CN114177229A - 一种用于影响心肌细胞收缩或舒张的药物及其测定方法 - Google Patents

一种用于影响心肌细胞收缩或舒张的药物及其测定方法 Download PDF

Info

Publication number
CN114177229A
CN114177229A CN202111523713.2A CN202111523713A CN114177229A CN 114177229 A CN114177229 A CN 114177229A CN 202111523713 A CN202111523713 A CN 202111523713A CN 114177229 A CN114177229 A CN 114177229A
Authority
CN
China
Prior art keywords
cell
myocardial
parts
relaxation
drug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111523713.2A
Other languages
English (en)
Inventor
周珍
周铁安
陈芷卉
霍静怡
张笑雨
朱云龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Agricultural University
Original Assignee
Hunan Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Agricultural University filed Critical Hunan Agricultural University
Priority to CN202111523713.2A priority Critical patent/CN114177229A/zh
Publication of CN114177229A publication Critical patent/CN114177229A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/75Rutaceae (Rue family)
    • A61K36/752Citrus, e.g. lime, orange or lemon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/55Glands not provided for in groups A61K35/22 - A61K35/545, e.g. thyroids, parathyroids or pineal glands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/23Apiaceae or Umbelliferae (Carrot family), e.g. dill, chervil, coriander or cumin
    • A61K36/236Ligusticum (licorice-root)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/28Asteraceae or Compositae (Aster or Sunflower family), e.g. chamomile, feverfew, yarrow or echinacea
    • A61K36/286Carthamus (distaff thistle)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/48Fabaceae or Leguminosae (Pea or Legume family); Caesalpiniaceae; Mimosaceae; Papilionaceae
    • A61K36/486Millettia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/53Lamiaceae or Labiatae (Mint family), e.g. thyme, rosemary or lavender
    • A61K36/533Leonurus (motherwort)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/53Lamiaceae or Labiatae (Mint family), e.g. thyme, rosemary or lavender
    • A61K36/537Salvia (sage)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/65Paeoniaceae (Peony family), e.g. Chinese peony
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/71Ranunculaceae (Buttercup family), e.g. larkspur, hepatica, hydrastis, columbine or goldenseal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/71Ranunculaceae (Buttercup family), e.g. larkspur, hepatica, hydrastis, columbine or goldenseal
    • A61K36/714Aconitum (monkshood)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/213Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B5/00ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2503/00Use of cells in diagnostics
    • C12N2503/02Drug screening
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/10Screening for compounds of potential therapeutic value involving cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching

Landscapes

  • Health & Medical Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Biotechnology (AREA)
  • Epidemiology (AREA)
  • Theoretical Computer Science (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Mycology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Data Mining & Analysis (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Immunology (AREA)
  • Cardiology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Mathematical Physics (AREA)
  • Urology & Nephrology (AREA)
  • Software Systems (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

本发明属于药物测定技术领域,公开了一种用于影响心肌细胞收缩或舒张的药物及其测定方法,本发明提供的用于影响心肌细胞收缩或舒张的药物效果好,反应明显;同时,本发明提供的测定方法可以对细胞黏附过程及包括药物等作用下细胞牵引力的实时、连续、动态测定,依据的是对高频AT与BT切石英晶体频率的监测,无需使用光学显微镜,测量的为数字频率信号,采样速度快(可达0.1秒一组数据)。本发明可适用于不同细胞数目或不同细胞‑细胞作用下细胞群总的牵引力大小与方向的定量测定。

Description

一种用于影响心肌细胞收缩或舒张的药物及其测定方法
技术领域
本发明属于药物测定技术领域,尤其涉及一种用于影响心肌细胞收缩或舒张的药物及其测定方法。
背景技术
心肌细胞又称心肌纤维,有横纹,受植物性神经支配,属于有横纹的不随意肌,具有兴奋收缩的能力。呈短圆柱形,有分支,其细胞核位于细胞中央,一般只有一个。各心肌纤维分支的末端可相互连接构成肌纤维网。广义的心肌细胞包括组成窦房结、房内束、房室交界部、房室束(即希斯束)和浦肯野纤维等的特殊分化了的心肌细胞,以及一般的心房肌和心室肌工作细胞。心肌细胞为短柱状,一般只有一个细胞核,而骨骼肌纤维是多核细胞。心肌细胞之间有闰盘结构。该处细胞膜凹凸相嵌,并特殊分化形成桥粒,彼此紧密连接,但心肌细胞之间并无原生质的连续。心肌组织过去曾被误认为是合胞体,电子显微镜的研究发现心肌细胞间有明显的隔膜,从而得到纠正。心肌的闰盘有利于细胞间的兴奋传递。这一方面由于该处结构对电流的阻抗较低,兴奋波易于通过;另方面又因该处呈间隙连接,内有15~20埃的嗜水小管,可允许钙离子等离子通透转运。因此,正常的心房肌或心室肌细胞虽然彼此分开,但几乎同时兴奋而作同步收缩,大大提高了心肌收缩的效能,功能上体现了合胞体的特性,故常有“功能合胞体”之称。然而,现有用于影响心肌细胞收缩或舒张的药物效果差,同时,目前绝大部分用于细胞牵引力的测定方法仅限于单细胞分析。微制造软基底工艺复杂,且微柱之间空隙较大,细胞仅能与柱子形成黏附结构,与体内细胞环境差异较大,因而微柱结构与形貌可能对细胞正常生理与功能有影响。
综上所述,现有技术存在的问题是:现有用于影响心肌细胞收缩或舒张的药物效果差,同时,目前绝大部分用于细胞牵引力的测定方法仅限于单细胞分析。微制造软基底工艺复杂,且微柱之间空隙较大,细胞仅能与柱子形成黏附结构,与体内细胞环境差异较大,因而微柱结构与形貌可能对细胞正常生理与功能有影响。
发明内容
针对现有技术存在的问题,本发明提供了一种用于影响心肌细胞收缩或舒张的药物及其测定方法。
本发明是这样实现的,一种用于影响心肌细胞收缩或舒张的药物由以下重量份的原料药制成:
青皮10份~20份、附子1份~2份、鸡血藤5份~10份、川芎6份~9份、麝香2份~5份、益母草6份~8份、红花8份~13份、丹皮1份~5份、赤芍3份~5份、丹参6份~10份、虎杖苷7份~12份,乌古藤碱8份~10份。
进一步,所述用于影响心肌细胞收缩或舒张的药物制备方法:
(1)称取青皮10份、附子2份、鸡血藤5份、川芎8份、麝香3份、益母草7份、红花10份、丹皮4份、赤芍5份、丹参10份、虎杖苷8份,乌古藤碱9份;
(2)通过粉碎机称取的药材进行粉粹处理;
(3)通过碾磨机将粉碎的药材碾磨成粉状制成为胶囊、液剂、片剂或丸剂。
本发明的另一目的在于提供一种测定所述用于影响心肌细胞收缩或舒张的药物有效性的用于影响心肌细胞收缩或舒张的药物有效性测定模型。
本发明的另一目的在于提供一种所述用于影响心肌细胞收缩或舒张的药物有效性测定模型的构建方法,所述用于影响心肌细胞收缩或舒张的药物有效性测定模型构建方法包括:
以乳鼠原代心肌细胞与人胚胎干细胞分化的心肌细胞为模型,在金电极或透明ITO电极上修饰与心肌细胞选择性反应的细胞粘附分子,通过双谐振压电技术进行心肌细胞粘附与搏动时所伴随心肌细胞收缩舒张力与粘弹性的连续测定,通过在芯片表面进行修饰、提高芯片灵敏度,确定不同药物作用、同种药物不同药物浓度下心肌细胞搏动力与粘弹性变化规律,构建心肌细胞群搏动时结构与功能的高灵敏测定模型。
进一步,所述用于影响心肌细胞收缩或舒张的药物有效性测定模型的构建方法包括以下步骤:
(1)获取乳鼠原代心肌细胞;
(2)进行芯片表面修饰:化学耦合抗粘附PEG背景下表面不同密度RGD、fibronectin,物理吸附fibronectin及其它细胞外基质分子与促进心肌细胞粘附与同步搏动的分子与材料,促进乳鼠原代心肌细胞与人胚胎干细胞分化的心肌细胞在细胞力学芯片上的粘附与同步搏动;
(3)提高芯片灵敏度:通过确定可监测到心肌细胞同步搏动现象、且力学参数灵敏度最高的金涂层厚度、最适宜的细胞密度、确定细胞搏动在不同频率芯片下的变化规律以及在QCM芯片上构造附加阻抗电极,或通过检测池盖上增加附加可插入培养基中与QCM电极构成阻抗电极的对电极,进行压电/电化学阻抗技术的联用和对照测试;用光透ITO和薄层金电极,进行压电/光联用,提高芯片灵敏度;
(4)将E-4031、维拉帕米VRP、异丙肾上腺素ISO或其他心肌常规性药物,以及中草药次乌头碱、乌骨藤提取物、虎杖苷加入培养基中,利用QCM监测搏动过程力学参数的变化,获得不同药物对心肌细胞搏动力学功能的影响;
(5)选取同种药物不同药物浓度测试不同浓度对心肌细胞搏动频率、收缩/舒张力与粘弹性的影响,将不同浓度的同种药物加入培养基中,利用QCM监测搏动过程力学参数即力与粘弹性的变化,确定不同浓度对心肌细胞搏动的影响,得到心肌细胞群搏动时结构与功能的高灵敏测定模型。
本发明另一目的在于提供一种用于影响心肌细胞收缩或舒张的药物药效的测定方法,包括:
1)将制备的药物喂养SD大鼠,并提取SD大鼠原代心肌细胞;
2)将AT切石英晶体与BT切石英晶体置于培养皿或检测池内,所述AT切石英晶体与BT切石英晶体具有相同频率、表面形态和/或修饰了相同的表面黏附分子;
晶体芯片是安装在teflon井型池当中,且两种芯片是装在不同的池子中同时进行测定。
3)向培养皿或检测池中加入待测SD大鼠原代心肌细胞,测定出细胞牵引力;
进一步,所述步骤3)细胞牵引力测定方法包括:
对接收的细胞牵引力信号进行循环谱分析,提取幅度归一化循环谱的细胞α轴投影轮廓图,获得细胞一维特征向量x∈Rn×1
获得细胞一维特征向量后,
再利对细胞牵引力特征向量进行降维处理,获得低维的特征向量y∈xR×1,形成网络训练的数据集和测试集。
形成网络训练的数据集和测试集后,设计深度CNN网络结构,并确定网络初始化参数,结合Keras深度学习框架,调用已有网络层函数,搭建深层网络结构;利用训练集进行网络训练,并采用Early-stop策略,防止过拟合现象。
在网络训练完成后,再利用测试数据集验证训练效果,完成细胞牵引力信号自动调制识别。
所述对接收到的数字调制信号做循环谱相关分析CSCA得到细胞牵引力调制信号的循环谱密度图像,进而获得细胞α截面图的轮廓特征,离散循环谱密度DCSD定义为:
Figure BDA0003409048960000041
Figure BDA0003409048960000042
其中n为离散时间,k为离散频率,x(n)为离散信号序列,序列长度为N,α为循环频率;
Figure BDA0003409048960000051
为循环自相关函数,对进行傅里叶变换得到循环谱密度
Figure BDA0003409048960000052
表示循环平稳信号x(n)的频谱中某频率k的循环谱密度值可用k上下各间隔α/2的谱分量的互相关求得;对于得到的二维
Figure BDA0003409048960000053
矩阵数据,进行幅度归一化,然后沿着α频率轴方向,对每一个k频率点的向量数据求取最大值,所有的最大值所组成的向量,便是幅度归一化循环谱的α轴投影向量x∈Rn×1
对细胞牵引力特征向量进行降维处理包括:
Figure BDA0003409048960000054
其中,{wi|i=1,2,...,m}是关于实对称矩阵
Figure BDA0003409048960000055
的一组特征向量,对应的m个最大特征值为{λi|i=1,2,...,m},
Figure BDA0003409048960000056
为类内离散度矩阵WCSM,xk为类别i所属数据集Xi中的第k个样本,μi为类别i中样本的特征均值,c为全部样本中所属的类别总数;
Figure BDA0003409048960000057
为类间离散度矩阵BCSM,Ni为类别i的样本个数,μ为所有类别中全部样本的均值;
利用CNN卷积神经网络分类器,将处理后的细胞牵引力特征数据作为输入数据进行分类识别,实现细胞牵引力信号的自动调制类型的识别。
本发明另一目的在于提供一种用于影响心肌细胞收缩或舒张的药物在构建的SD大鼠模型药效验证上的应用。
本发明的优点及积极效果为:本发明提供的用于影响心肌细胞收缩或舒张的药物效果好,反应明显;同时,本发明提供的测定方法可以对细胞黏附过程及包括药物等作用下细胞牵引力的实时、连续、动态测定,依据的是对高频AT与BT切石英晶体频率的监测,无需使用光学显微镜,测量的为数字频率信号,采样速度快(可达0.1秒一组数据)。由于该技术无损、且能与培养皿结构相兼容而放置CO2培养箱中长期监测,从而可实现对细胞运动、生长与分化等细胞功能所伴随细胞牵引力的连续与长期监测。所提出的方法所拥有的快速响应时间与采样速度和连续、动态、长期监测能力,是现有细胞牵引力方法无法达到的。2)该方法可用于不同细胞数目(如100-60000)或不同细胞表面密度下细胞总的牵引力大小与方向的定量测定。通过提高晶体频率和/或采用细胞图案化可使检查细胞的数目进一步减少甚至可实现单细胞的测定。即本发明可望实现从单细胞到细胞单层细胞牵引力的定量测定。3)动物贴壁细胞不仅与其相邻的细胞产生细胞间相互作用,同时也与细胞外基质相互接触和作用。本发明技术的另一特点是可通过在传感器表面修饰不同的细胞外基质成分与细胞黏附分子并改变它们的表面密度从而定量考察对细胞牵引力的影响并与细胞的功能与行为联系起来。此外,采用光透传感器电极与荧光标记黏着斑蛋白,可将传感器测得的细胞牵引力与细胞形态(铺展程度)及黏着斑结构联系起来。而细胞牵引力主要是通过黏着斑施加到细胞外基质上的;黏着斑上丰富的信号蛋白分子也可将感知到的细胞外微环境中的物理和化学信息传递到细胞内部,引发一系列胞内生物化学反应,从而对细胞的功能和行为产生重要影响(如细胞骨架结构的变化、基因表达的改变、细胞凋亡等)。因此本发明为定量研究细胞力敏和应用于细胞生物学等领域提供了一种新的有效工具。本发明与基于基底形变测定原理不同,采用的是直接敏感细胞力的传感器技术,细胞牵引力的大小与方向通过施加于传感器上的表面应力引起的传感器输出信号的改变而直接测量,因而无需光学显微镜拍照亦无需用到荧光标记微珠。本发明可适用于不同细胞数目或不同细胞-细胞作用下细胞群总的牵引力大小与方向的定量测定。本发明传感技术无损、可用于不同细胞外基质下细胞黏附过程及随后药物等外部刺激下与细胞运动、生长、分化等过程细胞牵引力的实时、连续、动态测定。本发明所使用传感器可置于常规细胞培养皿的底部而与通用培养皿构型兼容以利推广到细胞生物学等广大领域。
本发明测得是单一的药物成分对心肌搏动的影响,得到的结果与当前临床或其他权威测定方法的结果是一致的,说明本发明的方法是具有实际意义。
本发明所做的实验里面,药物并不是饲喂给老鼠模型,而是首先提取刚出生1-3天大鼠的心肌细胞,在teflon井型池中培养24-36h,出现心肌搏动后,再在teflon井型池的圆孔中加入药物,用石英晶体微天平(QCM)去监测药物对心肌搏动的影响。
本发明所述细胞牵引力测定方法包括:对接收的细胞牵引力信号进行循环谱分析,提取幅度归一化循环谱的细胞α轴投影轮廓图,获得细胞一维特征向量x∈Rn×1。获得细胞一维特征向量后,再利对细胞牵引力特征向量进行降维处理,获得低维的特征向量y∈xR ×1,形成网络训练的数据集和测试集。形成网络训练的数据集和测试集后,设计深度CNN网络结构,并确定网络初始化参数,结合Keras深度学习框架,调用已有网络层函数,搭建深层网络结构;利用训练集进行网络训练,并采用Early-stop策略,防止过拟合现象。在网络训练完成后,再利用测试数据集验证训练效果,完成细胞牵引力信号自动调制识别。利用CNN卷积神经网络分类器,将处理后的细胞牵引力特征数据作为输入数据进行分类识别,实现细胞牵引力信号的自动调制类型的识别。识别精度高。
本发明基于细胞力学参数与心肌细胞搏动功能的紧密联系,以乳鼠原代心肌细胞和人胚胎干细胞分化的(iPSC)心肌细胞为研究对象,利用可定量测定细胞搏动力学性能的高等压电技术,探索并建立细胞力学参数与细胞搏动功能之间的定量关系,并应用于心血管药物的评价与筛选。
本发明主要基于可对细胞黏附、细胞牵引力、细胞粘弹性参数的同时、无损、长期连续、定量测定的高等压电技术,来探索并建立细胞力学与心肌细胞搏动功能之间的定量关系。本发明通过对心肌细胞的搏动进行细胞力学性能的定量测定来实现对心肌细胞结构与功能的定量表征,并且使之成为评估心血管药物作用有效性与毒性的有效方法。
附图说明
图1是本发明实施提供的用于影响心肌细胞收缩或舒张的药物制备方法流程图。
图2是本发明实施提供的用于影响心肌细胞收缩或舒张的药物药效的测定方法流程图。
图3是本发明实施提供的细胞牵引力测定方法流程图。
图4是本发明实施提供的用于影响心肌细胞收缩或舒张的药物有效性测定模型构建方法流程图。
图5(a)是本发明实施提供的培养24小时的乳鼠原代心肌细胞的粘附铺展示意图。
图5(b)是本发明实施提供的培养48小时的乳鼠原代心肌细胞的粘附铺展示意图。
图6(a)是本发明实施提供的双谐振QCM技术监测乳鼠心肌细胞在金芯片表面搏动伴随的AT切频率与电阻变化示意图。
图6(b)是本发明实施提供的双谐振QCM技术监测乳鼠心肌细胞在金芯片表面搏动伴随的BT切频率与电阻变化示意图。
图6(c)是本发明实施提供的双谐振QCM技术监测乳鼠心肌细胞在金芯片表面搏动时伴随的搏动力变化示意图。
图6(d)是本发明实施提供的双谐振QCM技术监测乳鼠心肌细胞在金芯片表面搏动时伴随CVI变化示意图。
图7(a)是本发明实施提供的放大的QCM监测乳鼠心肌细胞在金芯片表面搏动周期伴随的晶体AT切频率变化示意图。
图7(b)是本发明实施提供的放大的QCM监测乳鼠心肌细胞在金芯片表面搏动周期伴随的晶体BT切频率变化示意图。
图7(c)是本发明实施提供的放大的QCM监测乳鼠心肌细胞在金芯片表面搏动周期伴随的晶体AT切电阻变化示意图。
图7(d)是本发明实施提供的放大的QCM监测乳鼠心肌细胞在金芯片表面搏动周期伴随的晶体BT切电阻变化示意图。
图7(e)是本发明实施提供的放大的QCM监测乳鼠心肌细胞在金芯片表面搏动周期伴随的晶体AT切CVI示意图。
图7(f)是本发明实施提供的放大的QCM监测乳鼠心肌细胞在金芯片表面搏动周期伴随的晶体BT切CVI示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
下面结合附图对本发明的应用原理作进一步描述。
本发明提供一种用于影响心肌细胞收缩或舒张的药物由以下重量份的原料药制成:
青皮10份~20份、附子1份~2份、鸡血藤5份~10份、川芎6份~9份、麝香2份~5份、益母草6份~8份、红花8份~13份、丹皮1份~5份、赤芍3份~5份、丹参6份~10份、虎杖苷7份~12份,乌古藤碱8份~10份。
如图1所示,本发明提供的用于影响心肌细胞收缩或舒张的药物制备方法:
S101,称取青皮10份、附子2份、鸡血藤5份、川芎8份、麝香3份、益母草7份、红花10份、丹皮4份、赤芍5份、丹参10份、虎杖苷8份,乌古藤碱9份。
S102,通过粉碎机称取的药材进行粉粹处理。
S103,通过碾磨机将粉碎的药材碾磨成粉状制成为胶囊、液剂、片剂或丸剂。
如图2所示,本发明提供的用于影响心肌细胞收缩或舒张的药物药效的测定方法:
S201,将制备的药物喂养SD大鼠,并提取SD大鼠原代心肌细胞。
S202,将AT切石英晶体与BT切石英晶体置于培养皿或检测池内,所述AT切石英晶体与BT切石英晶体具有相同频率、表面形态和/或修饰了相同的表面黏附分子。
S203,向培养皿或检测池中加入待测SD大鼠原代心肌细胞,测定出细胞牵引力。
在本发明一优选实施例中,图3所示,所述细胞牵引力测定方法包括:
S301,对接收的细胞牵引力信号进行循环谱分析,提取幅度归一化循环谱的细胞α轴投影轮廓图,获得细胞一维特征向量x∈Rn×1
S302,获得细胞一维特征向量后,再利对细胞牵引力特征向量进行降维处理,获得低维的特征向量y∈xR×1,形成网络训练的数据集和测试集。
S303,形成网络训练的数据集和测试集后,设计深度CNN网络结构,并确定网络初始化参数,结合Keras深度学习框架,调用已有网络层函数,搭建深层网络结构;利用训练集进行网络训练,并采用Early-stop策略,防止过拟合现象。
S304,在网络训练完成后,再利用测试数据集验证训练效果,完成细胞牵引力信号自动调制识别。
本发明实施例提供的步骤S101,对接收到的数字调制信号做循环谱相关分析CSCA得到细胞牵引力调制信号的循环谱密度图像,进而获得细胞α截面图的轮廓特征,离散循环谱密度DCSD定义为:
Figure BDA0003409048960000101
Figure BDA0003409048960000102
其中n为离散时间,k为离散频率,x(n)为离散信号序列,序列长度为N,α为循环频率;
Figure BDA0003409048960000103
为循环自相关函数,对进行傅里叶变换得到循环谱密度
Figure BDA0003409048960000104
表示循环平稳信号x(n)的频谱中某频率k的循环谱密度值可用k上下各间隔α/2的谱分量的互相关求得;对于得到的二维
Figure BDA0003409048960000105
矩阵数据,进行幅度归一化,然后沿着α频率轴方向,对每一个k频率点的向量数据求取最大值,所有的最大值所组成的向量,便是幅度归一化循环谱的α轴投影向量x∈Rn×1
本发明实施例提供的步骤S102对细胞牵引力特征向量进行降维处理包括:
Figure BDA0003409048960000106
其中,{wi|i=1,2,...,m}是关于实对称矩阵
Figure BDA0003409048960000111
的一组特征向量,对应的m个最大特征值为{λi|i=1,2,...,m},
Figure BDA0003409048960000112
为类内离散度矩阵WCSM,xk为类别i所属数据集Xi中的第k个样本,μi为类别i中样本的特征均值,c为全部样本中所属的类别总数;
Figure BDA0003409048960000113
为类间离散度矩阵BCSM,Ni为类别i的样本个数,μ为所有类别中全部样本的均值。
利用CNN卷积神经网络分类器,将处理后的细胞牵引力特征数据作为输入数据进行分类识别,实现细胞牵引力信号的自动调制类型的识别。
如图4所示,本发明实施例提供的用于影响心肌细胞收缩或舒张的药物有效性测定模型构建方法包括:
以乳鼠原代心肌细胞与人胚胎干细胞分化的心肌细胞为模型,在金电极或透明ITO电极上修饰与心肌细胞选择性反应的细胞粘附分子,通过双谐振压电技术进行心肌细胞粘附与搏动时所伴随心肌细胞收缩舒张力与粘弹性的连续测定,通过在芯片表面进行修饰、提高芯片灵敏度,确定不同药物作用、同种药物不同药物浓度下心肌细胞搏动力与粘弹性变化规律,构建心肌细胞群搏动时结构与功能的高灵敏测定模型。
本发明实施例提供的用于影响心肌细胞收缩或舒张的药物有效性测定模型的构建方法包括以下步骤:
(1)获取乳鼠原代心肌细胞。
(2)进行芯片表面修饰:化学耦合抗粘附PEG背景下表面不同密度RGD、fibronectin,物理吸附fibronectin及其它细胞外基质分子与促进心肌细胞粘附与同步搏动的分子与材料,促进乳鼠原代心肌细胞与人胚胎干细胞分化的心肌细胞在细胞力学芯片上的粘附与同步搏动。
(3)提高芯片灵敏度:通过确定可监测到心肌细胞同步搏动现象、且力学参数灵敏度最高的金涂层厚度、最适宜的细胞密度、确定细胞搏动在不同频率芯片下的变化规律以及在QCM芯片上构造附加阻抗电极,或通过检测池盖上增加附加可插入培养基中与QCM电极构成阻抗电极的对电极,进行压电/电化学阻抗技术的联用和对照测试;用光透ITO和薄层金电极,进行压电/光联用,提高芯片灵敏度。
(4)将E-4031、维拉帕米VRP、异丙肾上腺素ISO或其他心肌常规性药物,以及中草药次乌头碱、乌骨藤提取物、虎杖苷加入培养基中,利用QCM监测搏动过程力学参数的变化,获得不同药物对心肌细胞搏动力学功能的影响。
(5)选取同种药物不同药物浓度测试不同浓度对心肌细胞搏动频率、收缩/舒张力与粘弹性的影响,将不同浓度的同种药物加入培养基中,利用QCM监测搏动过程力学参数即力与粘弹性的变化,确定不同浓度对心肌细胞搏动的影响,得到心肌细胞群搏动时结构与功能的高灵敏测定模型。
下面结合具体实施例对本发明的技术方案作进一步描述。
实施例1
一种用于影响心肌细胞收缩或舒张的药物,所述用于影响心肌细胞收缩或舒张的药物由以下重量份的原料药制成:
青皮15份、附子1.5份、鸡血藤7.5份、川芎7.5份、麝香3.5份、益母草7份、红花11份、丹皮3.5份、赤芍4份、丹参8份、虎杖苷10份以及乌古藤碱9份。
实验表明:本发明测得是单一的药物成分对心肌搏动的影响,得到的结果与当前临床或其他权威测定方法的结果是一致的,说明本发明的方法是具有实际意义。
实施例2
一种用于影响心肌细胞收缩或舒张的药物,所述用于影响心肌细胞收缩或舒张的药物由以下重量份的原料药制成:
青皮10份、附子1份、鸡血藤5份、川芎6份、麝香2份、益母草6份、红花8份、丹皮1份、赤芍3份、丹参6份、虎杖苷7份以及乌古藤碱8份。
实验表明:本发明测得是单一的药物成分对心肌搏动的影响,得到的结果与当前临床或其他权威测定方法的结果是一致的,说明本发明的方法是具有实际意义。
实施例3
一种用于影响心肌细胞收缩或舒张的药物,所述用于影响心肌细胞收缩或舒张的药物由以下重量份的原料药制成:
青皮20份、附子2份、鸡血藤10份、川芎9份、麝香5份、益母草8份、红花13份、丹皮5份、赤芍5份、丹参10份、虎杖苷12份以及乌古藤碱10份
实验表明:本发明测得是单一的药物成分对心肌搏动的影响,得到的结果与当前临床或其他权威测定方法的结果是一致的,说明本发明的方法是具有实际意义。
实施例4:
1、目的与意义
本发明基于细胞力学参数与心肌细胞搏动功能的紧密联系,以乳鼠原代心肌细胞和人胚胎干细胞分化的(iPSC)心肌细胞为研究对象,利用可定量测定细胞搏动力学性能的高等压电技术,来探索并建立细胞力学参数与细胞搏动功能之间的定量关系,并应用于心血管药物的评价与筛选。
本发明主要基于可对细胞黏附、细胞牵引力、细胞粘弹性参数的同时、无损、长期连续、定量测定的高等压电技术,来探索并建立细胞力学与心肌细胞搏动功能之间的定量关系。本发明期望通过对心肌细胞的搏动进行细胞力学性能的定量测定来实现对心肌细胞结构与功能的定量表征,并且使之成为评估心血管药物作用有效性与毒性的有效方法。
2、项目开展总体思路:
本发明以乳鼠原代心肌细胞与人胚胎干细胞(hESC)分化的心肌细胞为模型,在金电极或透明ITO电极上修饰与心肌细胞选择性反应的细胞粘附分子,通过双谐振压电技术实现对心肌细胞粘附与搏动时所伴随心肌细胞收缩舒张力与粘弹性的快速、无损、连续测定,通过对芯片表面进行修饰、提高芯片灵敏度、不同药物作用、同种药物不同药物浓度下心肌细胞搏动力与粘弹性变化规律的探究,最终建立心肌细胞群搏动时结构与功能的高灵敏测定方法。具体内容如下:
2.1乳鼠原代心肌细胞提取
进一步优化1-3d乳鼠心肌细胞的提取方案,包括消化酶的种类与浓度等条件以获得数量相对更多、存活率更高与粘附、同步搏动功能更好的乳鼠原代心肌细胞。
2.2芯片表面修饰
化学耦合抗粘附PEG背景下表面不同密度RGD、fibronectin,物理吸附fibronectin及其它细胞外基质分子与促进心肌细胞粘附与同步搏动的分子与材料,使其更好地模拟体内粘附环境,促进乳鼠原代心肌细胞与人胚胎干细胞分化的心肌细胞在细胞力学芯片上的粘附与同步搏动。
2.3提高芯片灵敏度
a.细胞搏动在不同厚度硬基质中的变化规律的探究
选择9MHz AT与BT切晶体,设计金涂层厚度为10,20,30,40,50,75,100,125,150nm的石英晶体芯片,系统研究细胞收缩与舒张力在不同厚度硬基质中的变化规律,以挑选出能监测到心肌细胞同步搏动现象、且力学参数灵敏度最高的金涂层厚度。
b.不同细胞密度下的细胞搏动力学性能规律的探究
设计QCM分别在2w、4w、6w、8w,10w,12w,15w的细胞密度下,系统研究细胞收缩与舒张力在不同细胞密度下的变化规律,最终挑选出最适宜的细胞密度。
c.细胞搏动在不同频率芯片下的变化规律的探究
设计QCM在5-20MHz不同基频,及3次、5次等泛音下心肌细胞收缩与舒张力的变化规律。
d.QCM/光学显微镜联用,QCM/阻抗联用
在QCM芯片上构造附加阻抗电极,或通过检测池盖上增加附加可插入培养基中与QCM电极构成阻抗电极的对电极,实现压电/电化学阻抗技术的联用和对照测试;用光透ITO和薄层金电极,达到压电/光联用。
2.4不同药物作用下细胞搏动力学性能参数变化规律的探究
选取E-4031(抗心律失常剂苯磺酰胺,阻断ATP敏感性钾通道)、维拉帕米VRP(负性肌力药物)、异丙肾上腺素ISO(正性肌力药物)等心肌常规性药物,以及中草药次乌头碱(HA)(心肌毒性中草药)、乌骨藤提取物(心肌毒性中草药)、虎杖苷(心肌收缩性中草药)来测试这些药物对心肌细胞搏动频率、收缩/舒张力与粘弹性的影响。将这些药物加入培养基中,利用QCM监测搏动过程力学参数的变化,最终获得不同药物对心肌细胞搏动力学功能的影响。
2.5同种药物不同药物浓度作用下心肌细胞搏动力学参数变化规律的探究
选取同种药物不同药物浓度来测试不同浓度对心肌细胞搏动频率、收缩/舒张力与粘弹性的影响,将不同浓度的同种药物加入培养基中,利用QCM监测搏动过程力学参数(力与粘弹性)的变化,最终获得不同浓度对心肌细胞搏动的影响。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种用于影响心肌细胞收缩或舒张的药物,其特征在于,所述用于影响心肌细胞收缩或舒张的药物由以下重量份的原料药制成:
青皮10份~20份、附子1份~2份、鸡血藤5份~10份、川芎6份~9份、麝香2份~5份、益母草6份~8份、红花8份~13份、丹皮1份~5份、赤芍3份~5份、丹参6份~10份、虎杖苷7份~12份以及乌古藤碱8份~10份。
2.一种如权利要求1所述的用于影响心肌细胞收缩或舒张的药物的用于影响心肌细胞收缩或舒张的药物制备方法,其特征在于,所述用于影响心肌细胞收缩或舒张的药物制备方法包括:
(1)称取青皮10份、附子2份、鸡血藤5份、川芎8份、麝香3份、益母草7份、红花10份、丹皮4份、赤芍5份、丹参10份、虎杖苷8份,乌古藤碱9份;
(2)通过粉碎机称取的药材进行粉粹处理;
(3)通过碾磨机将粉碎的药材碾磨成粉状制成为胶囊、液剂、片剂或丸剂。
3.一种测定如权利要求1所述用于影响心肌细胞收缩或舒张的药物的有效性的用于影响心肌细胞收缩或舒张的药物有效性测定模型。
4.一种如权利要求3所述用于影响心肌细胞收缩或舒张的药物有效性测定模型的构建方法,其特征在于,所述用于影响心肌细胞收缩或舒张的药物有效性测定模型构建方法包括:
以乳鼠原代心肌细胞与人胚胎干细胞分化的心肌细胞为模型,在金电极或透明ITO电极上修饰与心肌细胞选择性反应的细胞粘附分子,通过双谐振压电技术进行心肌细胞粘附与搏动时所伴随心肌细胞收缩舒张力与粘弹性的连续测定,通过在芯片表面进行修饰、提高芯片灵敏度,确定不同药物作用、同种药物不同药物浓度下心肌细胞搏动力与粘弹性变化规律,构建心肌细胞群搏动时结构与功能的高灵敏测定模型。
5.如权利要求4所述构建用于影响心肌细胞收缩或舒张的药物有效性测定模型的方法,其特征在于,所述用于影响心肌细胞收缩或舒张的药物有效性测定模型的构建方法包括以下步骤:
(1)获取乳鼠原代心肌细胞;
(2)进行芯片表面修饰:化学耦合抗粘附PEG背景下表面不同密度RGD、fibronectin,物理吸附fibronectin及其它细胞外基质分子与促进心肌细胞粘附与同步搏动的分子与材料,促进乳鼠原代心肌细胞与人胚胎干细胞分化的心肌细胞在细胞力学芯片上的粘附与同步搏动;
(3)提高芯片灵敏度:通过确定可监测到心肌细胞同步搏动现象、且力学参数灵敏度最高的金涂层厚度、最适宜的细胞密度、确定细胞搏动在不同频率芯片下的变化规律以及在QCM芯片上构造附加阻抗电极,或通过检测池盖上增加附加可插入培养基中与QCM电极构成阻抗电极的对电极,进行压电/电化学阻抗技术的联用和对照测试;用光透ITO和薄层金电极,进行压电/光联用,提高芯片灵敏度;
(4)将E-4031、维拉帕米VRP、异丙肾上腺素ISO或其他心肌常规性药物,以及中草药次乌头碱、乌骨藤提取物、虎杖苷加入培养基中,利用QCM监测搏动过程力学参数的变化,获得不同药物对心肌细胞搏动力学功能的影响;
(5)选取同种药物不同药物浓度测试不同浓度对心肌细胞搏动频率、收缩/舒张力与粘弹性的影响,将不同浓度的同种药物加入培养基中,利用QCM监测搏动过程力学参数即力与粘弹性的变化,确定不同浓度对心肌细胞搏动的影响,得到心肌细胞群搏动时结构与功能的高灵敏测定模型。
6.一种用于权利要求1所述用于影响心肌细胞收缩或舒张的药物药效的测定方法,其特征在于,所述测定方法包括:
1)将制备的药物喂养SD大鼠,并提取SD大鼠原代心肌细胞;
2)将AT切石英晶体与BT切石英晶体置于培养皿或检测池内,所述AT切石英晶体与BT切石英晶体具有相同频率、表面形态和/或修饰了相同的表面黏附分子;
3)向培养皿或检测池中加入待测SD大鼠原代心肌细胞,测定出细胞牵引力;
所述步骤3)细胞牵引力测定方法包括:对接收的细胞牵引力信号进行循环谱分析,提取幅度归一化循环谱的细胞α轴投影轮廓图,获得细胞一维特征向量x∈Rn×1;对细胞牵引力特征向量进行降维处理,获得低维的特征向量y∈xR×1,形成网络训练的数据集和测试集;设计深度CNN网络结构,并确定网络初始化参数,结合Keras深度学习框架,调用已有网络层函数,搭建深层网络结构;利用训练集进行网络训练,并采用Early-stop策略,防止过拟合。
7.如权利要求6所述的测定方法,其特征在于,在网络训练完成后,再利用测试数据集验证训练效果,完成细胞牵引力信号自动调制识别。
8.如权利要求6所述的测定方法,其特征在于,所述对接收到的数字调制信号做循环谱相关分析CSCA得到细胞牵引力调制信号的循环谱密度图像,进而获得细胞α截面图的轮廓特征,离散循环谱密度DCSD定义为:
Figure FDA0003409048950000031
Figure FDA0003409048950000032
其中n为离散时间,k为离散频率,x(n)为离散信号序列,序列长度为N,α为循环频率;
Figure FDA0003409048950000033
为循环自相关函数,对进行傅里叶变换得到循环谱密度
Figure FDA0003409048950000034
表示循环平稳信号x(n)的频谱中某频率k的循环谱密度值可用k上下各间隔α/2的谱分量的互相关求得;对于得到的二维
Figure FDA0003409048950000035
矩阵数据,进行幅度归一化,然后沿着α频率轴方向,对每一个k频率点的向量数据求取最大值,所有的最大值所组成的向量,便是幅度归一化循环谱的α轴投影向量x∈Rn×1
9.如权利要求6所述的测定方法,其特征在于,对细胞牵引力特征向量进行降维处理包括:
Figure FDA0003409048950000036
其中,{wi|i=1,2,...,m}是关于实对称矩阵
Figure FDA0003409048950000041
的一组特征向量,对应的m个最大特征值为{λi|i=1,2,...,m},
Figure FDA0003409048950000042
为类内离散度矩阵WCSM,xk为类别i所属数据集Xi中的第k个样本,μi为类别i中样本的特征均值,c为全部样本中所属的类别总数;
Figure FDA0003409048950000043
为类间离散度矩阵BCSM,Ni为类别i的样本个数,μ为所有类别中全部样本的均值。
10.如权利要求6所述的测定方法,其特征在于,利用CNN卷积神经网络分类器,将处理后的细胞牵引力特征数据作为输入数据进行分类识别,实现细胞牵引力信号的自动调制类型的识别。
CN202111523713.2A 2021-12-14 2021-12-14 一种用于影响心肌细胞收缩或舒张的药物及其测定方法 Pending CN114177229A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111523713.2A CN114177229A (zh) 2021-12-14 2021-12-14 一种用于影响心肌细胞收缩或舒张的药物及其测定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111523713.2A CN114177229A (zh) 2021-12-14 2021-12-14 一种用于影响心肌细胞收缩或舒张的药物及其测定方法

Publications (1)

Publication Number Publication Date
CN114177229A true CN114177229A (zh) 2022-03-15

Family

ID=80543627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111523713.2A Pending CN114177229A (zh) 2021-12-14 2021-12-14 一种用于影响心肌细胞收缩或舒张的药物及其测定方法

Country Status (1)

Country Link
CN (1) CN114177229A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117132577A (zh) * 2023-09-07 2023-11-28 湖北大学 非侵入式检测心肌组织张力和振动的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1334121A (zh) * 2001-08-31 2002-02-06 石家庄以岭药业有限公司 一种通心络药物组合物及应用
CN101046470A (zh) * 2007-04-20 2007-10-03 浙江大学 一种心肌细胞搏动分析方法及分析系统
CN105012680A (zh) * 2015-07-16 2015-11-04 贵阳中医学院 一种治疗慢性心力衰竭的药物及其制作方法
CN105582280A (zh) * 2016-01-21 2016-05-18 李宪秋 一种治疗冠心病心绞痛的中药制剂
CN107238661A (zh) * 2017-05-31 2017-10-10 湖南农业大学 一种细胞牵引力与粘弹性的同时定量测定方法
CN109802905A (zh) * 2018-12-27 2019-05-24 西安电子科技大学 基于cnn卷积神经网络的数字信号自动调制识别方法
CN110184263A (zh) * 2019-05-20 2019-08-30 浙江大学 一种监测肌细胞力学性质和收缩频率的核壳结构微球及其应用
CN113730501A (zh) * 2021-09-23 2021-12-03 吴绍伟 一种治疗心力衰竭的外用中药组合物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1334121A (zh) * 2001-08-31 2002-02-06 石家庄以岭药业有限公司 一种通心络药物组合物及应用
CN101046470A (zh) * 2007-04-20 2007-10-03 浙江大学 一种心肌细胞搏动分析方法及分析系统
CN105012680A (zh) * 2015-07-16 2015-11-04 贵阳中医学院 一种治疗慢性心力衰竭的药物及其制作方法
CN105582280A (zh) * 2016-01-21 2016-05-18 李宪秋 一种治疗冠心病心绞痛的中药制剂
CN107238661A (zh) * 2017-05-31 2017-10-10 湖南农业大学 一种细胞牵引力与粘弹性的同时定量测定方法
CN109802905A (zh) * 2018-12-27 2019-05-24 西安电子科技大学 基于cnn卷积神经网络的数字信号自动调制识别方法
CN110184263A (zh) * 2019-05-20 2019-08-30 浙江大学 一种监测肌细胞力学性质和收缩频率的核壳结构微球及其应用
CN113730501A (zh) * 2021-09-23 2021-12-03 吴绍伟 一种治疗心力衰竭的外用中药组合物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117132577A (zh) * 2023-09-07 2023-11-28 湖北大学 非侵入式检测心肌组织张力和振动的方法
CN117132577B (zh) * 2023-09-07 2024-02-23 湖北大学 非侵入式检测心肌组织张力和振动的方法

Similar Documents

Publication Publication Date Title
Grosberg et al. Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip
Grosberg et al. Muscle on a chip: in vitro contractility assays for smooth and striated muscle
Sakamiya et al. A heart-on-a-chip platform for online monitoring of contractile behavior via digital image processing and piezoelectric sensing technique
Unal et al. Micro and nano-scale technologies for cell mechanics
Wang et al. 3D cell cultures toward quantitative high-throughput drug screening
US9249445B2 (en) Cell detection method, and microarray chip for use in the method
Hassan et al. Recent advances in monitoring cell behavior using cell-based impedance spectroscopy
CN102460171A (zh) 细胞群和混合细胞群变化的检测
US20150253307A1 (en) Polymeric fiber-scaffolded engineered tissues and uses thereof
CN102575996A (zh) 用于表征生物细胞的行为特性的振动微板生物感测
CN114177229A (zh) 一种用于影响心肌细胞收缩或舒张的药物及其测定方法
EP2427543A1 (en) System and method for monitoring cardiomyocyte beating, viability and morphology and for screening for pharmacological agents which may induce cardiotoxicity or modulate cardiomyocyte function
Oprea et al. PC-12 cell line as a neuronal cell model for biosensing applications
Voiculescu et al. Impedance spectroscopy of adherent mammalian cell culture for biochemical applications: a review
Chen et al. Label-free microfluidics for single-cell analysis
Deir et al. Step-by-step fabrication of heart-on-chip systems as models for cardiac disease modeling and drug screening
CN110029058A (zh) 一种多传感器集成的在线无损检测心肌组织芯片
EP1421380B1 (de) Vorrichtung und verfahren zur erfassung bioelektrischer signale aus elektrophysiologisch aktiven bereichen in sphäroiden
CN107267384A (zh) 用于高通量试验的三维组织
Pierzchalski et al. Label-free single cell analysis with a chip-based impedance flow cytometer
Chen et al. Image entropy-based label-free functional characterization of human induced pluripotent stem cell-derived 3D cardiac spheroids
Shen et al. Characterization of in vitro neural functional connectivity on a neurofluidic device
Obien et al. CMOS-based high-density microelectrode arrays: technology and applications
CN108279308A (zh) 一种中草药抗衰老物质及其筛选方法
Mapelli et al. Design, implementation, and functional validation of a new generation of microneedle 3D high-density CMOS multi-electrode array for brain tissue and spheroids

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination