CN114169704A - 产品生产过程质量控制方法、装置、设备及存储介质 - Google Patents

产品生产过程质量控制方法、装置、设备及存储介质 Download PDF

Info

Publication number
CN114169704A
CN114169704A CN202111389564.5A CN202111389564A CN114169704A CN 114169704 A CN114169704 A CN 114169704A CN 202111389564 A CN202111389564 A CN 202111389564A CN 114169704 A CN114169704 A CN 114169704A
Authority
CN
China
Prior art keywords
characteristic data
production process
data set
sample
learning machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111389564.5A
Other languages
English (en)
Other versions
CN114169704B (zh
Inventor
李航
郭双明
曾静文
杨文安
蔡旭林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Aircraft Industrial Group Co Ltd
Original Assignee
Chengdu Aircraft Industrial Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Aircraft Industrial Group Co Ltd filed Critical Chengdu Aircraft Industrial Group Co Ltd
Priority to CN202111389564.5A priority Critical patent/CN114169704B/zh
Publication of CN114169704A publication Critical patent/CN114169704A/zh
Application granted granted Critical
Publication of CN114169704B publication Critical patent/CN114169704B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06395Quality analysis or management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Software Systems (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Primary Health Care (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • General Factory Administration (AREA)

Abstract

本申请的实施例公开一种产品生产过程质量控制方法、装置、设备及存储介质,该方法包括:获取生产过程的特性数据集,所述特性数据集包括不同产品的多个生产过程的特性数据;基于所述特性数据集,构建关于所述多个生产过程的控制图;基于所述控制图,判断各生产过程是否处于受控状态;将目标生产过程对应的目标特性数据输入训练获得的加权在线序贯极限学习机,获得所述目标生产过程的异常模式结果。解决了对多品种小批量的产品的控制图异常模式的识别效果差的技术问题,提高了多品种小批量的产品生产过程的控制图异常模式的识别准确性。

Description

产品生产过程质量控制方法、装置、设备及存储介质
技术领域
本申请涉及产品质量控制技术领域,尤其涉及发明名称一种产品生产过 程质量控制方法、装置、设备及存储介质。
背景技术
随着工业产品的品种和数量的不断增加,制造业已经逐步从传统的大批 量生产模式转变为多品种小批量生产模式,为了保证最终的产品质量,需在 制造过程中对过程进行质量控制,以判断制造过程是否出现异常。在进行质 量控制时,SPC(StatisticalProcess Control)控制图技术是一种被广泛使用的 方法,根据控制图的状态,可以判断生产过程是否异常并揭示制造过程中的 潜在质量问题。因此,对控制图异常模式进行有效的识别,可以及时发现产 品生产过程中存在的问题。
现有技术中,对多品种小批量的产品生产过程的控制图异常模式的识别 方法包括人工识别和一些智能方法识别,但识别的效果都比较差。
发明内容
本申请的主要目的在于提供一种产品生产过程质量控制方法、装置、设 备及存储介质,旨在解决现有对多品种小批量的产品生产过程的控制图异常 模式的识别效果差的技术问题。
为实现上述目的,本申请提供一种产品生产过程质量控制方法,所述方 法包括:
获取生产过程的特性数据集,所述特性数据集包括不同产品的多个生产 过程的特性数据;
基于所述特性数据集,构建关于所述多个生产过程的控制图;
基于所述控制图,判断各生产过程是否处于受控状态;
将目标生产过程对应的目标特性数据输入训练获得的加权在线序贯极限 学习机,获得所述目标生产过程的异常模式结果;其中,所述目标生产过程 为不受控的生产过程;所述异常模式结果包括单值控制图异常模式结果和/或 移动极差控制图异常模式结果。
可选地,所述加权在线序贯极限学习机为基于输入加权的在线序贯极限 学习机。
可选地,所述获取生产过程的特性数据集的步骤之前,所述方法还包括:
获取样本特性数据集,所述样本特性数据集包括若干样本产品的若干样 本生产过程的样本特性数据;
提取所述样本特性数据集中各样本特性数据的特征参数;
基于所述特征参数,对各样本特性数据进行特征标记,获得标记后的样 本特性数据集;
利用所述标记后的样本特性数据集,对原始加权在线序贯极限学习机进 行训练,获得加权在线序贯极限学习机。
可选地,所述加权在线序贯极限学习机的输出层包括第一神经元和第二 神经元,所述第一神经元输出单值控制图异常模式结果,所述第二神经元输 出移动极差控制图异常模式结果。
可选地,所述获取样本特性数据集的步骤之后,所述方法还包括:
对所述样本特性数据集中各样本特性数据进行标准正态处理,获得标准 样本特性数据集;
对标准样本特性数据集中的样本特性数据进行编码,获得除噪后的标准 样本特性数据集;
所述提取所述样本特性数据集中各样本特性数据的特征参数的步骤,包 括:
提取所述除噪后的标准样本特性数据集中各样本特性数据的特征参数。
可选地,所述利用所述标记后的样本特性数据集,对原始加权在线序贯 极限学习机进行训练,获得加权在线序贯极限学习机的步骤之后,还包括:
利用所述标记后的样本特性数据集中的部分数据,对原始加权在线序贯 极限学习机进行初始训练,获得初始加权在线序贯极限学习机;
利用所述标记后的样本特性数据集中的剩余数据,对所述初始加权在线 序贯极限学习机进行连续训练,获得加权在线序贯极限学习机。
可选地,所述基于所述特性数据集,构建关于所述多个生产过程的控制 图的步骤,包括:
判断所述特性数据集中的各特性数据是否服从正态分布;
若否,则通过数据转换方法将各特性数据转换为服从正态分布的正态特 性数据;
判断服从正态分布的各特性数据是否服从同一正态分布;
若否,则将各正态特性数据转换为服从同一正态分布的各同一正态特性 数据;
基于各同一正态特性数据,构建关于所述多个生产过程的控制图。
此外,为实现上述目的,本申请还提供一种产品生产过程质量控制装置, 所述装置包括:
数据获取模块,用于获取生产过程的特性数据集,所述特性数据集包括 不同产品的多个生产过程的特性数据;
控制图构建模块,用于基于所述特性数据集,构建关于所述多个生产过 程的控制图;
受控判断模块,用于基于所述控制图,判断各生产过程是否处于受控状 态;
异常识别模块,用于将目标生产过程对应的目标特性数据输入训练获得 的加权在线序贯极限学习机,获得所述目标生产过程的异常模式结果;其中, 所述目标生产过程为不受控的生产过程;所述异常模式结果包括单值控制图 异常模式结果和/或移动极差控制图异常模式结果。
此外,为实现上述目的,本申请还提供一种电子设备,该电子设备包括 存储器和处理器,所述存储器中存储有计算机程序,所述处理器执行所述计 算机程序,实现前述的方法。
此外,为实现上述目的,本申请还提供一种计算机可读存储介质,所述 计算机可读存储介质上存储有计算机程序,处理器执行所述计算机程序,实 现前述的方法。
此外,为实现上述目的,本申请还提供一种计算机程序产品,所述计算 机程序产品在被处理器时,实现前述的方法。
本申请所能实现的有益效果。
本申请实施例提出的一种产品生产过程质量控制方法、装置、设备及存 储介质,获取生产过程的特性数据集,所述特性数据集包括不同产品的多个 生产过程的特性数据;基于所述特性数据集,构建关于所述多个生产过程的 控制图;基于所述控制图,判断各生产过程是否处于受控状态;将目标生产 过程对应的目标特性数据输入训练获得的加权在线序贯极限学习机,获得所 述目标生产过程的异常模式结果;其中,所述目标生产过程为不受控的生产 过程;所述异常模式结果包括单值控制图异常模式结果和/或移动极差控制图 异常模式结果。也即,本申请在原有极限学习机中加入在线序贯算法,具备 了传统极限学习机的训练速度和泛化能力上的优点,并在模型中加入权重, 进一步提升模型的泛化能力,特别适用于多品种小批量的产品的控制图异常 模式的识别;解决了对多品种小批量的产品的控制图异常模式的识别效果差 的技术问题,提高了多品种小批量的产品生产过程的控制图异常模式的识别 准确性。
附图说明
图1为本申请实施例涉及的计算机设备结构示意图;
图2为本申请实施例提供的一种产品生产过程质量控制方法的流程示意 图;
图3为图2中步骤S40的一种具体实施方法的流程示意图;
图4为本申请实施例提供的一种加权在线序贯极限学习机的训练过程的 流程示意图;
图5为本申请实施例提供的一种产品生产过程质量控制系统的结构示意 图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步 说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限 定本申请。
本申请实施例的主要解决方案是:提出的一种产品生产过程质量控制方 法,通过获取生产过程的特性数据集,所述特性数据集包括不同产品的多个 生产过程的特性数据;基于所述特性数据集,构建关于所述多个生产过程的 控制图;基于所述控制图,判断各生产过程是否处于受控状态;将目标生产 过程对应的目标特性数据输入训练获得的加权在线序贯极限学习机,获得所 述目标生产过程的异常模式结果;其中,所述目标生产过程为不受控的生产 过程;所述异常模式结果包括单值控制图异常模式结果和/或移动极差控制图 异常模式结果。
现有技术中,随着工业产品的品种和数量的不断增加,制造业已经逐步 从传统的大批量生产模式转变为多品种小批量生产模式,为了保证最终的产 品质量,需在制造过程中对过程进行质量控制,以判断制造过程是否出现异 常。在进行质量控制时,SPC(Statistical Process Control)控制图技术是一种 被广泛使用的方法,根据控制图的状态,可以判断生产过程是否异常并揭示 制造过程中的潜在质量问题。控制图异常模式可分为一般异常模式和特殊异 常模式,一般异常模式的辨识采用国家标准“GB/T 4091-2001常规控制图” 中的8条基本判断规则,特殊异常模式分为8种:单值控制图上升阶跃型模 式、单值控制图下降阶跃型模式、单值控制图上升趋势型模式、单值控制图 下降趋势型模式、单值控制图周期型模式、移动极差控制图跳动模式、移动 极差控制图趋势模式和移动极差控制图周期模式。实际生产中,不同的模式 背后隐藏了不同的生产异常情况,因此对控制图异常模式进行有效的识别, 可以及时发现和解决问题,提高产品的质量从而使企业的生产效率得以提高, 继而产生较大的经济效益。传统的控制图异常模式主要是经过人工的方法来 识别,识别准确率主要取决于质量工程人员的经验。
近年来,随着技术的发展,很多种智能方法已经被应用于控制图特殊异 常模式识别,例如BP神经网络、支持向量机等。但传统的BP神经网络在使 用时需要确定权值神经元个数等多个参数,且参数设置不当易使网络陷入局 部最优同样,支持向量机也存在参数选择问题。对于多品种小批量制造过程 的控制图异常模式识别效果较差。
为此,本申请提供一种解决方案,在原有极限学习机中加入在线序贯算 法,具备了传统极限学习机的训练速度和泛化能力上的优点,并在模型中加 入权重,进一步提升模型的泛化能力,特别适用于多品种小批量的产品的控 制图异常模式的识别;解决了对多品种小批量的产品的控制图异常模式的识 别效果差的技术问题,提高了多品种小批量的产品生产过程的控制图异常模 式的识别准确性。
参照图1,图1为本申请实施例方案涉及的硬件运行环境的计算机设备结 构示意图。
如图1所示,该计算机设备可以包括:处理器1001,例如中央处理器 (CentralProcessing Unit,CPU),通信总线1002、用户接口1003,网络接 口1004,存储器1005。其中,通信总线1002用于实现这些组件之间的连接 通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘 (Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。 网络接口1004可选的可以包括标准的有线接口、无线接口(如无线保真(WIreless-FIdelity,WI-FI)接口)。存储器1005可以是高速的随机存取存 储器(RandomAccess Memory,RAM)存储器,也可以是稳定的非易失性存 储器(Non-Volatile Memory,NVM),例如磁盘存储器。存储器1005可选的 还可以是独立于前述处理器1001的存储装置。
本领域技术人员可以理解,图1中示出的结构并不构成对计算机设备的 限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的 部件布置。
如图1所示,作为一种存储介质的存储器1005中可以包括操作系统、数 据存储模块、网络通信模块、用户接口模块以及电子程序。
在图1所示的计算机设备中,网络接口1004主要用于与网络服务器进行 数据通信;用户接口1003主要用于与用户进行数据交互;本发明计算机设备 中的处理器1001、存储器1005可以设置在计算机设备中,所述计算机设备通 过处理器1001调用存储器1005中存储的产品生产过程质量控制装置,并执 行本申请实施例提供的产品生产过程质量控制方法。
参照图2,本申请的实施例提供一种产品生产过程质量控制方法,所述方 法包括:
S20、获取生产过程的特性数据集,所述特性数据集包括不同产品的多个 生产过程的特性数据;
在具体实施过程中,本实施例的方法主要针对多品种小批量的产品,因 此,特性数据集包括多种小批量产品的生产过程的特性数据。
具体的,特性数据集可以通过生产线上的数据采集系统进行采集,在此 之前可以首先确定需要采集哪些特性数据,并进行分类。
S40、基于所述特性数据集,构建关于所述多个生产过程的控制图;
在具体实施过程中,控制图是用于分析和判断过程是否处于稳定状态所 使用的带有控制界限的图,是具有区分正常波动和异常波动的功能图表,是 现场质量管理中重要的统计工具。常规控制图包括计量值控制图(包括单值 控制图、平均数和极差控制图、中位数和极差控制图)和计数值控制图(包 括不合格品数控制图、不合格品率控制图、缺陷数控制图、单位缺陷数控制 图等)两类。为了后续进行质量控制,需要首先针对生产过程建立控制图。
具体的,可以根据贝叶斯理论提取生产线的先验历史数据(即历史特征 数据),以及每批数据的对应的后验均值(即现有采集的特征数据),计算 每批数据的对应的后验偏差,计算控制图中心线和上、下控制限并绘制控制 图。
参见图3,作为一种实施方式,S40具体包括:
S401、判断所述特性数据集中的各特性数据是否服从正态分布;
在具体实施过程中,特性数据集中的各特性数据属于不同种类的产品的 生产过程,不一定都服从正态分布,为了后续能将不同种类产品的生产过程 生成到同一控制图中,需要在生成控制图之前确保各特性数据服从正态分布。 因此,需要首先判断所述特性数据集中的各特性数据是否服从正态分布。
具体的,可以采用概率纸获取各特性数据的正态性相关系数,以判断数 据是否服从正态分布。若不是,则执行S402。
S402、若否,则通过数据转换方法将各特性数据转换为服从正态分布的 正态特性数据;
在具体实施过程中,可以利用二项分布、修正等转换方法将各特性数据 转换为服从正态分布的正态特性数据。
S403、判断服从正态分布的各特性数据是否服从同一正态分布;
在具体实施过程中,在确认各特性数据服从正态分布后,为了提高适用 于多种小批量产品的能力,以提高对多种小批量产品生成过程的识别准确性, 需要在生成控制图之前,将各种产品对应的特性数据处理为符合同一正态特 性数据。因此,需要首先判断服从正态分布的各特性数据是否服从同一正态 分布。若不是,则执行S404.
S404、若否,则将各正态特性数据转换为服从同一正态分布的各同一正 态特性数据;
在具体实施过程中,可以利用相对公差法对不同品种产品的特性数据进 行“同一正态分布”转换。
S405、基于各同一正态特性数据,构建关于所述多个生产过程的控制图。
在具体实施过程中,基于各同一正态特性数据按照前述方法,绘制控制 图。
可以理解的是,在该实施方式中,考虑到多品种小批量中各品种数据量 的差异对识别准确性的影响,通过对各产品对应的特性数据进行“同一正态 分布”转换后生成控制图,配合后续的识别方法,可提高对多种产品场景的 适应能力,以提高本方法的泛化能力,从而进一步提高对控制图异常类型的 识别准确率。
S60、基于所述控制图,判断各生产过程是否处于受控状态;
在具体实施过程中,在获得控制图后,可以首先根据控制图判断各生产 过程是否处于受控状态,即判断是否属于异常。
具体的,控制图异常模式可分为一般异常模式和特殊异常模式,一般异 常模式的辨识采用国家标准“GB/T 4091-2001常规控制图”中的8条基本判 断规则,特殊异常模式分为8种:单值控制图上升阶跃型模式、单值控制图 下降阶跃型模式、单值控制图上升趋势型模式、单值控制图下降趋势型模式、 单值控制图周期型模式、移动极差控制图跳动模式、移动极差控制图趋势模 式和移动极差控制图周期模式。
可以通过经验观察控制图曲线的方式判断是否处于受控状态,作为一种 可选的实施方式,也可以通过机器学习的方法直接进行异常类型的识别。但 为了减少类型识别的工作量,提高识别的有效率,本实施例中首先进行是否 异常的判断,使得后续只对存在异常的情况进行类型识别,对于处于受控的 情况,则直接计算工序能力指数并评价过程能力,而不需要进行后续类型识 别过程。
具体的,一般异常模式的辨识采用国家标准“GB/T 4091-2001常规控制 图”中的8条基本判断规则。特殊异常模式分为8种:单值控制图上升阶跃 型模式、单值控制图下降阶跃型模式、单值控制图上升趋势型模式、单值控 制图下降趋势型模式、单值控制图周期型模式、移动极差控制图跳动模式、 移动极差控制图趋势模式和移动极差控制图周期模式。则通过步骤S80进行 类型识别。
S80、将目标生产过程对应的目标特性数据输入训练获得的加权在线序贯 极限学习机,获得所述目标生产过程的异常模式结果;其中,所述目标生产 过程为不受控的生产过程;所述异常模式结果包括单值控制图异常模式结果 和/或移动极差控制图异常模式结果。
在具体实施过程中,在确认有异常的情况下,利用加权在线序贯极限学 习机,识别获得该目标生产过程的异常模式结果。
在一种实施例中,所述加权在线序贯极限学习机为基于输入加权的在线 序贯极限学习机。
可以理解的是,基于输入加权的在线序贯极限学习机针对多品种之间的 差异,充分考虑各输入差异的影响,提高模型对差异大的各品种的适应能力, 从而提高模型对差异大的各品种的生产过程异常类型的识别准确率。
参见图4,在一个具体实施例中,对加权在线序贯极限学习机的训练过程 进行详细介绍,该训练过程发生在获取生产过程的特性数据集的步骤之前,
包括:
S801、获取样本特性数据集,所述样本特性数据集包括若干样本产品的 若干样本生产过程的样本特性数据;
在具体实施过程中,样本特性数据集与特性数据集类似,但为了提高模 型训练的识别准确率和泛化能力,样本特性数据集中涉及的产品种类越多越 好,样本数量越大越好,因此,本实施例中的样本特性数据集包括若干样本 产品的若干样本生产过程的样本特性数据。
S802、提取所述样本特性数据集中各样本特性数据的特征参数;
在具体实施过程中,为了进行有监督的学习,组建训练集,需要首先提 取各样本特性数据的特征参数。
具体的,特征参数可以包括最大值、最小值、均方根、方差、平均值、 偏度、峰度、峰峰值、光谱偏度、光谱峰度和平均能量。
与前述特性数据类似,作为一种可选地实施例,所述获取样本特性数据 集的步骤之后,该训练方法还包括:
对所述样本特性数据集中各样本特性数据进行标准正态处理,获得标准 样本特性数据集;
对标准样本特性数据集中的样本特性数据进行编码,获得除噪后的标准 样本特性数据集;
所述提取所述样本特性数据集中各样本特性数据的特征参数的步骤,包 括:
提取所述除噪后的标准样本特性数据集中各样本特性数据的特征参数。
在具体实施过程中,数据正态化操作这里不再赘述。除噪操作可以通过 对数据进行编码,以消除样本特性数据中的噪声,减少自然变异对输入向量 的影响,并突显样本特性数据中蕴含的表征过程异常的模式特征。具体的, 为了便于对特性数据进行编码,将其变量区间分成若干等宽子区间,每个子 区间返回一个实数编码值。
S803、基于所述特征参数,对各样本特性数据进行特征标记,获得标记 后的样本特性数据集;
在具体实施过程中,标记基于特征参数。作为一种可选地实施例,所述 加权在线序贯极限学习机的输出层包括第一神经元和第二神经元,所述第一 神经元输出单值控制图异常模式结果,所述第二神经元输出移动极差控制图 异常模式结果。具体的,第一神经元代表制造过程单值控制图统计过程状态, 第二神经元代表制造过程移动极差控制图统计过程状态(输出值越接近“0” 表示制造过程越受控,输出值越接近“1”表示制造过程越异常),当加权在 线序贯极限学习机的输出层为[0,0]时则判定制造过程受控,当加权在线序贯 极限学习机的输出层为[0,1]或[1,0]或[1,1]时则分别判定制造过程移动极差控 制图失控、单值控制图失控和单值-移动极差控制图异常。
S804、利用所述标记后的样本特性数据集,对原始加权在线序贯极限学 习机进行训练,获得加权在线序贯极限学习机。
作为一种可选地实施例,所述利用所述标记后的样本特性数据集,对原 始加权在线序贯极限学习机进行训练,获得加权在线序贯极限学习机的步骤 之后,还包括:
利用所述标记后的样本特性数据集中的部分数据,对原始加权在线序贯 极限学习机进行初始训练,获得初始加权在线序贯极限学习机;
利用所述标记后的样本特性数据集中的剩余数据,对所述初始加权在线 序贯极限学习机进行连续训练,获得加权在线序贯极限学习机。
在具体实施过程中,加权在线序贯极限学习机的训练分为初始阶段和连 续学习阶段。
具体的,加权在线序贯极限学习机的主要算法如下:
给定N个任意的独立样本(xi,ti)∈Rn×Rm,一个具有L个隐含层节点的 单隐层前馈网络可以根据式(1)以零误差逼近这N个训练样本
Figure BDA0003366747590000121
式中,wi为输入层与隐含层的连接权值,bi为隐含层的阈值,βi为隐含 层与输出层的连接权值,G(wi,bi,xj)为输入为时对应的第i个隐含层节点的输 出。当运用增加型隐含层节点时,G(wi,bi,xj)=g(wi·xj+bi),bi∈R,这里wi是 输入权值向量,bi是第i个隐含层神经元的阈值;当运用径向基函数型隐含层 节点时,G(wi,bi,xj)=g(bi||xj-wi||),bi∈R+,这里wi和bi是影响i模型的第i 个节点宽度的矢量。
X={(xi,yi)|xi∈Rn,yi∈Rm,i=1,2,...,N}为过程采集数据(即样本特性数 据),连续输入到具有L个隐含层节点的网络中,加权在线序贯极限学习机 具有两个阶段:初始阶段和在线学习阶段。在初始阶段要求rank(H0)=L(H0代表初始阶段隐含层的输出矩阵),也就是说初始阶段的训练数据等于或者 多于隐含层的节点个数L。
(1)初始阶段
将少量的训练数据用于初始化学习,从给出的训练样本中选出
Figure BDA0003366747590000131
N0为选定的初始数据个数,且N0≥L。
1)随机产生输入权值wi和隐含层阈值bi,给定激活函数g(x)和隐含层神 经元的个数L。
2)计算初始隐含层的输出矩阵H0,如式(2)所示:
Figure BDA0003366747590000132
3)求解初始输出权值β(0)
已知目标输出Y0,如式(3)所示
Figure BDA0003366747590000133
计算初始权重β(0),也就是计算||H0β-Y0||的最小值问题,而已知 H+=(HTH)-1HT,得出β(0)的值如式(4)所示:
Figure BDA0003366747590000134
式中,
Figure BDA0003366747590000135
Figure BDA0003366747590000136
4)设置k=0。
(2)连续学习阶段
输入第(k+1)个数据块中训练数据,
Figure BDA0003366747590000137
Nk+1代表 第(k+1)个数据块中数据的个数。
1)计算隐含层的输出矩阵Hk+1如式(5)所示:
Figure BDA0003366747590000141
2)计算输出权值β(k+1),目标输出如式(6)所示:
Figure BDA0003366747590000142
假定当前已有k个数据块输入到模型中,并得到Kk如式(7)所示:
Figure BDA0003366747590000143
当加入新的训练数据块时,Kk+1可表示为式(8)
Figure BDA0003366747590000144
进一步计算得式(9)
Figure BDA0003366747590000145
Figure BDA0003366747590000146
为了避免计算矩阵的逆,可将式(10)中的
Figure BDA00033667475900001411
表示为式(11)
Figure BDA0003366747590000147
Figure BDA0003366747590000148
则式(10)可表示为式(11),式(9)可表示为式(12)
Figure BDA0003366747590000149
Figure BDA00033667475900001410
3)设置k=k+1,返回步骤1)继续进行连续学习,直至数据学习完毕。 由式(8)可知,Kk+1中由新旧两种训练数据构成,因此,对这两项进行 加权处理,式(8)可重新表示为式(14):
Figure BDA0003366747590000151
式中,λ为旧的训练数据权值,其取值根据上一步计算出的网络均方根误 差(RMSE)决定。RMSE的计算公式如式(15)所示:
Figure BDA0003366747590000152
式中,di为模型的预测值与真实值之间的偏差。定义RMSE∈[a,b]时,λ 取1;RMSE<a时λ取1.005;RMSE>b时λ取0.995,a,b的值可根据输出 的RMSE值自定义。
Figure BDA0003366747590000153
则可表示为式(16):
Figure BDA0003366747590000154
Figure BDA0003366747590000155
代入到式(16)得式(17)
Figure BDA0003366747590000156
式中,
Figure BDA0003366747590000157
而β(k+1)的计算公式没有变化,仍沿用式(16)
其中,wi为输入加权的输入权值,基于输入加权的在线序贯极限学习机 针对多品种之间的差异,充分考虑各输入差异的影响,提高模型对差异大的 各品种的适应能力,从而提高模型对差异大的各品种的生产过程异常类型的 识别准确率。
在一个实施例中,原始加权在线序贯极限学习机包括两个,分别为包括 单值控制图特殊异常模式识别器和移动极差控制图特殊异常模式识别器。
根据上述算法,将标记后的样本特性数据集作为原始加权在线序贯极限 学习机的输入分别对过程单值控制图特殊异常模式识别器和移动极差控制图 特殊异常模式识别器进行训练,获得加权在线序贯极限学习机。
在一个实施例中,在获得异常类型后,还可以采用专家决策系统模拟专 家投票表决的方法对异常模式类型进行决策。
由此可见,本实施例的方法在原有极限学习机中加入在线序贯算法,不 仅具备了传统极限学习机的训练速度和泛化能力上的优点,且可以随着新数 据的到来不断更新模型,而不是重新训练数据;其次,针对多品种小批量制 造过程中不同品种的数据类型和数量差异较大的问题,在模型中加入权重, 平衡不同品种数据对模型的影响,进一步提升模型的泛化能力;然后,标记 加权在线序贯极限学习机的输出为[0,0]、[0,1]、[1,0]和[1,1],其中,第1个神 经元代表制造过程单值控制图统计过程状态,第2个神经元代表制造过程移 动极差控制图统计过程状态(输出值越接近“0”表示制造过程越受控,输出值 越接近“1”表示制造过程越异常),当加权在线序贯极限学习机的输出层为[0,0] 时则判定制造过程受控,当加权在线序贯极限学习机的输出层为[0,1]或[1,0] 或[1,1]时则分别判定制造过程移动极差控制图失控、单值控制图失控和单值- 移动极差控制图异常,从而判定制造过程失控;最后,不但能在异常的单值 控制图模式单独出现时,具有快速而准确的辨识能力,也能在异常的单值和 移动极差控制图模式同时出现时,具有优异的辨识性能表现。
参见图5,基于相同的发明原理,本申请的实施例还提供一种本申请还提 供一种产品生产过程质量控制装置,所述装置包括:
数据获取模块,用于获取生产过程的特性数据集,所述特性数据集包括 不同产品的多个生产过程的特性数据;
控制图构建模块,用于基于所述特性数据集,构建关于所述多个生产过 程的控制图;
受控判断模块,用于基于所述控制图,判断各生产过程是否处于受控状 态;
异常识别模块,用于将目标生产过程对应的目标特性数据输入训练获得 的加权在线序贯极限学习机,获得所述目标生产过程的异常模式结果;其中, 所述目标生产过程为不受控的生产过程;所述异常模式结果包括单值控制图 异常模式结果和/或移动极差控制图异常模式。
需要说明的是,本实施例中产品生产过程质量控制装置中各模块是与前 述实施例中的产品生产过程质量控制方法中的各步骤一一对应,因此,本实 施例的具体实施方式可参照前述产品生产过程质量控制方法的实施方式,这 里不再赘述。
此外,在一种实施例中,本申请还提供一种计算机存储介质,所述计算 机存储介质上存储有计算机程序,所述计算机程序被处理器运行时实现前述 实施例中方法的步骤。
在一些实施例中,计算机可读存储介质可以是FRAM、ROM、PROM、 EPROM、EEPROM、闪存、磁表面存储器、光盘、或CD-ROM等存储器; 也可以是包括上述存储器之一或任意组合的各种设备。计算机可以是包括智 能终端和服务器在内的各种计算设备。
在一些实施例中,可执行指令可以采用程序、软件、软件模块、脚本或 代码的形式,按任意形式的编程语言(包括编译或解释语言,或者声明性或 过程性语言)来编写,并且其可按任意形式部署,包括被部署为独立的程序 或者被部署为模块、组件、子例程或者适合在计算环境中使用的其它单元。
作为示例,可执行指令可以但不一定对应于文件系统中的文件,可以可 被存储在保存其它程序或数据的文件的一部分,例如,存储在超文本标记语 言(HTML,Hyper TextMarkup Language)文档中的一个或多个脚本中,存 储在专用于所讨论的程序的单个文件中,或者,存储在多个协同文件(例如, 存储一个或多个模块、子程序或代码部分的文件)中。
作为示例,可执行指令可被部署为在一个计算设备上执行,或者在位于 一个地点的多个计算设备上执行,又或者,在分布在多个地点且通过通信网 络互连的多个计算设备上执行。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变 体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品 或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是 还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的 情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过 程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述 实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通 过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技 术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体 现出来,该计算机软件产品存储在一个存储介质(如只读存储器/随机存取存 储器、磁碟、光盘)中,包括若干指令用以使得一台多媒体终端设备(可以是 手机,计算机,电视接收机,或者网络设备等)执行本申请各个实施例所述的 方法
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是 利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间 接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

1.一种产品生产过程质量控制方法,其特征在于,所述方法包括:
获取生产过程的特性数据集,所述特性数据集包括不同产品的多个生产过程的特性数据;
基于所述特性数据集,构建关于所述多个生产过程的控制图;
基于所述控制图,判断各生产过程是否处于受控状态;
将目标生产过程对应的目标特性数据输入训练获得的加权在线序贯极限学习机,获得所述目标生产过程的异常模式结果;其中,所述目标生产过程为不受控的生产过程;所述异常模式结果包括单值控制图异常模式结果和/或移动极差控制图异常模式结果。
2.如权利要求1所述的方法,其特征在于,所述加权在线序贯极限学习机为基于输入加权的在线序贯极限学习机。
3.如权利要求2所述的方法,其特征在于,所述获取生产过程的特性数据集的步骤之前,所述方法还包括:
获取样本特性数据集,所述样本特性数据集包括若干样本产品的若干样本生产过程的样本特性数据;
提取所述样本特性数据集中各样本特性数据的特征参数;
基于所述特征参数,对各样本特性数据进行特征标记,获得标记后的样本特性数据集;
利用所述标记后的样本特性数据集,对原始加权在线序贯极限学习机进行训练,获得加权在线序贯极限学习机。
4.如权利要求3所述的方法,其特征在于,所述加权在线序贯极限学习机的输出层包括第一神经元和第二神经元,所述第一神经元输出单值控制图异常模式结果,所述第二神经元输出移动极差控制图异常模式结果。
5.如权利要求3所述的方法,其特征在于,所述获取样本特性数据集的步骤之后,所述方法还包括:
对所述样本特性数据集中各样本特性数据进行标准正态处理,获得标准样本特性数据集;
对标准样本特性数据集中的样本特性数据进行编码,获得除噪后的标准样本特性数据集;
所述提取所述样本特性数据集中各样本特性数据的特征参数的步骤,包括:
提取所述除噪后的标准样本特性数据集中各样本特性数据的特征参数。
6.如权利要求1所述的方法,其特征在于,所述利用所述标记后的样本特性数据集,对原始加权在线序贯极限学习机进行训练,获得加权在线序贯极限学习机的步骤之后,还包括:
利用所述标记后的样本特性数据集中的部分数据,对原始加权在线序贯极限学习机进行初始训练,获得初始加权在线序贯极限学习机;
利用所述标记后的样本特性数据集中的剩余数据,对所述初始加权在线序贯极限学习机进行连续训练,获得加权在线序贯极限学习机。
7.如权利要求1所述的方法,其特征在于,所述基于所述特性数据集,构建关于所述多个生产过程的控制图的步骤,包括:
判断所述特性数据集中的各特性数据是否服从正态分布;
若否,则通过数据转换方法将各特性数据转换为服从正态分布的正态特性数据;
判断服从正态分布的各特性数据是否服从同一正态分布;
若否,则将各正态特性数据转换为服从同一正态分布的各同一正态特性数据;
基于各同一正态特性数据,构建关于所述多个生产过程的控制图。
8.一种产品生产过程质量控制装置,其特征在于,所述装置包括:
数据获取模块,用于获取生产过程的特性数据集,所述特性数据集包括不同产品的多个生产过程的特性数据;
控制图构建模块,用于基于所述特性数据集,构建关于所述多个生产过程的控制图;
受控判断模块,用于基于所述控制图,判断各生产过程是否处于受控状态;
异常识别模块,用于将目标生产过程对应的目标特性数据输入训练获得的加权在线序贯极限学习机,获得所述目标生产过程的异常模式结果;其中,所述目标生产过程为不受控的生产过程;所述异常模式结果包括单值控制图异常模式结果和/或移动极差控制图异常模式结果。
9.一种计算机设备,其特征在于,该计算机设备包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器执行所述计算机程序,实现如权利要求1-7中任一项所述的方法。
10.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,处理器执行所述计算机程序,实现如权利要求1-7中任一项所述的方法。
CN202111389564.5A 2021-11-22 2021-11-22 产品生产过程质量控制方法、装置、设备及存储介质 Active CN114169704B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111389564.5A CN114169704B (zh) 2021-11-22 2021-11-22 产品生产过程质量控制方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111389564.5A CN114169704B (zh) 2021-11-22 2021-11-22 产品生产过程质量控制方法、装置、设备及存储介质

Publications (2)

Publication Number Publication Date
CN114169704A true CN114169704A (zh) 2022-03-11
CN114169704B CN114169704B (zh) 2024-05-17

Family

ID=80480207

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111389564.5A Active CN114169704B (zh) 2021-11-22 2021-11-22 产品生产过程质量控制方法、装置、设备及存储介质

Country Status (1)

Country Link
CN (1) CN114169704B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108492013A (zh) * 2018-03-09 2018-09-04 同济大学 一种基于质量控制的制造系统调度模型有效性检测方法
CN111000590A (zh) * 2018-10-08 2020-04-14 通用电气公司 超声心脏多普勒研究自动化
CN112346413A (zh) * 2020-09-24 2021-02-09 成都飞机工业(集团)有限责任公司 一种提高航空结构件生产质量的方法
CN112526931A (zh) * 2020-11-27 2021-03-19 江苏科技大学 一种船用柴油机机身孔系镗削加工过程质量控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108492013A (zh) * 2018-03-09 2018-09-04 同济大学 一种基于质量控制的制造系统调度模型有效性检测方法
CN111000590A (zh) * 2018-10-08 2020-04-14 通用电气公司 超声心脏多普勒研究自动化
CN112346413A (zh) * 2020-09-24 2021-02-09 成都飞机工业(集团)有限责任公司 一种提高航空结构件生产质量的方法
CN112526931A (zh) * 2020-11-27 2021-03-19 江苏科技大学 一种船用柴油机机身孔系镗削加工过程质量控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
蔡亚军: "工艺产品加工质量监测优化", 科学技术与工程, vol. 17, no. 18, 28 June 2017 (2017-06-28), pages 277 - 281 *

Also Published As

Publication number Publication date
CN114169704B (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
CN109214708B (zh) 基于交叉熵理论优化支持向量机的电力系统风险评估方法
CN112910690A (zh) 基于神经网络模型的网络流量预测方法、装置及设备
CN111553543A (zh) 基于TPA-Seq2Seq的电力负荷预测方法及相关组件
CN112733997A (zh) 基于woa-lstm-mc的水文时间序列预测优化方法
CN113130014A (zh) 一种基于多分支神经网络的稀土萃取模拟方法及系统
CN104330972A (zh) 一种基于模型自适应的综合预测迭代学习控制方法
CN113377964B (zh) 知识图谱链接预测方法、装置、设备及存储介质
CN112949201B (zh) 一种风速预测方法、装置、电子设备及存储介质
CN114169704A (zh) 产品生产过程质量控制方法、装置、设备及存储介质
CN110826695A (zh) 数据处理方法、装置和计算机可读存储介质
CN116484675A (zh) 一种舰船发动机叶片的裂纹扩展寿命预测方法及系统
CN112529637B (zh) 基于情景感知的服务需求动态预测方法及系统
CN108596781A (zh) 一种电力系统数据挖掘与预测整合方法
CN115358473A (zh) 基于深度学习的电力负荷预测方法及预测系统
CN115423159A (zh) 光伏发电预测方法、装置及终端设备
US11783194B1 (en) Evolutionary deep learning with extended Kalman filter for modeling and data assimilation
CN102004661A (zh) 一种通用的数据驱动的软件和系统可靠性模型及参数优化方法
CN114065460A (zh) 火电发电系统中模型处理方法、存储介质和电子装置
CN113151842A (zh) 风光互补电解水制氢的转化效率的确定方法和确定装置
CN112598259A (zh) 产能测算方法、装置及计算机可读存储介质
CN110543724A (zh) 面向总体设计的卫星结构性能预测方法
CN113610111B (zh) 分布式多源数据的融合方法、装置、设备及存储介质
CN116595883B (zh) 数值反应堆实时在线系统状态修正方法
Vikranth et al. PRICE PREDICTION SYSTEM-A PREDICTIVE DATA ANALYTICS USING ARIMA MODEL.
CN118094194A (zh) 一种基于深度学习的配电网调度指令生成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant