CN1141558C - Multi-point temp. detector for obtaining bioogical biopsy tissue local metabolic rate - Google Patents

Multi-point temp. detector for obtaining bioogical biopsy tissue local metabolic rate Download PDF

Info

Publication number
CN1141558C
CN1141558C CNB001282719A CN00128271A CN1141558C CN 1141558 C CN1141558 C CN 1141558C CN B001282719 A CNB001282719 A CN B001282719A CN 00128271 A CN00128271 A CN 00128271A CN 1141558 C CN1141558 C CN 1141558C
Authority
CN
China
Prior art keywords
mrow
temperature
thin
msup
metabolic rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB001282719A
Other languages
Chinese (zh)
Other versions
CN1358988A (en
Inventor
静 刘
刘静
姬妍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Key Laboratory of Cryogenics of CAS
Original Assignee
Cryogenic Laboratory of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cryogenic Laboratory of CAS filed Critical Cryogenic Laboratory of CAS
Priority to CNB001282719A priority Critical patent/CN1141558C/en
Publication of CN1358988A publication Critical patent/CN1358988A/en
Application granted granted Critical
Publication of CN1141558C publication Critical patent/CN1141558C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

The present invention relates to a multipoint temperature detection device for the on-body detection of the local metabolic rate of biologic living tissues, which comprises a multipoint temperature probe, a data collector and a computer, wherein the multipoint temperature probe is composed of a thin-wall pipe, a wafer welded on the top end, a temperature sensor vertically inlaid in the pipe wall of the thin-wall pipe and a temperature sensor inlaid in the wafer, a temperature sensor is arranged at the circle center of the wafer, four temperature sensors is arrayed in a cross shape around the wafer, and a leading wire of each temperature sensor is extended out by the thin-wall pipe to be connected with the data collector which is connected with the computer. The present invention has the advantages of simple structure, low cost, convenient operation, high precision and high response speed.

Description

Multipoint temperature detection device for in vivo measurement of local metabolic rate of biological living tissue
The invention relates to a multipoint temperature detection device for in-vivo measurement of local metabolic rate of living organism (including human body) tissue, in particular to a multipoint temperature detection device for in-vivo measurement of the local metabolic rate of the living organism tissue, which obtains the spatial and time information of the temperature of a measured part by specially arranging a plurality of temperature sensors with accurately fixed relative positions on a micro probe so as to obtain the local metabolic rate.
The work done by organisms in their bodies to carry out various life processes is mainly: 1. externally visible mechanical work, such as muscle contraction work, as a typical example; 2. mechanical work consumed by internal organ activity (e.g., respiration, blood pumping, gastrointestinal peristalsis, etc.); 3. electrical work driving nerve conduction; 4. driving the synthesis of new cells to replace senescent and dead cells, etc. The final manifestation of the latter three is that all dissipate as thermal energy. Therefore, when the organism does not move externally (natural life state), all metabolic actions are expressed as heat effects, and the metabolic rate refers to the heat production rate in the unit volume of tissues, and the size of the heat production rate has great significance for a large number of clinical applications such as tissue conditions, disease diagnosis and treatment, and the like, and the research on the physiological laws of animals and human bodies, and also becomes an important experimental basis in the aspect of marking the growth, development and aging of animal individuals, for example, calorimetric data show that the heat production rate (metabolic rate) in the unit volume shows a certain rule in the development process of the animal individuals. For this purpose, the biologist defines a basal metabolic rate, which means the "metabolic heat production per unit volume per unit time of an individual animal in the resting state, i.e. in the basal state" (in J/m)3S or W/m3) The parameter size is an important physiological index and plays an important role in thermal analysis of animals including human bodies. Measuring the variation of basal metabolic rate is of great significance for the diagnosis of certain diseases. For example, with hypothyroidism, the basal metabolic rate will be 20-40% lower than normal, while with hyperthyroidism, the basal metabolic rate will be 25-80% higher than normal. In addition, it is known that the metabolic processes of tissues are enhanced when the body is diseased or inflamed. Abnormal heat generation also often occurs at the tumor site due to hyperglycolysis of immature cells and vascular abundance and rapid growth. One of the main functions of metabolic thermogenesis is also to maintain a very stable temperature in the animal. In summary, for the reasons mentioned above, research on metabolic rate measurement methods and instruments has been a competitive goal of research.
Because the activity of each tissue and organ is different, the metabolic rate of each part of the whole body of the tissue is different in practice, the different physiological problems are reflected, and if the metabolic rate of the parts can be measured in vivo aiming at different tissues and organs, the important medical and psychological significance is achieved.
However, the current situation of measuring the metabolic rate of animals is as follows: typically, the animal is placed in an enclosed space and the animal's metabolic rate is estimated based on the measured volumetric flow rate of blood during expiration and inspiration and the change in oxygen concentration therein. The animal metabolic rate measured by the method is the total metabolic rate of an individual animal. Obviously, this involves a series of biochemical analysis steps and is cumbersome to implement and, more importantly, the total metabolic rate obtained is not representative of the metabolic status of the local tissue. Currently, measuring the metabolic rate of local tissues is not successful, and generally, the metabolic rate is directly measured for an ex vivo small sample or inferred from a local measurement value of oxygen consumption. This cannot represent the actual tissue metabolic state, and the operation is very complicated and difficult, the precision is difficult to ensure, and most importantly, the local metabolic state is difficult to reflect. Therefore, no device has been available to measure the local tissue metabolic rate in vivo.
The invention aims to provide a multipoint temperature detection device for in-vivo measurement of the local tissue metabolic rate Qm of a biological living tissue (including a human body), which has the advantages of simple structure, low cost, minimally invasive type, small injury and convenient operation, obtains the space and time information of the temperature of a measured part only by a plurality of temperature sensors (such as thermocouples and the like) which are specially arranged on a micro probe and accurately fix relative positions, further obtains the comprehensive metabolic rate of the part, has high precision, high response speed and wide temperature measurement range, and fills the blank that no measurement device exists in the field of in-vivo measurement of the local tissue metabolic rate of the biological living tissue.
The embodiments of the present invention are as follows:
the invention provides a multipoint temperature detection device for in vivo measurement of local metabolic rate of living organism tissue, which is characterized by comprising a multipoint temperature probe A, a data acquisition instrument B and a computer C, wherein the multipoint temperature probe A comprises a thin-walled tube 8, a circular disc 9 welded at the top end of the thin-walled tube 8, 3-5 temperature sensors which are longitudinally welded and embedded on the tube wall of the thin-walled tube 8 and 5 temperature sensors which are welded and embedded on the circular disc 9 and are parallel to the axis of the thin-walled tube 8, a temperature sensor 5 in the 5 temperature sensors is positioned at the circle center of the circular disc 9, the other 4 temperature sensors 1, 2, 3 and 4 are arranged in a cross shape and are respectively positioned on the periphery of the circular disc 9, leads of the temperature sensors are arranged in the tube of the thin-walled tube 8, the leads are led out from the bottom end of the thin-walled tube 8 and connected to the input end of the data acquisition instrument, the computer is connected with the power supply;
the diameter of the thin-walled tube 8 of the multipoint temperature probe A is 1-2mm, and the length is 20-100 mm;
the thin-wall pipe 8 and the wafer 9 at the top end of the thin-wall pipe are made of stainless steel or glass with low thermal conductivity;
the temperature sensors are thermocouple temperature sensors or resistance temperature sensors, and the distance between the temperature sensors is 0.1-1 mm.
The multipoint temperature detecting device for in vivo measuring the local metabolic rate of the living organism tissue has the advantages that: the temperature measuring device has the advantages of simple structure, low cost, convenient operation, high precision, high response speed and wide temperature measuring range, can conveniently acquire the space and time information of the temperature of the measured part only by the temperature sensors (such as thermocouples and the like) which are specially arranged on a micro probe and accurately fix a plurality of relative positions, and further acquire the metabolic rate of the part, and fills the blank that no measuring device exists in the field of in vivo measuring the local tissue metabolic rate of living organism tissues.
The working principle is as follows:
the heat balance relationship with general applicability in tissue is: <math> <mrow> <mi>&rho;c</mi> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>T</mi> </mrow> <mrow> <mo>&PartialD;</mo> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mo>&dtri;</mo> <mo>&CenterDot;</mo> <mo>(</mo> <mi>k</mi> <mo>&dtri;</mo> <mi>T</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>b</mi> </msub> <msub> <mi>&rho;</mi> <mi>b</mi> </msub> <msub> <mi>c</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>a</mi> </msub> <mo>-</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>Q</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math> wherein rho and c are density and specific heat of the tissue respectively; k is the tissue thermal conductivity, ρb、cbDensity and specific heat of blood, respectively; omegabIs the blood perfusion rate; t isaT is arterial blood temperature and tissue temperature, respectively;
the above formula can be further expressed as: <math> <mrow> <mi>&rho;c</mi> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>T</mi> </mrow> <mrow> <mo>&PartialD;</mo> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mo>&PartialD;</mo> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mi>x</mi> </msub> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>T</mi> </mrow> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mo>&PartialD;</mo> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mi>y</mi> </msub> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>T</mi> </mrow> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mo>&PartialD;</mo> <mrow> <mo>&PartialD;</mo> <mi>z</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mi>z</mi> </msub> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>T</mi> </mrow> <mrow> <mo>&PartialD;</mo> <mi>z</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>Q</mi> <mi>m</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math> wherein, <math> <mrow> <msubsup> <mi>Q</mi> <mi>m</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&omega;</mi> <mi>b</mi> </msub> <msub> <mi>&rho;</mi> <mi>b</mi> </msub> <msub> <mi>c</mi> <mi>b</mi> </msub> <mo>[</mo> <msub> <mi>T</mi> <mi>a</mi> </msub> <mo>-</mo> <mi>T</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>]</mo> <mo>+</mo> <msub> <mi>Q</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math> i.e. the integrated metabolic rate of the local tissue to be measured, and the metabolic rates indicated below are all referred to as the value.
In general, the density and specific heat of a tissue are relatively stable and thus do not need to be measured, and generally take the following values: rho 1000kg/m3C is 4200J/kg DEG C, and the thermal conductivity of the tissue is generally constant k is 0.5W/m DEG C, so that the local metabolic rate is only related to the temperature field of the part to be measured (including the transient change rate thereof), so as long as the information is measured, the metabolic rate can be determined by the above formula;
therefore, a practical local metabolic rate measuring method can be established, and the basic idea is as follows: inserting a multi-point temperature probe containing spatial information into the tissue, and acquiring temperature data of each measuring point, wherein the local comprehensive metabolic rate obtained by the formula (2) is as follows: <math> <mrow> <msubsup> <mi>Q</mi> <mi>m</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&rho;c</mi> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>T</mi> </mrow> <mrow> <mo>&PartialD;</mo> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <mi>k</mi> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mi>T</mi> </mrow> <mrow> <mo>&PartialD;</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mi>k</mi> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mi>T</mi> </mrow> <mrow> <mo>&PartialD;</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mi>k</mi> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mi>T</mi> </mrow> <mrow> <mo>&PartialD;</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math> generally, since the basal metabolic rate is measured, i.e. the resting state of the animal, the metabolic rate measurement formula can be actually simplified as follows: <math> <mrow> <msubsup> <mi>Q</mi> <mi>m</mi> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mi>k</mi> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mi>T</mi> </mrow> <mrow> <mo>&PartialD;</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mi>k</mi> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mi>T</mi> </mrow> <mrow> <mo>&PartialD;</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mi>k</mi> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mi>T</mi> </mrow> <mrow> <mo>&PartialD;</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math> in the above measurements, it takes a certain time for the tissue temperature to reach a steady state due to the stimulation caused by the insertion of the probe. In the method, the temperature signals of the measuring points can be recorded immediately after the probe is inserted, and the transient temperature information reflects the animalThe metabolic rate is changed by the reflex caused by the probe insertion. Naturally, the measured metabolic rate values should tend to a stable value over time. Therefore, whether the measured metabolic rate is a steady-state value or a transient value, it is attributed to the achievement of <math> <mrow> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>T</mi> </mrow> <mrow> <mo>&PartialD;</mo> <mi>t</mi> </mrow> </mfrac> <mo>,</mo> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mi>T</mi> </mrow> <mrow> <mo>&PartialD;</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>,</mo> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mi>T</mi> </mrow> <mrow> <mo>&PartialD;</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> </math> And
Figure C0012827100063
the above-mentioned measurement. The key to the present invention is to design a corresponding temperature probe to do this.
FIG. 1 shows a schematic diagram of a multi-point temperature probe A with 7 temperature sensors (e.g. thermocouples), in which the relative spatial positions of the probes are strictly fixed to measure the temperature distribution in the three directions x, y and z, and the distances (Δ x, Δ y, Δ z) between the probes are as small as possible (typically 0.1-1mm) under the premise of ensuring the processing, so that the measured temperature can be used to obtain the temperature in equation (2) by a differential method with high accuracy <math> <mrow> <mi>k</mi> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mi>T</mi> </mrow> <mrow> <mo>&PartialD;</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>,</mo> <mi>k</mi> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mi>T</mi> </mrow> <mrow> <mo>&PartialD;</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> </math> Andand the comprehensive metabolic rate value of the part to be detected is calculated.The metabolic rate measurement method at 5 points in the steady state will be discussed. The specific method is that after the temperature of seven probes at the head of the probe is recorded by the data acquisition instrument, the circle center 5 point of the wafer at the top of the multipoint temperature probe A can be correspondingly written out <math> <mrow> <mi>k</mi> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mi>T</mi> </mrow> <mrow> <mo>&PartialD;</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mo>|</mo> <mrow> <mi>point</mi> <mn>5</mn> </mrow> </msub> <mo>&ap;</mo> <mi>k</mi> <mfrac> <mrow> <msub> <mi>T</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>T</mi> <mn>3</mn> </msub> <mo>-</mo> <mn>2</mn> <msub> <mi>T</mi> <mn>5</mn> </msub> </mrow> <mrow> <mi>&Delta;</mi> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>,</mo> </mrow> </math> <math> <mrow> <mi>k</mi> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mi>T</mi> </mrow> <mrow> <mo>&PartialD;</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mo>|</mo> <mrow> <mi>point</mi> <mn>5</mn> </mrow> </msub> <mo>&ap;</mo> <mi>k</mi> <mfrac> <mrow> <msub> <mi>T</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>T</mi> <mn>4</mn> </msub> <mo>-</mo> <mn>2</mn> <msub> <mi>T</mi> <mn>5</mn> </msub> </mrow> <mrow> <mi>&Delta;</mi> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>,</mo> </mrow> </math> But at point 5The measurement of (2) is different from the former, because the probe structure is difficult to measure the values of two parts, namely the upper part and the lower part, of 5 points in the z direction, for example, the temperature sensing device is difficult to arrange on the upper part, the method of moving the probe up and down has the problems of difficult positioning and difficult measurement of transient metabolic rate, and the temperature value below 5 points is the internal temperature value of the probe, so the measured temperature value is not the tissue temperature but the internal temperature value of the probe. To overcome this difficulty we adopted the method at 6 points
Figure C0012827100069
Is close toSimilarly replace the corresponding at point 5This is because the spacing between the thermocouples in the probe structure is very small, and thus the 6 and 5 points correspond to each other
Figure C00128271000611
The values are very close, which solves a rather tricky technical problem. And the temperature data at points 6 and 7 are recorded by the thermocouple at that point, so that: <math> <mrow> <mi>k</mi> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mi>T</mi> </mrow> <mrow> <mo>&PartialD;</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mo>|</mo> <mrow> <mi>point</mi> <mn>5</mn> </mrow> </msub> <mo>&ap;</mo> <mi>k</mi> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mi>T</mi> </mrow> <mrow> <mo>&PartialD;</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mo>|</mo> <mrow> <mi>point</mi> <mn>6</mn> </mrow> </msub> <mo>&ap;</mo> <mi>k</mi> <mfrac> <mrow> <msub> <mi>T</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>T</mi> <mn>7</mn> </msub> <mo>-</mo> <mn>2</mn> <msub> <mi>T</mi> <mn>6</mn> </msub> </mrow> <mrow> <mi>&Delta;</mi> <msup> <mi>z</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>.</mo> </mrow> </math> the steady state metabolic rate values from equation (4) are then: <math> <mrow> <msubsup> <mi>Q</mi> <mi>m</mi> <mo>*</mo> </msubsup> <msub> <mo>|</mo> <mrow> <mi>point</mi> <mn>5</mn> </mrow> </msub> <mo>&ap;</mo> <mo>-</mo> <mi>k</mi> <mfrac> <mrow> <msub> <mi>T</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>T</mi> <mn>3</mn> </msub> <mo>-</mo> <mn>2</mn> <msub> <mi>T</mi> <mn>5</mn> </msub> </mrow> <mrow> <mi>&Delta;</mi> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mi>k</mi> <mfrac> <mrow> <msub> <mi>T</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>T</mi> <mn>4</mn> </msub> <mo>-</mo> <mn>2</mn> <msub> <mi>T</mi> <mn>5</mn> </msub> </mrow> <mrow> <mi>&Delta;</mi> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mi>k</mi> <mfrac> <mrow> <msub> <mi>T</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>T</mi> <mn>7</mn> </msub> <mo>-</mo> <mn>2</mn> <msub> <mi>T</mi> <mn>6</mn> </msub> </mrow> <mrow> <mi>&Delta;</mi> <msup> <mi>z</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math> if Δ x ═ Δ y ═ Δ z ═ Δ s, the above equation can be simplified as: <math> <mrow> <msubsup> <mi>Q</mi> <mi>m</mi> <mo>*</mo> </msubsup> <msub> <mo>|</mo> <mrow> <mi>point</mi> <mn>5</mn> </mrow> </msub> <mo>&ap;</mo> <mo>-</mo> <mi>k</mi> <mfrac> <mrow> <mn>2</mn> <msub> <mi>T</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>T</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>T</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>T</mi> <mn>4</mn> </msub> <mo>+</mo> <msub> <mi>T</mi> <mn>7</mn> </msub> <mo>-</mo> <mn>2</mn> <msub> <mi>T</mi> <mn>6</mn> </msub> <mo>-</mo> <mn>4</mn> <msub> <mi>T</mi> <mn>5</mn> </msub> </mrow> <mrow> <mi>&Delta;</mi> <msup> <mi>s</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math> therefore, by using the multi-point temperature probe provided by the invention, the tissue metabolic rate of the center of the head of the probe (namely 5 points) can be measured after the temperature of 7 fixed points is obtained.
The invention is still quite effective for transient tissue metabolic rates at 5 points. The measurement principle is explained here. In this case, the difference from the steady state case is that it is necessary to obtain a transient temperature value at each point, and then, similarly, let the time k be the steady state, and measure the temperature T at each point at that time1 k,T2 k,...,T7 kThen the temperature value T at the moment when k +1 is measured1 k+1,T2 k+1,...,T7 k+1Then, at 5 pointThe treatment process is corresponding to the treatment process, <math> <mrow> <mi>k</mi> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mi>T</mi> </mrow> <mrow> <mo>&PartialD;</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msubsup> <mo>|</mo> <mrow> <mi>point</mi> <mn>5</mn> </mrow> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <mi>k</mi> <mfrac> <mrow> <msubsup> <mi>T</mi> <mn>1</mn> <mrow> <mi>K</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>T</mi> <mn>3</mn> <mrow> <mi>K</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <mn>2</mn> <msubsup> <mi>T</mi> <mn>5</mn> <mrow> <mi>K</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> <mrow> <mi>&Delta;</mi> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>,</mo> <mi>k</mi> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mi>T</mi> </mrow> <mrow> <mo>&PartialD;</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msubsup> <mo>|</mo> <mrow> <mi>point</mi> <mn>5</mn> </mrow> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <mi>k</mi> <mfrac> <mrow> <msubsup> <mi>T</mi> <mn>2</mn> <mrow> <mi>K</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>T</mi> <mn>4</mn> <mrow> <mi>K</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <mn>2</mn> <msubsup> <mi>T</mi> <mn>5</mn> <mrow> <mi>K</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> <mrow> <mi>&Delta;</mi> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>,</mo> </mrow> </math> <math> <mrow> <mi>k</mi> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mi>T</mi> </mrow> <mrow> <mo>&PartialD;</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msubsup> <mo>|</mo> <mrow> <mi>point</mi> <mn>5</mn> </mrow> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <mi>k</mi> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mi>T</mi> </mrow> <mrow> <mo>&PartialD;</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msubsup> <mo>|</mo> <mrow> <mi>point</mi> <mn>6</mn> </mrow> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <mi>k</mi> <mfrac> <mrow> <msubsup> <mi>T</mi> <mn>1</mn> <mrow> <mi>K</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>T</mi> <mn>7</mn> <mrow> <mi>K</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <mn>2</mn> <msubsup> <mi>T</mi> <mn>6</mn> <mrow> <mi>K</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> <mrow> <mi>&Delta;</mi> <msup> <mi>z</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math> while the transients in equation (3) are: <math> <mrow> <mi>&rho;c</mi> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>T</mi> </mrow> <mrow> <mo>&PartialD;</mo> <mi>t</mi> </mrow> </mfrac> <msubsup> <mo>|</mo> <mrow> <mi>point</mi> <mn>5</mn> </mrow> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <mi>&rho;c</mi> <mfrac> <mrow> <msubsup> <mi>T</mi> <mn>5</mn> <mrow> <mi>K</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>T</mi> <mn>5</mn> <mi>K</mi> </msubsup> </mrow> <mi>&Delta;t</mi> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math> here, the time interval Δ t should be as small as possible to reduce the error due to the difference. Thus, the tissue metabolic rate at the time k +1 was obtained as: <math> <mrow> <msubsup> <mi>Q</mi> <mi>m</mi> <mo>*</mo> </msubsup> <msubsup> <mo>|</mo> <mrow> <mi>point</mi> <mn>5</mn> </mrow> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <mi>&rho;c</mi> <mfrac> <mrow> <msubsup> <mi>T</mi> <mn>5</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>T</mi> <mn>5</mn> <mi>k</mi> </msubsup> </mrow> <mi>&Delta;t</mi> </mfrac> <mo>-</mo> <mi>k</mi> <mfrac> <mrow> <msubsup> <mi>T</mi> <mn>1</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>T</mi> <mn>3</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <mn>2</mn> <msubsup> <mi>T</mi> <mn>5</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> <mrow> <mi>&Delta;</mi> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mi>k</mi> <mfrac> <mrow> <msubsup> <mi>T</mi> <mn>2</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>T</mi> <mn>4</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <mn>2</mn> <msubsup> <mi>T</mi> <mn>5</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> <mrow> <mi>&Delta;</mi> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mi>k</mi> <mfrac> <mrow> <msubsup> <mi>T</mi> <mn>1</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>T</mi> <mn>7</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <mn>2</mn> <msubsup> <mi>T</mi> <mn>6</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> <mrow> <mi>&Delta;</mi> <msup> <mi>z</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math> similarly, when Δ x ═ Δ y ═ Δ z ═ Δ s, the above formula can be simplified as: <math> <mrow> <msubsup> <mi>Q</mi> <mi>m</mi> <mo>*</mo> </msubsup> <mo>&ap;</mo> <mi>&rho;c</mi> <mfrac> <mrow> <msubsup> <mi>T</mi> <mn>5</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>T</mi> <mn>5</mn> <mi>k</mi> </msubsup> </mrow> <mi>&Delta;t</mi> </mfrac> <mo>-</mo> <mi>k</mi> <mfrac> <mrow> <mn>2</mn> <msubsup> <mi>T</mi> <mn>1</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>T</mi> <mn>2</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>T</mi> <mn>3</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>T</mi> <mn>4</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>T</mi> <mn>7</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <mn>2</mn> <msubsup> <mi>T</mi> <mn>6</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <mn>4</mn> <msubsup> <mi>T</mi> <mn>5</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> </mrow> <mrow> <mi>&Delta;</mi> <msup> <mi>s</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
therefore, the changing tissue metabolic rate can be obtained according to the transient temperature collected at each point. The whole process is automatically recorded and calculated by a data acquisition instrument in combination with a computer. The user can read the measured metabolic rate from the display screen.
The present invention will be described in further detail with reference to the accompanying drawings and specific embodiments.
FIG. 1 is a block diagram of the present invention;
FIG. 2 is a schematic structural diagram of a multi-point temperature probe A of the present invention;
FIG. 3 is a schematic diagram showing the position of a temperature sensor vertically embedded in the wall of a thin-walled tube 8;
wherein: multipoint temperature probe A data collector B computer C
Thin-walled tube 8, wafer 9, temperature sensor lead 10
Temperature sensors 1, 2, 3, 4, 5, 6, 7
As can be seen from the figure, the multipoint temperature detecting device for in vivo measurement of the local metabolic rate of the living organism tissue is characterized by comprising a multipoint temperature probe A, a data acquisition instrument B and a computer C, wherein the multipoint temperature probe A comprises a thin-walled tube 8, a circular disc 9 welded at the top end of the thin-walled tube 8, 3-5 temperature sensors longitudinally welded and embedded on the tube wall of the thin-walled tube 8 parallel to the axis of the thin-walled tube 8 and 5 temperature sensors welded and embedded on the circular disc 9, the temperature sensor 5 in the 5 temperature sensors is positioned at the circle center of the circular disc 9, the other 4 temperature sensors 1, 2, 3 and 4 are arranged in a cross shape and are respectively positioned on the periphery of the circular disc 9, leads of the temperature sensors are arranged in the tube of the thin-walled tube 8, the leads are led out from the bottom end of the thin-walled tube 8 and are connected to the input end of the data acquisition instrument B, the output end of, the computer is connected with the power supply;
the diameter of the thin-wall tubule 8 of the multipoint temperature probe A is 1-2mm, and the length is 20-100 mm;
the thin-wall pipe 8 and the wafer 9 at the top end of the thin-wall pipe are made of stainless steel or glass with low thermal conductivity; the temperature sensors are thermocouple temperature sensors or resistance temperature sensors, and the distance between the temperature sensors is 0.1-1 mm.
The length of the probe can be designed at will according to the depth of the part to be measured (but is generally 2-10cm), and the diameter of the probe is as small as possible (generally 1-2mm) under the condition of ensuring the assembly precision so as to reduce the injury degree of the probe inserted into the tissue to the minimum; the accurate position of the thermocouple interval is calibrated and transmitted to processing software in a computer so as to accurately calculate the metabolic rate; the thermocouple size is also preferably the minimum size on the premise of ensuring processing, and the current commercially available small thermocouple wires with the diameters of 20 microns, 80 microns and the like can be directly used, or smaller thermocouples can be specially processed according to the requirement, and the thermocouples and the probe tube can be integrally manufactured. The thin-wall pipe 8 and the wafer 9 can be made of stainless steel pipes with low thermal conductivity; the glass can also be cast;
the temperature sensors can be thermocouple temperature sensors or resistance temperature sensors, the temperature sensors (1, 2,.. 7) of the invention are embedded (or welded) on the pipe wall of the thin-walled pipe 8 and the top end wafer 9, the heat conductivity coefficient of the material of the thin-walled pipe 8 is as small as possible so as to avoid the heat conduction in the thin-walled pipe 8 to cause larger temperature measurement errors, otherwise, the temperature measured by the temperature sensors is the temperature of the thin-walled pipe 8 but not the temperature of the contacted biological tissues, 3 temperature sensors (1, 6, 7) on the wall surface of the thin-walled pipe 8 are arranged in a line along the longitudinal direction of the wall surface of the thin-walled pipe 8, 5 thermocouples (1, 2, 3, 4, 5) on the top end wafer 9 are arranged in a cross shape, wherein 4 thermocouples (1, 2, 3, 4) are arranged on the periphery of the top end wafer 9, and the 5 thermocouple is arranged in the center of the wafer 9, therefore, the multipoint temperature probe a provided in this embodiment has 7 multipoint temperature probes in total (of course, 8 or 9 multipoint temperature probes may be used as needed, for example, 5 temperature sensors arranged in a line along the longitudinal direction of the wall surface of the thin-walled tube 8), the relative positions of the temperature sensors are accurately fixed, the coordinate information of the temperature sensors is stored in the data acquisition instrument, and then after the tissue temperatures at these positions are obtained, the tissue metabolic rate at the center of the top wafer 9 of the probe can be calculated by the data acquisition instrument and the computer according to the temperature and the position of each measurement point. The transient or spatially non-uniform metabolic rate can be displayed on a computer screen and the metabolic rate values at different times can be given according to requirements. The data acquisition instrument can specifically select an Agilent 34907A type signal acquisition and processor with better cost performance. The probe is moved to measure the metabolic rate of different parts. Therefore, it is a device that can measure the local metabolic rate. The computer used by the system can be a common computer, the price is very low, and the performance completely meets the requirements. To facilitate insertion of the probe into tissue (since the probe head is flat), the probe may be provided with a needle with a sharp tip at its forward end to provide a small hole in the skin to assist in insertion of the probe.
The assembly steps of the multipoint temperature probe A of the invention are as follows:
1. micro holes are formed in the wall of the thin-walled tube 8 according to the marked positions to form a series of uniformly arranged small holes with the diameter of about 80-100 microns, the temperature sensors (6, 7) are welded on the wall surface at the micro holes and exposed so as to be in contact with biological tissues to measure the temperature of the part, and the wiring harness 10 of the temperature sensors is led out from the hollow tube;
2. after the thermocouples (6 and 7) on the wall surface of the tube are installed, 5 small holes are formed in the wafer 9, 5 temperature sensors (1, 2, 3, 4 and 5) are welded at the small holes, and then leads 10 of the five temperature sensors (1, 2, 3, 4 and 5) are sequentially and carefully led out along the tube from the lower end, wherein each temperature sensor needs to be marked;
3. and (3) precisely covering the wafer 9 welded with the 5 temperature sensors on the upper end of the thin-walled tube 5, and welding and fixing the wafer and the thin-walled tube, so as to manufacture the multipoint temperature probe A with the determined sensor position. The output end of the temperature sensor is connected to the input end of the data acquisition instrument, and the temperature sensor is placed into ice water for cold break compensation to obtain the reference temperature. And the data acquisition instrument is connected with the computer. Thus, the temperature signals collected by the multipoint temperature sensors of the multipoint temperature probe A are transmitted to the computer, so as to obtain the transient metabolic rate value of the measured position.
From the above, the temperature sensor of the invention is a thermocouple temperature sensor (1, 2., 7) or a resistance temperature sensor, and has the advantages of high response speed, high precision, low price, easy manufacture of a multi-point temperature probe A, convenient data acquisition and processing, no complex circuit, simple structure, easy temperature measurement and tissue thermal state evaluation, wide test range and suitability for measuring the metabolic rate of biological tissues in different deep parts and at different moments.
When the device of the invention is used for measuring the local metabolic rate of the living biological tissue, the measurement can be carried out in static and dynamic conditions. The static measurement procedure is described here first: connecting a temperature sensor lead on a probe to a data acquisition instrument, inserting the data acquisition instrument to a computer, inserting a probe into a tissue part to be tested, starting the data acquisition instrument and the computer, starting the temperature sensor to acquire a temperature signal of the touched part, simultaneously monitoring the temperature signal by the data acquisition instrument and the computer, stopping acquisition after the temperature signal recorded by each temperature sensor tends to be stable, calculating a steady metabolic rate by a formula (6), and inserting the probe into a corresponding position by the same method to acquire the metabolic rate of other parts of the tissue. For the unsteady metabolic rate caused by other factors such as external heating, cooling and other stimulation, the transient metabolic rate of the tissue at the center of the top end of the probe can be calculated by the formula (10) by only continuously monitoring temperature signals at different moments.

Claims (5)

1. A multipoint temperature detection device for in vivo measurement of local metabolic rate of living organism tissue is characterized by comprising a multipoint temperature probe (A), a data acquisition instrument (B) and a computer (C), wherein the multipoint temperature probe (A) consists of a thin-wall tube (8), a circular sheet (9) welded at the top end of the thin-wall tube (8), 3-5 temperature sensors longitudinally welded and embedded on the tube wall of the thin-wall tube (8) and parallel to the axis of the thin-wall tube (8) and 5 temperature sensors welded and embedded on the circular sheet (9), one of the 5 temperature sensors positioned at the circle center of the circular sheet (9) is positioned at the circle center of the circular sheet (9), the other 4 temperature sensors (1), (2), (3) and (4) are arranged in a cross shape and are respectively positioned on the periphery of the circular sheet (9), and leads of the temperature sensors are arranged in the tube of the thin-wall tube (8), the bottom end of the thin-wall pipe (8) is led out and connected with the input end of the data acquisition instrument B, the output end of the data acquisition instrument B is connected with a computer, and the computer is externally connected with a power supply.
2. The multipoint temperature probe for in vivo measurement of local metabolic rate of a living organism tissue as claimed in claim 1, wherein: the diameter of the thin-wall tubule (8) of the multipoint temperature probe A is 1-2mm, and the length is 20-100 mm.
3. The multipoint temperature probe for in vivo measurement of local metabolic rate of a living organism tissue as claimed in claim 1, wherein: the thin-wall pipe (8) and the disc (5) at the top end of the thin-wall pipe are made of stainless steel or glass with low thermal conductivity.
4. The multipoint temperature probe for in vivo measurement of local metabolic rate of a living organism tissue as claimed in claim 1, wherein: the temperature sensor is a thermocouple temperature sensor or a resistance temperature sensor.
5. The multipoint temperature probe for in vivo measurement of local metabolic rate of a living organism tissue as claimed in claim 1, wherein: the distance between the temperature sensors is 0.1-1 mm.
CNB001282719A 2000-12-14 2000-12-14 Multi-point temp. detector for obtaining bioogical biopsy tissue local metabolic rate Expired - Fee Related CN1141558C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB001282719A CN1141558C (en) 2000-12-14 2000-12-14 Multi-point temp. detector for obtaining bioogical biopsy tissue local metabolic rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB001282719A CN1141558C (en) 2000-12-14 2000-12-14 Multi-point temp. detector for obtaining bioogical biopsy tissue local metabolic rate

Publications (2)

Publication Number Publication Date
CN1358988A CN1358988A (en) 2002-07-17
CN1141558C true CN1141558C (en) 2004-03-10

Family

ID=4593086

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB001282719A Expired - Fee Related CN1141558C (en) 2000-12-14 2000-12-14 Multi-point temp. detector for obtaining bioogical biopsy tissue local metabolic rate

Country Status (1)

Country Link
CN (1) CN1141558C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016201136A1 (en) 2015-06-10 2016-12-15 Ekos Corporation Ultrasound catheter

Also Published As

Publication number Publication date
CN1358988A (en) 2002-07-17

Similar Documents

Publication Publication Date Title
Pfützner et al. Impact of posture and fixation technique on impedance spectroscopy used for continuous and noninvasive glucose monitoring
JP3830528B2 (en) Combined flow, pressure and temperature sensor
US8257269B2 (en) Apparatus for analysing pulse using array of pressure sensors
US6827689B2 (en) Sphygmorgh measure method and device for pulse pressure and blood flow rate
US11452472B2 (en) Miniaturized sensing probe and manufacturing method thereof
US5507289A (en) System and method to diagnose bacterial growth
Neuman Measurement of vital signs: temperature [Tutorial]
Bose et al. Development of a disposable, paper-based blood urea sensor for point-of-care health monitoring
CN2454769Y (en) Multi-point temp. detection device for on-body detection of local metabolic-rate of biologic live tissue
CN1141558C (en) Multi-point temp. detector for obtaining bioogical biopsy tissue local metabolic rate
US4445515A (en) Apparatus for performing tissue perfusion measurements
EP3718477A1 (en) Apparatus
Wang et al. O2 microsensors for minimally invasive tissue monitoring
McDonald Development of a pO2-Guided Fine Needle Tumor Biopsy Device
WO2009142599A1 (en) Device for detecting oxygen depletion in fetuses during childbirth
Parvis et al. Medical measurements and uncertainties
CN107582070B (en) Intervention type oxygen partial pressure-temperature composite probe
JP3507161B2 (en) Blood analyte measuring device
Pasion et al. Evaluation of the monitor cursor-line method for measuring pulmonary artery and central venous pressures
Connelly Bland-Altman plots.
Yuan et al. An accurate, flexible and small optical fiber sensor: a novel technological breakthrough for real-time analysis of dynamic blood flow data in vivo
O'Dowd et al. Ion-selective sensors for assessment of the fetus
Xu et al. A needle-electrochemical microsensor for in vivo measurement of the partial pressure of oxygen in acupuncture points
CN205568905U (en) Scope auxiliary device that can externally detect
WO2024211615A1 (en) Multilayered catalytic sensor system for lactate measurement, and associated methods of manufacturing and use thereof

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040310

Termination date: 20100114