是每次确定R-CCCH1503是空闲时都发送初始先导序列。而是,移动站在预定百分比的时间内发送先导序列(即,具有概率“ρ”,其中,确定ρ作为系统参数)。通常把这个称为“持续(persistence)-ρ”方案。这种持续-ρ方案降低一个以上的基站试图在相同时间发送先导序列的可能性。用经随机数量的“码片”(即,信息单元)延迟的伪随机数(PN)代码对先导序列进行编码。在一个实施例中,延迟等于512个码片。先导序列最好是固定的已知模式。在一个实施例中,先导序列包括某些数据速率的指示。如果移动站不根据持续确定而发送,则移动站将检查下一个迷你时隙的忙碌状态,以确定是否发送先导序列。如果在下一个迷你时隙1505的子迷你时隙1507中的第一位是空闲的,则移动站将在下一个R-CCCH迷你时隙期间用概率ρ来发送。重复该过程直到发生发送。如果移动站确定在与R-CCCH1503相关联的子迷你时隙1507中的第一位是忙碌的,则移动站的运转如同第一次确定R-CCCH1503是忙碌时移动站的运转那样。
根据本发明的一个实施例,可以以短脉冲串来发送先导序列(即,可以多个分立的部分来发送先导序列,在所述每个部分之间有延迟)。另一方面,可以在先导序列的完整性中重复该先导序列,在每个重复发送之间具有延迟。
根据本发明的一个实施例,紧接在先导序列1510后面发送速率字1516。速率字1516向基站指示一个速率,如果准许移动站接入R-CCCH1503,则正在请求发送信息的移动站就以该速率发送消息。应该理解,可以以许多另外的方法来进行速率的确定,速率字发送的定时也不是必须使速率字1516紧跟在先导序列1510之后。另外一种确定速率的方法是通过用对于特定速率是唯一的一个代码对先导序列进行编码。其它方法是如此地对先导序列进行编码以使差错率较大,如果基站试图对使用错误速率的先导序列进行解码的话。基站将试图使用每个速率对先导序列进行解码,移动站已经用所述每个速率是对先导序列进行编码。然后确定产生最佳差错率的试图进行解码的先导序列为正确的速率。
当移动站在R-CCCH1503上把初始先导序列1510发送到基站时,基站接收该能量。如果基站可以确定正请求在R-CCCH1503上发送数据的移动站发送数据的速率,则基站通过确定所接收到的能量是否适合于正请求在R-CCCH1503上发送数据的移动站发送数据的位速率而作出响应。即,基站确定先导序列的信噪比是否适合(不太大,也不太小)于支持在具有所要求的差错率的所请求速率处的数据发送。如果接收到的功率电平大于或小于所请求的数据速率所要求的功率电平,则基站计算使功率电平合适所需要的调节量。应该注意,在本发明的一个实施例中,在导频信号上执行功率控制,而不是在话务信号上。移动站考虑发送数据的速率,移动站根据它发送消息将使用的速率来调节初始功率调节字的值。
一旦基站已经确定从基站发送的信号的功率电平需要调节多少时(即,待通过移动站发送的能量量),基站将使用“预-分配”的位在PICCH1501上发送初始功率调节字1507b。位的预-分配意味着预先确定在子迷你时隙1507中相对位置处的有效位。在图15中示出的实施例中,预先确定子迷你时隙1507b的所有4位以携带初始功率调节字。然而,在另一个实施例中,初始功率调节字1507b是不超过L的长度的位数。如果位数均匀地分到数L中但是小于L,则根据本发明的一个实施例,在子迷你时隙1507的L位中使初始功率调节字1507b重复尽可能多的次数。在子迷你时隙1507b的第一位1508中存在的能量向将接收PICCH1501的这些移动站指示与子迷你时隙1507b相关联的R-CCCH1503是“忙碌”的。应该注意,最好使用一个以上的位来指示初始功率调节。相应地,将在下面进一步看到,至少某些预先分配到初始功率调节字的位是在已经接收到散列字之后为了回送(echo)散列值而在较后预先分配的。
在移动站处的初始先导序列结束和初始功率调节字1507b发送开始之间发生一个延迟,被称为“基本检测延迟(base detection delay)”(D2)。该延迟是PICCH迷你时隙1505的整数倍。在本发明的一个实施例中,基本检测延迟的持续期是在0和15个PICCH迷你时隙之间。应该注意,通过发送初始先导序列1510和等待返回初始功率调节字1507b,基站可以在以所要求的位速率发送信息之前先设置移动站的功率电平。这样做是有利的,因为可以用比信息的功率电平较低的功率电平发送先导序列,由于先导序列的位模式(pattern)是已知的并且是重复的。这个与相干地接收先导序列的事实相结合允许在先导序列的持续期上相干地累积能量。
在发送先导序列之后,如果使用速率字,则移动站将试图对与所请求的R-CCCH1503相关联的子迷你时隙进行解码。如在图15中所示,在基本检测延迟D2(最好这是一个预定的系统参数)结束之前发生的子迷你时隙1505c中应该不发送任何功率。因此,如果移动站在基本检测延迟D2期间发生的子迷你时隙1505c中检测功率,则移动站将假设已经准许其它移动站接入与子迷你时隙1507相关联的R-CCCH。
在基本检测延迟D2之后,移动站应该能够检测初始功率调节字。如果移动站不能够检测初始功率调节字,则移动站最好假设接入尝试已经失败,并试图从选择R-CCCH1503(移动站希望在其上进行发送)开始的再次接入。在过程的每个其它阶段的情况下,如果移动站确定尝试已经失败,则移动站最好补偿随机时间量,并试图再次接入。
如果移动站能够检测到初始功率调节字,则移动站假设基站已经检测到由移动站发送的先导序列1510。然而,有可能基站检测到的先导序列1510是其它移动站发送的。下面将进一步说明对这种情况的补救。在各个情况中,在包括初始功率调节字1507b的PICCH迷你时隙1505d的结束处,移动站最好开始发送信道估计先导序列1513。移动站发送信道估计先导序列的功率是根据所接收到的初始功率调节字的值的。此外,移动站根据待在R-CCCH1503上使用的数据速率调节它的发射功率。在图15中示出在PICCH迷你时隙1505d的结束和信道估计先导序列1513的开始之间消逝的时间量,持续期为一个PICCH迷你时隙。然而,在另外的实施例中,可以利用“移动站保持延迟(mobilehold delay)”(D3),它的持续期为PICCH迷你时隙1505的持续期的任何整数倍。同样,示出信道估计先导序列1513等于一个PICCH迷你时隙1505的持续期。然而,在另外的实施例中,信道估计先导序列1513的持续期等于PICCH迷你时隙1505的任何整数倍的持续期。
在发送信道估计先导序列之后发送“散列”字1514,它具有散列值,事实散列值是从对于发送移动站是唯一的信息得到的。通过散列函数产生散列值,所述散列函数把第一长度的唯一输入信息映射到长度(所述长度比输入信息的长度短)的输出散列值。例如,在本发明的一个实施例中,输入信息包括移动站的电子串号(ESN)。ESN对于每个移动站是唯一的。然而,ESN是相当长的。散列函数把ESN映射到比ESN短(要求较少的位)的散列值。散列字1514帮助移动站和基站确定将准许哪个移动站接入到R-CCCH1503。
由于散列字是从对于移动站是唯一的信息得到的,所以每个移动站将产生一个“准-唯一(quasi-unique)”散列值。该散列值对于每个移动站将是准-唯一的,因为散列字1514的长度最好是太短,以允许足够数目的唯一的散列值适应在世界各地工作的所有移动站。但是,散列字1514的长度足以使之不可能在相同工作区域(即,在与同一个基站进行通信)中的一个以上的移动站会产生相同的值。使用这个散列字1514允许发送的信息比将获得接入R-CCCH1503的移动站与当前在全世界操作的每个其它移动站唯一区分开来所需的信息要少,同时在大多数情况下仍然将该移动站与区域中的所有其它移动站区分开来。在本发明的一个实施例中,为了保证移动站对散列值正确地解码,使散列值重复。如果在接收散列字期间的任何时刻移动站确定所接收到的散列值不是移动站所发送的散列值,则移动站停止在R-CCCH1503上的发送,并假设接入尝试已经失败。根据移动站接收到的功率电平,移动站可以确定散列值的每一位的可靠性是如何的,以及根据在散列值中错误地接收到的位确定是否终止在R-CCCH上的发送。有些时候,如果所接收到的散列值不是所发送的散列值,则移动站将终止发送。根据一个实施例,可以抑制散列字(即,不在R-CCCH1503中发送)。
在发送散列字1514之后,移动站发送消息。消息包括待在移动站和基站之间发送的用户内容。
应该注意,在“功率控制延迟”(D4)期间发送的每个子迷你时隙1507c、1507d是“虚(dummy)”位。当移动站接收到虚位时,虚位没有特别重大的意义,除了作为位置保持器并指示R-CCCH1503是忙碌的。功率控制延迟D4是信道估计先导序列的开始和功率控制信息的开始之间的时间。最好存在该延迟,因为在基站中需要时间来确定适当的功率控制值。因此,在子迷你时隙1507e期间(在功率控制延迟D4之后)发送移动站使用的第一功率控制位1512。
应该注意,根据本发明的一个实施例,在每个子迷你时隙1507中只有一个功率控制位,除了所述初始功率控制位1508。在图15中示出的实施例中,在子迷你时隙中的第一位是功率控制位。然而,在另一个实施例中,功率控制位可以是在子迷你时隙1507中的任何一位。此外,在另一个实施例中,使用一个以上的功率控制位来指示移动站应对要在R-CCCH1503上发送的功率调节多少。在只有一个功率控制位的实施例中,最好对子迷你时隙1507e的每个余留位重复功率控制位的值,因为在发送子迷你时隙1507e的时间不知道散列值。
在已经接收到整个散列字1514之后产生“散列代码延迟”D5。示出散列代码延迟D5等于剩余的PICCH迷你时隙1505g。然而,在另一个实施例中,散列代码延迟超过下一个PICCH迷你时隙的开始处,所超过的持续期等于PICCH迷你时隙整数倍的一个持续期。相应地,可以指定散列代码延迟D5,致使它具有一直持续到在已经接收到整个散列字1514之后开始的PICCH迷你时隙1505的开始处的一个持续期。
根据散列字1514的接收和基站对于发送该散列字1514的移动站要给予接入R-CCCH1503的确定,基站发送功率控制位。功率控制位指示与子迷你时隙1507相关联的R-CCCH1503是忙碌的,移动站是否调节在R-CCCH1503上发送的输出功率使之上升或下降。如在图15中所示,发送功率控制位1515a作为在子迷你时隙1507f中的第一位。如上所述,在另一个实施例中,使功率控制位位于不是在子迷你时隙1507f中的第一位位置的位位置上。在图15中示出的实施例中,表示散列函数一部分的比特流1517a跟随着功率控制位。比特流1517a的长度最好等于子迷你时隙减1(即,减功率控制位)。因此,表示散列函数的功率控制位和比特流的组合包括完整的子迷你时隙1507f。
在图15中示出的实施例中,散列字1514的长度大于在一个子迷你时隙1507中的位的数目。因此,只有散列值的前面三位跟随在子迷你时隙1507f中的功率控制位1515a。散列值1514的接着的三位跟随在下一个子迷你时隙1507g(如同子迷你时隙1507f一样相关联于相同的R-CCCH1503)中的功率控制位1515b。每个接着的子迷你时隙1507携带三个附加位,直到发送整个散列值。根据一个实施例,为了保证所有移动站知道是否已经准许它们接入与携带散列字1514的子迷你时隙相关联的R-CCCH1503,使散列值重复。已知在PICCH中重复散列值的过程为“回送”散列值。
在本发明的一个实施例中,在功率控制延迟D4之前可能还没有完全接收散列字1514。因此,在一个如此的实施例中,到散列代码延迟D5之后才可以进行散列字的回送。
在本发明的另一个实施例中,使用不同的正交代码在完整的迷你时隙1505上回送在PICCH中的每个子迷你时隙。另外,与每个子迷你时隙相关联的R-CCCH具有相同的定时。在再另一个实施例中,使每个R-CCCH专用于特定的位速率。相应地,在选择移动站希望在哪个R-CCCH上发送中的决定因素之一将是所要求的位速率。再进一步,在本发明的一个实施例中,系统的某些或全部参数是可编程的。这些参数包括:(1)持续性;(2)再发送延迟(即,在移动站发现信道是忙碌的和再计划发送的时间之间的时间量);(3)在一个系统中的PICCH信道数;(4)表示如何支持R-CCCH映射到特定子迷你时隙的映射代码;(5)R-CCCH迷你时隙偏移(在PICCH迷你时隙的开始和R-CCCH迷你时隙之间的差);(6)先导序列长度;(7)速率字长度,如果使用的话;(8)基站检测延迟D2;(9)初始功率调节字长度;(10)移动站保持延迟D3;(11)信道估计先导序列持续期;(12)速率字长度;(13)散列字回送数目;(14)功率控制延迟D4;(15)散列代码延迟D5;以及(16)最大消息长度。
在本发明的另一个实施例中,为了改变PICCH迷你时隙的长度,可以改变功率控制速率。在另一个其它的实施例中,使用在子迷你时隙中的一个以上的功率控制位允许按时间相干地积累一个以上的位的能量,为了较佳地使用每位较少能量来确定功率控制位的值。
图16是根据本发明的移动站1600的简化方框图。移动站1600包括天线1601、射频(RF)前端部分1603,处理器1605和存储器1607。最好从RF前端接收数字信息的处理器1605基本上执行本发明的所有功能。存储器1607差错系统参数和处理器1605执行的指令。处理器1605还在R-CCCH1503上发送信息。信息是由处理器1605产生的。
通过在小区的扇区(成对的扇区或全部扇区)上以同播的方式发送F-PICCH的特定子信道而可以在移动站处促进软越区切换。系统必须指定在同播模式中支持哪些F-PICCH子信道(以及相应地R-CCCH)。在小区中可以支持一个或多个同播子信道。移动站最好根据扇区的不同导频强度来作出决定使用同播信道。在这个软越区切换区域中的用户的性能将大大地提高。
根据一个实施例,定义在小区的其它扇区上使用的特殊的辅助F-PICCH。传递在其上的第一忙碌,此后立即再趋向空闲。相应地,负载将是极低的,而且它只供用户使用,这些用户试图确定在正确的时间处信道是否为忙碌的。位初始空闲而监视信道的用户不使用辅助F-PICCH。
提供较佳实施例的上述描述,以使熟悉本领域技术的人员可以制造或使用本发明。熟悉本领域技术的人员将不费力地明了这些实施例的各种修改,可以把这里所定义的一般原理应用到其它的实施例而不需要用发明创造。因此,不打指定本发明限于这里所示出的方法和装置,而是和这里所揭示的原理和新颍特征符合的最宽广的范围相一致。

Claims (18)

1.一种方法,用于确定尝试接入多址联接信道的移动站是否已经获得到所述多址联接信道的接入,其特征在于,所述方法包括下列步骤:
将一先导序列从所述移动站发送到一基站;
所述移动站根据对所述移动站特定的信息产生一散列值;
如果所述多址联接信道不忙,那么在所述多址联接信道上将所述散列值从所述移动站发送到所述基站;
所述移动站监测一接收信号,以便确定是否已经把所述散列值回送到所述移动站;以及
只有当在一预定时间量内把所述散列值回送到所述移动站时,才继续在多址联接信道上发送。
2.一种方法,用于指示尝试接入多址联接信道的移动站是否已经获得到所述多址联接信道的接入,其特征在于,所述方法包括下列步骤:
将一先导序列从所述移动站发送到一基站;
将一个要求接入所述多址联接信道的请求从所述移动站发送到所述基站,所述请求包括一个指示移动站标识的散列值;
接收来自所述移动站的、要求接入所述多址联接信道的所述请求;
只有当所述多址联接信道不忙时,所述基站把所述多址联接信道分配给所述散列值;以及
从所述基站广播一消息,所述消息包括与所述请求一起接收到的所述散列值。
3.如权利要求2所述的方法,其特征在于,进一步包括下列步骤:
从所述移动站接收所述先导序列;以及
根据所述先导序列的功率电平,利用具有子迷你时隙的预分配位从所述基站发送一初始功率调节字,其中,预先分配所述初始功率调节字的至少一个预分配位,用于一旦接收到所述散列值,就回送从所述移动站接收到的所述散列值。
4.一种用于接入多址联接信道的方法,其特征在于,所述方法包括下列步骤:
将一个要求接入多址联接信道的请求从一移动站发送到一基站,所述请求包括一个指示移动站标识的散列值;
在所述移动站,检查从所述基站发出的功率控制位,所述功率控制位的存在表示所述多址联接信道正忙;
在所述移动站,接收来自所述基站的消息,所述消息包括一散列值;以及
在所述移动站,根据所述功率控制位以及所述请求中的所述散列值是否与从所述基站接收到所述散列值相匹配,来确定是否已授权所述移动站接入所述多址联接信道。
5.如权利要求4所述的方法,其特征在于,进一步包括下列步骤:
从所述移动站发送一先导序列;以及
在所述移动站,利用具有子迷你时隙的预分配位,从所述基站接收一初始功率调节字,其中,预先分配所述初始功率调节字的至少一个预分配位,用于一旦接收到散列值,就回送从所述移动站接收到的散列值。
6.如权利要求1所述的方法,其特征在于,所述功率控制位包括多个状态。
7.如权利要求6所述的方法,其特征在于,所述多个状态中的第一状态启动从所述移动站发送消息信息。
8.如权利要求6所述的方法,其特征在于,所述多个状态中的第二状态禁止启动从所述移动站发送消息信息。
9.如权利要求6所述的方法,其特征在于,所述多个状态中的第三状态停止从所述移动站发送消息信息。
10.如权利要求6所述的方法,其特征在于,所述多个状态中的第二状态增加所述移动站的输出功率电平。
11.如权利要求6所述的方法,其特征在于,所述多个状态的第三状态减小所述移动站的输出功率电平。
12.如权利要求2所述的方法,其特征在于,所述功率控制位包括多个状态。
13.如权利要求12所述的方法,其特征在于,所述多个状态的第一状态启动所述移动站发送消息信息。
14.如权利要求12所述的方法,其特征在于,所述多个状态的第二状态禁止启动所述移动站发送消息信息。
15.如权利要求12所述的方法,其特征在于,所述多个状态中的第三状态停止所述移动站发送消息信息。
16.如权利要求12所述的方法,其特征在于,所述多个状态中的第二状态增加所述移动站的输出功率电平。
17.如权利要求12所述的方法,其特征在于,所述多个状态中的第三状态减小所述移动站的输出功率电平。
18.如权利要求1所述的方法,其特征在于,还包括以下步骤:
接收来自所述移动站的所述先导序列;和
所述基站根据所述先导序列的功率电平,利用具有子迷你时隙的预分配位,发送一初始功率调节字,其中,预先分配所述初始功率调节字的至少一个预分配位,用于一旦接收到所述散列值,就回送从移动站接收到的散列值。
CNB998139599A 1998-10-02 1999-10-01 快速功率控制在多址联接信道上发送的信号的方法 Expired - Fee Related CN1141803C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/165,858 US6252865B1 (en) 1998-10-02 1998-10-02 Methods and apparatuses for fast power control of signals transmitted on a multiple access channel
US09/165,858 1998-10-02

Publications (2)

Publication Number Publication Date
CN1329780A CN1329780A (zh) 2002-01-02
CN1141803C true CN1141803C (zh) 2004-03-10

Family

ID=22600771

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB998139599A Expired - Fee Related CN1141803C (zh) 1998-10-02 1999-10-01 快速功率控制在多址联接信道上发送的信号的方法

Country Status (14)

Country Link
US (2) US6252865B1 (zh)
EP (2) EP2229029A3 (zh)
JP (1) JP4493852B2 (zh)
KR (1) KR100691911B1 (zh)
CN (1) CN1141803C (zh)
AT (1) ATE473617T1 (zh)
AU (1) AU6503999A (zh)
BR (1) BR9914245B1 (zh)
CA (1) CA2346060C (zh)
DE (1) DE69942566D1 (zh)
DK (1) DK1118170T3 (zh)
ES (1) ES2347028T3 (zh)
HK (1) HK1040017B (zh)
WO (1) WO2000021213A1 (zh)

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI109861B (fi) * 1998-01-05 2002-10-15 Nokia Corp Menetelmä solun yleislähetyskapasiteetin tehokkaaksi hyödyntämiseksi
US6950444B1 (en) 1999-08-24 2005-09-27 Paradyne Corporation System and method for a robust preamble and transmission delimiting in a switched-carrier transceiver
US6275478B1 (en) * 1998-07-10 2001-08-14 Qualcomm Incorporated Methods and apparatuses for fast power control of signals transmitted on a multiple access channel
WO2000003499A1 (en) * 1998-07-13 2000-01-20 Samsung Electronics Co., Ltd. Power control device and method for reverse link common channel in mobile communication system
ES2248879T3 (es) * 1998-07-28 2006-03-16 Lucent Technologies Inc. Control de potencia de transmision para sistemas de comunicaciones conmutados en paquetes.
US6252865B1 (en) * 1998-10-02 2001-06-26 Qualcomm, Inc. Methods and apparatuses for fast power control of signals transmitted on a multiple access channel
US6788937B1 (en) * 1998-10-15 2004-09-07 Qualcomm, Incorporated Reservation multiple access
US6256301B1 (en) * 1998-10-15 2001-07-03 Qualcomm Incorporated Reservation multiple access
EP1703643B1 (en) * 1998-11-09 2019-01-16 Samsung Electronics Co., Ltd. Devices and methods for power control in a rsma (reservation multiple access) mobile communication system
GB9827182D0 (en) * 1998-12-10 1999-02-03 Philips Electronics Nv Radio communication system
KR100401191B1 (ko) * 1999-02-13 2003-10-10 삼성전자주식회사 이동통신시스템의 역방향 링크 송신제어장치 및 방법
ES2367548T3 (es) 1999-03-24 2011-11-04 Qualcomm Incorporated Acceso múltiple de reserva.
US6563809B1 (en) 1999-04-28 2003-05-13 Tantivy Communications, Inc. Subscriber-controlled registration technique in a CDMA system
US6804211B1 (en) * 1999-08-03 2004-10-12 Wi-Lan Inc. Frame structure for an adaptive modulation wireless communication system
US6842435B1 (en) * 1999-09-15 2005-01-11 General Instrument Corporation Congestion monitoring and power control for a communication system
JP3618071B2 (ja) * 1999-12-28 2005-02-09 株式会社エヌ・ティ・ティ・ドコモ 移動通信制御方法及びそのシステム及びそれに用いられる基地局及び移動局
US6996069B2 (en) * 2000-02-22 2006-02-07 Qualcomm, Incorporated Method and apparatus for controlling transmit power of multiple channels in a CDMA communication system
WO2001063839A2 (en) 2000-02-23 2001-08-30 Tantivy Communications, Inc. Access probe acknowledgment with collision detection
US6876866B1 (en) * 2000-07-13 2005-04-05 Qualcomm Incorporated Multi-state power control mechanism for a wireless communication system
US7089294B1 (en) 2000-08-24 2006-08-08 International Business Machines Corporation Methods, systems and computer program products for server based type of service classification of a communication request
US7290028B2 (en) * 2000-08-24 2007-10-30 International Business Machines Corporation Methods, systems and computer program products for providing transactional quality of service
US6820121B1 (en) * 2000-08-24 2004-11-16 International Business Machines Corporation Methods systems and computer program products for processing an event based on policy rules using hashing
US6988212B1 (en) * 2000-09-29 2006-01-17 Hewlett-Packard Development Company, L.P. Method and system for adaptive power control in a networking system
AU2002211585A1 (en) * 2000-10-10 2002-04-22 Interdigital Technology Corporation Time slot structure and automatic gain control method for a wireless communication system
US6768727B1 (en) * 2000-11-09 2004-07-27 Ericsson Inc. Fast forward link power control for CDMA system
WO2002041520A2 (en) 2000-11-15 2002-05-23 Ensemble Communications, Inc. Improved frame structure for a communication system using adaptive modulation
US8155096B1 (en) * 2000-12-01 2012-04-10 Ipr Licensing Inc. Antenna control system and method
US8009667B1 (en) 2001-01-16 2011-08-30 Wi—LAN, Inc. Packing source data packets into transporting packets with fragmentation
JP3543323B2 (ja) * 2001-02-14 2004-07-14 日本電気株式会社 基地局送信制御方法、セルラシステム及び基地局
US7120134B2 (en) 2001-02-15 2006-10-10 Qualcomm, Incorporated Reverse link channel architecture for a wireless communication system
US7006483B2 (en) 2001-02-23 2006-02-28 Ipr Licensing, Inc. Qualifying available reverse link coding rates from access channel power setting
US7058823B2 (en) * 2001-02-28 2006-06-06 Advanced Micro Devices, Inc. Integrated circuit having programmable voltage level line drivers and method of operation
JP3583730B2 (ja) * 2001-03-26 2004-11-04 株式会社東芝 無線通信システム及び無線伝送装置
US6912611B2 (en) * 2001-04-30 2005-06-28 Advanced Micro Devices, Inc. Split transactional unidirectional bus architecture and method of operation
US6813673B2 (en) * 2001-04-30 2004-11-02 Advanced Micro Devices, Inc. Bus arbitrator supporting multiple isochronous streams in a split transactional unidirectional bus architecture and method of operation
US7206840B2 (en) * 2001-05-11 2007-04-17 Koninklike Philips Electronics N.V. Dynamic frequency selection scheme for IEEE 802.11 WLANs
US6785758B1 (en) 2001-06-01 2004-08-31 Advanced Micro Devices, Inc. System and method for machine specific register addressing in a split transactional unidirectional bus architecture
US7069343B2 (en) * 2001-09-06 2006-06-27 Avaya Technologycorp. Topology discovery by partitioning multiple discovery techniques
US7330446B2 (en) * 2001-09-21 2008-02-12 Industrial Technology Research Institute Closed-loop power control method for a code-division multiple-access cellular system
US7174134B2 (en) * 2001-11-28 2007-02-06 Symbol Technologies, Inc. Transmit power control for mobile unit
EP1331767B1 (en) * 2002-01-28 2007-04-04 Lucent Technologies Inc. Method and apparatus for random access packet transmission by performing load control functionality
US7493131B2 (en) * 2002-03-12 2009-02-17 Qualcomm Incorporated Velocity responsive power control
WO2003094448A1 (en) * 2002-05-03 2003-11-13 Paradyne Corporation System and method for a robust preamble and transmission delimiting in a switched-carrier transceiver
CA2486758A1 (en) * 2002-06-21 2003-12-31 Widefi, Inc. Wireless local area network repeater
US8885688B2 (en) * 2002-10-01 2014-11-11 Qualcomm Incorporated Control message management in physical layer repeater
US7522629B2 (en) * 2003-01-16 2009-04-21 Alcatel-Lucent Usa Inc. Sending signaling messages to CDMA cellular mobile stations
KR100547771B1 (ko) * 2003-03-13 2006-01-31 삼성전자주식회사 무선 랜 시스템에서 무선 접속 노드의 전력 제어 방법
MXPA05010267A (es) 2003-03-26 2005-11-17 Interdigital Tech Corp Sistema de comunicacion inalambrica multi-celula para gestion de potencia de recursos con el fin de proveer servicios de acceso de paquete de enlace descendente de alta velocidad.
JP2004297481A (ja) * 2003-03-27 2004-10-21 Kyocera Corp 無線通信システム、無線基地局および無線通信端末
US20040213170A1 (en) * 2003-04-22 2004-10-28 Gordon Bremer Extended-performance echo-canceled duplex (EP ECD) communication
US7016698B2 (en) * 2003-06-26 2006-03-21 Motorola, Inc. Method and apparatus for mitigating power-control errors during a soft handoff in a wireless communication system
US7433331B2 (en) * 2003-10-20 2008-10-07 Motorola, Inc. Circuit and method for adapting to reverse link limited channels
US20050201180A1 (en) * 2004-03-05 2005-09-15 Qualcomm Incorporated System and methods for back-off and clipping control in wireless communication systems
GB2417167B (en) * 2004-08-13 2007-02-14 Ipwireless Inc Apparatus and method for communicating user equipment specific information in cellular communication system
JP4519606B2 (ja) * 2004-11-05 2010-08-04 株式会社エヌ・ティ・ティ・ドコモ 基地局および移動通信システム並びに送信電力制御方法
US7801174B2 (en) * 2004-12-29 2010-09-21 Alcatel-Lucent Usa Inc. Techniques for efficient control of aggregating wireless voice communications
JP2006191455A (ja) * 2005-01-07 2006-07-20 Nec Corp 無線移動通信方法、無線移動通信システム、基地局制御装置及び無線移動端末
US20060176896A1 (en) * 2005-02-10 2006-08-10 Callaway Edgar H Jr Method and apparatus for transmitting data within a communication system
US7197328B2 (en) * 2005-03-01 2007-03-27 Motorola, Inc. Method and apparatus for increasing success rate of push-to-talk access in a mobile communications network
US7570627B2 (en) * 2005-03-11 2009-08-04 Freescale Semiconductor, Inc. Method for sharing bandwidth using reduced duty cycle signals and media access control
US7742444B2 (en) * 2005-03-15 2010-06-22 Qualcomm Incorporated Multiple other sector information combining for power control in a wireless communication system
DE102005017021A1 (de) * 2005-04-13 2006-10-19 Siemens Ag Verfahren und Vorrichtung zur Kommunikation zwischen Netzknotenelementen
GB2425684B (en) * 2005-04-28 2008-04-02 Siemens Ag A method of controlling noise rise in a cell
US20060268764A1 (en) * 2005-05-26 2006-11-30 Harris John M Method, apparatus and system for use in allocating reverse channel resources
US9055552B2 (en) 2005-06-16 2015-06-09 Qualcomm Incorporated Quick paging channel with reduced probability of missed page
US8750908B2 (en) 2005-06-16 2014-06-10 Qualcomm Incorporated Quick paging channel with reduced probability of missed page
US20070097935A1 (en) * 2005-10-27 2007-05-03 Alexei Gorokhov In-band rate control for an orthogonal frequency division multiple access communication system
US20090207790A1 (en) * 2005-10-27 2009-08-20 Qualcomm Incorporated Method and apparatus for settingtuneawaystatus in an open state in wireless communication system
WO2007050829A1 (en) 2005-10-27 2007-05-03 Qualcomm Incorporated A method of maintaining activecarriers and reqcarriers at the access network
US8588220B2 (en) * 2005-12-30 2013-11-19 L-3 Communications Corporation Method and apparatus for mitigating port swapping during signal tracking
JP2008011285A (ja) * 2006-06-30 2008-01-17 Fujitsu Ltd 送信電力制御装置及び送信電力制御方法
US8929281B2 (en) * 2006-09-15 2015-01-06 Qualcomm Incorporated Methods and apparatus related to peer to peer device
US8634869B2 (en) * 2006-09-15 2014-01-21 Qualcomm Incorporated Methods and apparatus related to multi-mode wireless communications device supporting both wide area network signaling and peer to peer signaling
US8452317B2 (en) * 2006-09-15 2013-05-28 Qualcomm Incorporated Methods and apparatus related to power control and/or interference management in a mixed wireless communications system supporting WAN signaling and peer to peer signaling
US8369800B2 (en) 2006-09-15 2013-02-05 Qualcomm Incorporated Methods and apparatus related to power control and/or interference management in a mixed wireless communications system
CA2663419C (en) 2006-09-21 2016-07-19 Qualcomm Incorporated Method and apparatus for mitigating oscillation between repeaters
WO2008057290A1 (en) * 2006-10-26 2008-05-15 Qualcomm Incorporated Repeater techniques for multiple input multiple output utilizing beam formers
US8284703B2 (en) * 2007-05-17 2012-10-09 Broadcom Corporation Scheduling and transmitting uplink packets within uplink sub-frames of a wireless system
US9066301B2 (en) * 2009-04-08 2015-06-23 Qualcomm Incorporated Managing a reverse link transmission power level setpoint during periods of inactivity on the reverse link in a wireless communications system
US8588149B2 (en) * 2009-06-12 2013-11-19 Fujitsu Semiconductor Limited System and method for adjusting channels in wireless communication
JP5043157B2 (ja) * 2010-06-18 2012-10-10 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、無線ネットワーク制御局及び方法
WO2013008406A1 (ja) 2011-07-13 2013-01-17 パナソニック株式会社 端末装置、基地局装置、送信方法及び受信方法
WO2013037697A1 (en) 2011-09-16 2013-03-21 Solvay Sa Catalyst for h202 synthesis and method for preparing such catalyst
US9026128B1 (en) 2012-08-24 2015-05-05 Sprint Spectrum L.P. Systems and methods for managing signaling traffic in a wireless coverage area in response to varying congestion
US9136813B2 (en) * 2013-11-25 2015-09-15 Texas Instruments Incorporated Wireless network receiver
US10616914B2 (en) * 2017-01-06 2020-04-07 Qualcomm Incorporated Unicast data transmission on a downlink common burst of a slot using mini-slots
US10554470B2 (en) * 2017-12-21 2020-02-04 Qualcomm Incorporated Control monitoring and power control for multi-link deployments

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4901307A (en) 1986-10-17 1990-02-13 Qualcomm, Inc. Spread spectrum multiple access communication system using satellite or terrestrial repeaters
US5101501A (en) 1989-11-07 1992-03-31 Qualcomm Incorporated Method and system for providing a soft handoff in communications in a cdma cellular telephone system
US5265119A (en) 1989-11-07 1993-11-23 Qualcomm Incorporated Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system
US5056109A (en) 1989-11-07 1991-10-08 Qualcomm, Inc. Method and apparatus for controlling transmission power in a cdma cellular mobile telephone system
ZA931077B (en) 1992-03-05 1994-01-04 Qualcomm Inc Apparatus and method for reducing message collision between mobile stations simultaneously accessing a base station in a cdma cellular communications system
US5604730A (en) 1994-07-25 1997-02-18 Qualcomm Incorporated Remote transmitter power control in a contention based multiple access system
US5621723A (en) 1994-09-27 1997-04-15 Gte Laboratories Incorporated Power control in a CDMA network
US5673259A (en) 1995-05-17 1997-09-30 Qualcomm Incorporated Random access communications channel for data services
US6205190B1 (en) * 1996-04-29 2001-03-20 Qualcomm Inc. System and method for reducing interference generated by a CDMA communications device
FI103082B1 (fi) 1996-05-27 1999-04-15 Nokia Telecommunications Oy Yhteydenmuodostusmenetelmä ja radiojärjestelmä
US6021122A (en) * 1996-06-07 2000-02-01 Qualcomm Incorporated Method and apparatus for performing idle handoff in a multiple access communication system
US5809412A (en) * 1996-09-18 1998-09-15 Motorola, Inc. System for detecting a fraudulent remote unit which upon detection places a call to the cellular infrastructure using identification in formation of the fraudulent remote unit
US5943615A (en) * 1997-01-15 1999-08-24 Qualcomm, Incorpoarated Method and apparatus for providing authentication security in a wireless communication system
US6173162B1 (en) * 1997-06-16 2001-01-09 Telefonaktiebolaget Lm Ericsson (Publ) Multiple code channel power control in a radio communication system
US6185199B1 (en) * 1997-07-23 2001-02-06 Qualcomm Inc. Method and apparatus for data transmission using time gated frequency division duplexing
US6169731B1 (en) * 1998-03-10 2001-01-02 Motorola, Inc. Method and apparatus for signal acquisition and power control
US6275478B1 (en) * 1998-07-10 2001-08-14 Qualcomm Incorporated Methods and apparatuses for fast power control of signals transmitted on a multiple access channel
US6252865B1 (en) * 1998-10-02 2001-06-26 Qualcomm, Inc. Methods and apparatuses for fast power control of signals transmitted on a multiple access channel

Also Published As

Publication number Publication date
DE69942566D1 (de) 2010-08-19
AU6503999A (en) 2000-04-26
EP2229029A3 (en) 2012-01-18
HK1040017B (zh) 2004-12-31
HK1040017A1 (en) 2002-05-17
CA2346060A1 (en) 2000-04-13
BR9914245B1 (pt) 2015-02-24
WO2000021213A1 (en) 2000-04-13
EP2229029A2 (en) 2010-09-15
CA2346060C (en) 2006-11-21
ATE473617T1 (de) 2010-07-15
US6252865B1 (en) 2001-06-26
US6542488B2 (en) 2003-04-01
EP1118170A1 (en) 2001-07-25
ES2347028T3 (es) 2010-10-22
BR9914245A (pt) 2002-02-05
KR20010075553A (ko) 2001-08-09
DK1118170T3 (da) 2010-10-11
CN1329780A (zh) 2002-01-02
JP4493852B2 (ja) 2010-06-30
KR100691911B1 (ko) 2007-03-08
JP2002527929A (ja) 2002-08-27
EP1118170B1 (en) 2010-07-07
US20010028638A1 (en) 2001-10-11

Similar Documents

Publication Publication Date Title
CN1141803C (zh) 快速功率控制在多址联接信道上发送的信号的方法
CN1134910C (zh) 在多址信道上发送的信号的快速功率控制方法和设备
EP1121827B1 (en) Reservation multiple access
US6987982B2 (en) Reservation multiple access
EP2326134B1 (en) Method and apparatus for controlling transmission parameters on a random access channel
US6788937B1 (en) Reservation multiple access
AU2003264477A1 (en) Transmission power control method and base station device
KR20090086011A (ko) 향상된 역방향 서비스를 이용하는 이동 통신 시스템에서송수신 시점을 설정하는 방법 및 장치

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1040017

Country of ref document: HK

C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: Holy land, California, Egypt

Patentee after: Qualcomm Inc.

Address before: Holy land, California, Egypt

Patentee before: Qualcomm Inc.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040310

Termination date: 20181001