CN114152837B - Wave head identification method and device under multi-scale wavelet transform - Google Patents

Wave head identification method and device under multi-scale wavelet transform Download PDF

Info

Publication number
CN114152837B
CN114152837B CN202010943842.6A CN202010943842A CN114152837B CN 114152837 B CN114152837 B CN 114152837B CN 202010943842 A CN202010943842 A CN 202010943842A CN 114152837 B CN114152837 B CN 114152837B
Authority
CN
China
Prior art keywords
scale
reference point
wavelet transform
wave head
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010943842.6A
Other languages
Chinese (zh)
Other versions
CN114152837A (en
Inventor
黄涛
徐晓春
谢华
赵青春
陈玉林
谈浩
戴光武
陆金凤
王玉龙
李奔
张洪喜
徐海洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NR Electric Co Ltd
NR Engineering Co Ltd
Original Assignee
NR Electric Co Ltd
NR Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NR Electric Co Ltd, NR Engineering Co Ltd filed Critical NR Electric Co Ltd
Priority to CN202010943842.6A priority Critical patent/CN114152837B/en
Priority to PCT/CN2021/087227 priority patent/WO2022052465A1/en
Publication of CN114152837A publication Critical patent/CN114152837A/en
Application granted granted Critical
Publication of CN114152837B publication Critical patent/CN114152837B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/085Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/213Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
    • G06F18/2131Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on a transform domain processing, e.g. wavelet transform
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/02Preprocessing
    • G06F2218/04Denoising
    • G06F2218/06Denoising by applying a scale-space analysis, e.g. using wavelet analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Complex Calculations (AREA)

Abstract

The invention discloses a wave head identification method under multi-scale wavelet transform, which comprises the following steps: acquiring fault traveling wave current data, performing multi-scale wavelet transformation on the traveling wave current data, and solving a modulus maximum value set under each scale; searching in a small scale longitudinally layer by taking the first mode maximum value of the maximum scale as a reference point, and sequentially obtaining the reference point of each scale in a wave head credible interval; each scale calculates a transverse credibility index from each datum point; and finding the minimum scale of the comprehensive credibility of the reference points according to the reference points of all scales and the transverse credibility index, and locally correcting the reference points, wherein the time corresponding to the locally corrected reference points is used as the wave head time. The invention also discloses a corresponding recognition device. The invention can obviously improve the wave head moment extraction precision when the wave head change of the traveling wave is flat.

Description

Wave head identification method and device under multi-scale wavelet transform
Technical Field
The invention relates to the field of relay protection of power systems, in particular to a wave head identification method and device under multi-scale wavelet transformation.
Background
The fault location and traveling wave protection technology can be realized by using transient traveling waves generated on the line when the transmission line fails. The identification of the traveling wave head is a key link for extracting the characteristics of the transient traveling wave, the wavelet transformation has good time-frequency localization capability, singular signals can be quickly and accurately detected, meanwhile, the multi-scale singularity detection of the signals can be realized through the change of scale factors, and the method is the most effective mathematical tool for analyzing the traveling wave.
In actual engineering, due to the influence of factors such as transition resistance, fault distance and the like, a traveling wave may be seriously attenuated, a traveling wave head detected by a measuring point is relatively gentle, singularity characteristics are not obvious, and the precision of traveling wave head identification is seriously influenced by considering the interference of noise. The multi-scale wavelet transform has obvious filtering characteristic difference under different scales, small scales are sensitive to high-frequency signals, traveling wave detection with obvious singularity characteristics is very accurate, but the influence of noise is large, the sensitive frequency of the wavelet transform is continuously reduced along with the increase of the scales, the influence of noise is also obviously reduced, the detection of the traveling wave signals with gentle wave heads is facilitated, and the identification precision of the large-scale downlink wave head at the moment is deficient.
Disclosure of Invention
The present application aims to provide a method and an apparatus for identifying a wave head under multi-scale wavelet transform, which comprehensively utilize multi-scale wavelet transform information to identify a traveling wave head, and implement adaptive identification of traveling wave heads with different change characteristics, thereby improving the accuracy of extracting a traveling wave arrival time, especially the accuracy of identifying a traveling wave head when the traveling wave head is relatively flat.
In order to achieve the above purpose, the solution of the application is:
on one hand, the application provides a wave head identification method under multi-scale wavelet transform, which comprises the following steps:
step 1: acquiring fault traveling wave current data, performing multi-scale wavelet transformation on the traveling wave current data, and solving a modulus maximum value set under each scale;
step 2: searching in a small scale longitudinally layer by taking the first mode maximum value of the maximum scale as a reference point, and sequentially obtaining the reference point of each scale in a wave head credible interval;
and step 3: each scale calculates a transverse credibility index from each datum point;
and 4, step 4: and finding the minimum scale of the comprehensive credibility of the reference points according to the reference points of all scales and the transverse credibility index, and locally correcting the reference points, wherein the time corresponding to the locally corrected reference points is taken as the wave head time.
Preferably, in the step 1, the multi-scale wavelet transform method is n (n ≧ 3) scale dyadic wavelet transform.
Preferably, in step 1, the modulus maximum value set at each scale is obtained by the following formula:
Figure BDA0002671507730000021
in the formula, k is the scale of wavelet transformation, k =1, 2, \8230;, n; n is the maximum scale of wavelet transform; i represents the serial number of the wavelet transformation result; m is a unit of k,i-1 、m k,i 、m k,i+1 Absolute values of wavelet transformation results of ith-1, ith and i +1 points of the kth scale respectively;
Figure BDA0002671507730000022
is the maximum value of the absolute value of the k-th scale wavelet transform result,
Figure BDA0002671507730000023
n is the total number of the traveling wave current data; l is coefficient, and the value range is [0.2,0.5 ]]。
Preferably, in step 2, the wave head confidence interval in each scale is:
Figure BDA0002671507730000024
in the formula, n is the maximum scale of wavelet transformation; i is n A set of modulus maxima at the nth scale; k is the scale of wavelet transformation;
Figure BDA0002671507730000025
is a reference point at the k +1 th scale; c k And the wave head confidence interval at the k-th scale.
Preferably, in step 2, the method for calculating the reference points of each scale is as follows:
Figure BDA0002671507730000026
in the formula, k is the scale of wavelet transformation; j. the design is a square k A modulus maximum value set in a credible interval of a kth scale wave head; n is the maximum scale of wavelet transformation; i is k A set of modulus maxima at the k-th scale; i is k,j Is I k The jth element of (1); c k Is a wave head credible interval under the k-th scale;
Figure BDA0002671507730000027
is a reference point at the k-th scale; min (J) k ) Is a set J k Minimum of all elements in (c).
Preferably, in step 3, the transverse reliability index in each scale is the number of elements in the modulus maximum value set in the scale, which are smaller than the reference point in the scale, and the calculation formula is as follows:
Figure BDA0002671507730000028
in the formula, k is the scale of wavelet transformation; i is k A set of mode maximum values at the kth scale; I.C. A k,j Is I k The jth element of (1);
Figure BDA0002671507730000031
is a reference point at the k-th scale; n is a radical of an alkyl radical k And the k-th scale is a transverse reliability index.
Preferably, in the step 4, the confidence point is integrated with the smallest scale k min The judging method comprises the following steps:
Figure BDA0002671507730000032
in the formula, k is the scale of wavelet transformation; n is k The transverse reliability index under the k scale is obtained; j. the design is a square k A modulus maximum value set in a credible interval of a kth scale wave head;
Figure BDA0002671507730000033
indicating an empty set.
Preferably, in the step 4, the step of locally correcting the reference point includes: at the k-th min Results of scale wavelet transform
Figure BDA0002671507730000034
From the second place to
Figure BDA0002671507730000035
The point starts searching forward until finding less than
Figure BDA0002671507730000036
The first point of (2), the latter point of the point is taken as the reference point after the local correction; wherein k is min Is the minimum scale of the reference point for comprehensive credibility, N is the total number of the traveling wave current data,
Figure BDA0002671507730000037
is the k-th min The ith point of the scale wavelet transform result,
Figure BDA0002671507730000038
is the k-th min A reference point on a scale.
On the other hand, the application provides a wave head identification device under multi-scale wavelet transform, which comprises a modulus maximum value set calculation unit, a datum point calculation unit, a transverse reliability index calculation unit and a correction identification unit which are sequentially connected; wherein:
the modulus maximum value set calculation unit: the system is used for acquiring fault traveling wave current data, performing multi-scale wavelet transformation on the traveling wave current data and solving a modulus maximum value set under each scale;
the reference point calculating unit: the device is used for searching layer by layer in the longitudinal direction of the small scale by taking the first mode maximum value with the maximum scale as a reference point, and sequentially solving the reference point of each scale in a wave head credible interval;
the lateral reliability index calculation unit: the device is used for solving the transverse credibility index of each reference point according to each scale;
the correction recognition unit: and the minimum scale which is used for finding the comprehensive credibility of the reference points according to the reference points of all scales and the transverse credibility index, and locally correcting the reference points, wherein the time corresponding to the locally corrected reference points is the wave head time.
Preferably, in the above apparatus, in the module maximum value set calculating unit, the multi-scale wavelet transform method is n (n ≧ 3) scale dyadic wavelet transform.
Preferably, in the apparatus, in the modulus maximum value set calculation unit, a modulus maximum value set at each scale is obtained by the following formula:
Figure BDA0002671507730000041
in the formula, k is the scale of wavelet transformation, k =1, 2, \8230;, n; n is the maximum scale of wavelet transform; i represents the serial number of the wavelet transformation result; m is a unit of k,i-1 、m k,i 、m k,i+1 Absolute values of wavelet transformation results of the ith-1, ith and ith +1 points of the kth scale respectively;
Figure BDA0002671507730000042
is the maximum value of the absolute value of the kth-scale wavelet transform result,
Figure BDA0002671507730000049
n is the total number of the traveling wave current data; l is a coefficient and has a value range of [0.2,0.5 ]]。
Preferably, in the above apparatus, the reference point calculation means may calculate the wave head confidence interval at each scale as follows:
Figure BDA0002671507730000043
in the formula, n is the maximum scale of wavelet transformation; i is n A set of modulus maxima at the nth scale; k is the scale of wavelet transformation;
Figure BDA0002671507730000044
is a reference point at the k +1 th scale; c k And the wave head credibility interval at the k-th scale is shown.
Preferably, in the above apparatus, the reference point calculation means calculates the reference points for each scale by:
Figure BDA0002671507730000045
in the formula, k is the scale of wavelet transformation; j is a unit of k A module maximum value set in a credible interval of the kth scale wave head; n is the maximum scale of wavelet transformation; I.C. A k A set of modulus maxima at the k-th scale; i is k,j Is shown as I k The jth element of (1); c k A wave head credible interval under the k scale;
Figure BDA0002671507730000046
is a reference point at the k-th scale; min (J) k ) Is a set J k The minimum value of all elements in (c).
Preferably, in the above apparatus, the lateral reliability index at each scale in the lateral reliability index calculation unit is the number of elements smaller than the reference point at the scale in the set of modulo maximum values at the scale, and the calculation formula is as follows:
Figure BDA0002671507730000047
in the formula, k is the scale of wavelet transformation; i is k A set of modulus maxima at the k-th scale; I.C. A k,j Is shown as I k The jth element of (1);
Figure BDA0002671507730000048
is a reference point at the k-th scale; n is a radical of an alkyl radical k And the k-th scale is a transverse reliability index.
Preferably, in the above apparatus, the correction recognition means may recognize a minimum scale k in which the reference points are integrated with confidence min The judging method comprises the following steps:
Figure BDA0002671507730000051
in the formula, k is the scale of wavelet transformation; n is a radical of an alkyl radical k The k-th scale is a transverse reliability index; j. the design is a square k A modulus maximum value set in a credible interval of a kth scale wave head;
Figure BDA0002671507730000052
indicating an empty set.
Preferably, in the above apparatus, the correction identifying means locally corrects the reference point by: at the k-th min Scale wavelet transform results
Figure BDA0002671507730000053
From the second place to
Figure BDA0002671507730000054
The point starts searching until finding less than
Figure BDA0002671507730000055
The first point of (2), the latter point of the point is taken as the reference point after the local correction; wherein k is min Is the minimum scale of the reference point for comprehensive credibility, N is the total number of the traveling wave current data,
Figure BDA0002671507730000056
is the kth min The ith point of the scale wavelet transform result,
Figure BDA0002671507730000057
is the k-th min A reference point on a scale.
The beneficial effect of this application is:
after the scheme is adopted, on the basis of acquiring traveling wave sampling data, the method and the device position the reference point of the traveling wave head to the minimum scale which is comprehensively credible by carrying out longitudinal credible interval search and transverse credibility judgment on a multi-scale wavelet transformation result, ensure the optimization of the wave head identification precision from the minimum wave transformation scale, and then solve the problem that the identification of the wave head time possibly lags when the minimum scale which is comprehensively credible is still larger by carrying out local correction on the reference point of the wave head, thereby effectively improving the traveling wave head identification precision when the wave head changes slowly.
Drawings
Fig. 1 is a flowchart of an embodiment of a method for identifying a wave head under multi-scale wavelet transform according to the present application.
Fig. 2 is a first specific embodiment of a method for identifying a wave head under multi-scale wavelet transform according to the present application.
Fig. 3 is a second specific embodiment of a method for identifying a wave head under multi-scale wavelet transform according to the present application.
Fig. 4 is an embodiment of an apparatus for wave head recognition under multi-scale wavelet transform according to the present application.
Detailed Description
The following detailed description of the present application will be provided in conjunction with the accompanying drawings and specific examples to enable those skilled in the art to better understand the present application and to practice the present application, but the examples are not intended to limit the present application.
As shown in fig. 1, an embodiment of a method for identifying a wave head under multi-scale wavelet transform includes the following steps:
step 1: acquiring fault traveling wave current data, performing multi-scale wavelet transformation on the traveling wave current data, and solving a modulus maximum value set under each scale;
step 2: searching in a small scale longitudinally layer by taking the first mode maximum value of the maximum scale as a reference point, and sequentially obtaining the reference point of each scale in a wave head credible interval;
and 3, step 3: each scale calculates a transverse credibility index from each reference point;
and 4, step 4: and finding the minimum scale of the comprehensive credibility of the reference points according to the reference points of all scales and the transverse credibility index, and locally correcting the reference points, wherein the time corresponding to the locally corrected reference points is taken as the wave head time.
In a preferred embodiment, in step 1, the multi-scale wavelet transform method is an n (n ≧ 3) scale dyadic wavelet transform.
In a preferred embodiment, in step 1, the modulus maximum value set at each scale is obtained by the following formula:
Figure BDA0002671507730000061
in the formula, k is the scale of wavelet transformation, k =1, 2, \8230, n; n is the maximum scale of wavelet transform; i represents the serial number of the wavelet transformation result; m is a unit of k,i-1 、m k,i 、m k,i+1 Absolute values of wavelet transformation results of ith-1, ith and i +1 points of the kth scale respectively;
Figure BDA0002671507730000062
is the maximum value of the absolute value of the kth-scale wavelet transform result,
Figure BDA0002671507730000063
n is the total number of the traveling wave current data; l is a coefficient and has a value range of [0.2,0.5 ]]。
In a preferred embodiment, in step 2, the wave head confidence interval in each scale is:
Figure BDA0002671507730000064
in the formula, n is the maximum scale of wavelet transformation; i is n A set of modulus maxima at the nth scale; k is the scale of wavelet transformation;
Figure BDA0002671507730000065
is a reference point at the k +1 th scale; c k And the wave head confidence interval at the k-th scale.
In a preferred embodiment, in step 2, the calculation method of the reference points of each scale is as follows:
Figure BDA0002671507730000066
in the formula, k is the scale of wavelet transformation; j. the design is a square k A module maximum value set in a credible interval of the kth scale wave head; n is the maximum scale of wavelet transform; I.C. A k A set of modulus maxima at the k-th scale; I.C. A k,j Is shown as I k The jth element of (1); c k Is a wave head credible interval under the k-th scale;
Figure BDA0002671507730000067
is a reference point at the k-th scale; min (J) k ) Is a set J k The minimum value of all elements in (c).
In a preferred embodiment, in step 3, the transverse reliability index in each scale is the number of elements in the modulus maximum value set in the scale that are smaller than the reference point in the scale, and the calculation formula is as follows:
Figure BDA0002671507730000071
in the formula, k is the scale of wavelet transformation; i is k A set of modulus maxima at the k-th scale; i is k,j Is I k The jth element of (1);
Figure BDA0002671507730000072
is a reference point at the k-th scale; n is k And the k-th scale is a transverse reliability index.
In a preferred embodiment, in the step 4, the confidence points are integrated into the smallest k scale min The judging method comprises the following steps:
Figure BDA0002671507730000073
in the formula, k is the scale of wavelet transformation; n is k The transverse reliability index under the k scale is obtained; j. the design is a square k A module maximum value set in a credible interval of the kth scale wave head;
Figure BDA0002671507730000074
indicating an empty set.
In a preferred embodiment, in the step 4, the step of locally correcting the reference point includes: at the k-th min Scale wavelet transform results
Figure BDA0002671507730000075
From the second place to
Figure BDA0002671507730000076
The point starts searching until finding less than
Figure BDA0002671507730000077
The first point of (2), the latter point of the point is taken as the reference point after the local correction; wherein k is min Is the minimum scale of the reference point for comprehensive credibility, N is the total number of the traveling wave current data,
Figure BDA0002671507730000078
is the k-th min The ith point of the scale wavelet transform result,
Figure BDA0002671507730000079
is the k-th min A reference point on a scale.
The method of the present application is described below by way of example of a four-scale dyadic wavelet transform.
Step 1: and acquiring fault traveling wave current data, performing four-scale wavelet transformation on the traveling wave current data, and solving a modulus maximum value set under each scale.
The modulus maximum value set at each scale is calculated as follows:
Figure BDA00026715077300000710
in the formula, k is the scale of wavelet transformation, and k is more than or equal to 1 and less than or equal to 4; m is k,i-1 、m k,i 、m k,i+1 Absolute values of wavelet transformation results of the ith-1, ith and ith +1 points of the kth scale respectively;
Figure BDA00026715077300000711
is the maximum value of the absolute value of the k-th scale wavelet transform result,
Figure BDA00026715077300000712
and N is the total number of the traveling wave current data.
In the step 2, the wave head confidence interval under each scale is as follows:
Figure BDA0002671507730000081
in the formula I 4 A set of modulus maxima at scale 4; k is the scale of wavelet transform;
Figure BDA0002671507730000082
is a reference point at the k +1 th scale; c k And the wave head credibility interval at the k-th scale is shown.
Step 2: and taking the first mode maximum value of the maximum scale as a reference point, searching the small scale longitudinally layer by layer, and sequentially obtaining the reference point of each scale in the wave head credible interval.
The calculation method of the reference points of each scale is as follows:
Figure BDA0002671507730000083
in the formula I k,j Is I k The jth element of (1); c k Is a wave head credible interval under the k-th scale;
Figure BDA0002671507730000084
is a reference point at the k-th scale; min (J) k ) Is a set J k The minimum value of all elements in (c).
And step 3: the lateral reliability index is obtained from the respective reference points by each scale.
The transverse credibility index under each scale is the maximum value set I of the scale modulus k Middle ratio
Figure BDA0002671507730000085
The small number of elements, the calculation formula is as follows:
Figure BDA0002671507730000086
in the formula, k is the scale of wavelet transformation; I.C. A k A set of modulus maxima at the k-th scale; i is k,j Is I k The jth element of (1);
Figure BDA0002671507730000087
is a reference point at the k-th scale; n is k And the k-th scale is a transverse reliability index.
And 4, step 4: and finding the minimum scale of the comprehensive credibility of the reference points according to the reference points of all scales and the transverse credibility index, and locally correcting the reference points, wherein the time corresponding to the locally corrected reference points is taken as the wave head time.
The minimum scale judgment method for comprehensively credible reference points comprises the following steps:
Figure BDA0002671507730000088
in the formula, k is the scale of wavelet transformation; n is a radical of an alkyl radical k The k-th scale is a transverse reliability index; j. the design is a square k A modulus maximum value set in a credible interval of a kth scale wave head;
Figure BDA0002671507730000089
indicating an empty set.
To the benchmarkThe steps of locally correcting the points are as follows: at the k-th min Scale wavelet transform results
Figure BDA0002671507730000091
From the second
Figure BDA0002671507730000092
The point starts searching until finding less than
Figure BDA0002671507730000093
The first point of (2) is set as a reference point after the local correction.
FIG. 2 shows a traveling wave current data, wavelet analysis results and modulus maxima at various scales, where the singularity of traveling wave head is very obvious when the traveling wave current data is viewed, and according to the method of the present application, the first modulus maximum point under the 4 th scale wavelet transform is
Figure BDA0002671507730000094
Longitudinally searching layer by taking the point as a reference point, and respectively finding the reference point under the 3 rd scale, the 2 nd scale and the 1 st scale according to the wave head credible interval
Figure BDA0002671507730000095
And the transverse reliability index n under each scale k All are 0, so the smallest scale of the finally found reference points which can be comprehensively found is the 1 st scale, and then the reference points are locally corrected under the scale, namely the reference points are found from the 273 rd point until less than 0.5m is found 1,273 The first point of the mark =128.6, which is the 271 th point in the figure, and then the latter point of the mark, namely the 272 th point, is taken as the reference point after the local correction, and the real traveling wave arrives at the 271 th point, it can be seen that the wave head arrival time can be identified relatively accurately by using the method of the present application.
FIG. 3 is another embodiment of the present application showing traveling wave current data and wavelet analysis results and modal maxima at various scales, the implementation being seen from the traveling wave current dataThe traveling wave head of the example is very flat, and according to the method of the application, the first module maximum value point under the 4 th scale wavelet transformation is
Figure BDA0002671507730000096
Longitudinally searching layer by taking the point as a reference point, and respectively finding the reference point under the 3 rd scale, the 2 nd scale and the 1 st scale according to the wave head credible interval
Figure BDA0002671507730000097
Figure BDA0002671507730000098
Wherein the transverse reliability index of the 3 rd scale is 0, the transverse reliability index of the 2 nd scale is 2, the transverse reliability index of the 1 st scale is obviously larger than 5, so the finally found minimum comprehensive credibility scale of the reference point is the 2 nd scale, and then the reference point is locally corrected under the scale, namely the reference point is found from the 183 th point to the front until the reference point is found to be less than 0.5m 2,183 The first point of =14.97, which is the 181 th point in the figure, and the subsequent point of the point, namely the 182 th point, is taken as the reference point after local correction, the reference point is converted into the traveling wave current data to be the 364 th point, and the actual traveling wave arrival is at the 365 th point, so that the wave head arrival time can be accurately identified even if the wave head change is relatively smooth after the method of the application is adopted.
Fig. 4 shows an embodiment of a wave head recognition device under multi-scale wavelet transform according to the present application, which includes a modulus maximum value set calculation unit, a reference point calculation unit, a lateral reliability index calculation unit, and a correction recognition unit, which are connected in sequence. Wherein:
the modulus maximum value set calculation unit: the method is used for acquiring fault traveling wave current data, performing multi-scale wavelet transformation on the traveling wave current data and solving a modulus maximum value set under each scale.
The reference point calculating unit: and the method is used for searching layer by layer in the longitudinal direction of the small scale by taking the first mode maximum value of the maximum scale as a reference point, and sequentially obtaining the reference point of each scale in the wave head credible interval.
The lateral reliability index calculation unit: and the device is used for solving the transverse credibility index of each reference point according to each scale.
The correction recognition unit: and the method is used for finding the minimum scale of the comprehensive credibility of the reference points according to the reference points of all scales and the transverse credibility index, and performing local correction on the reference points, wherein the time corresponding to the locally corrected reference points is taken as the wave head time.
In a preferred embodiment of the apparatus, in the module maximum value set calculation unit, the multi-scale wavelet transform method is n (n ≧ 3) scale dyadic wavelet transform.
In an embodiment of the preferred apparatus, in the module maximum set calculating unit, a module maximum set calculation formula at each scale is as follows:
Figure BDA0002671507730000101
in the formula, k is the scale of wavelet transformation, k =1, 2, \8230, n; n is the maximum scale of wavelet transform; i represents the serial number of the wavelet transformation result; m is k,i-1 、m k,i 、m k,i+1 Absolute values of wavelet transformation results of ith-1, ith and i +1 points of the kth scale respectively;
Figure BDA0002671507730000102
is the maximum value of the absolute value of the k-th scale wavelet transform result,
Figure BDA0002671507730000103
n is the total number of the traveling wave current data; l is coefficient, and the value range is [0.2,0.5 ]]。
In an embodiment of the preferred apparatus, in the reference point calculating unit, the wave head confidence interval at each scale is:
Figure BDA0002671507730000104
in the formula, n is the maximum scale of wavelet transformation; i is n A set of modulus maxima at the nth scale; k is smallThe scale of the wave transform;
Figure BDA0002671507730000105
is a reference point at the k +1 th scale; c k And the wave head confidence interval at the k-th scale.
In a preferred embodiment of the apparatus, in the reference point calculating unit, a method of calculating reference points of each scale is as follows:
Figure BDA0002671507730000106
in the formula, k is the scale of wavelet transformation; j. the design is a square k A module maximum value set in a credible interval of the kth scale wave head; n is the maximum scale of wavelet transformation; I.C. A k A set of modulus maxima at the k-th scale; I.C. A k,j Is I k The jth element of (1); c k Is a wave head credible interval under the k-th scale;
Figure BDA0002671507730000111
is a reference point at the k-th scale; min (J) k ) Is a set J k Minimum of all elements in (c).
In a preferred embodiment of the apparatus, in the horizontal reliability index calculation unit, the horizontal reliability index in each scale is the number of elements in the modulus maximum value set in the scale that are smaller than the reference point in the scale, and the calculation formula is as follows:
Figure BDA0002671507730000112
in the formula, k is the scale of wavelet transformation; i is k A set of modulus maxima at the k-th scale; I.C. A k,j Is shown as I k The jth element of (1);
Figure BDA0002671507730000113
is a reference point at the k-th scale; n is a radical of an alkyl radical k And the k-th scale is a transverse reliability index.
In a preferred embodiment of the device, the repair isMinimum k for confidence in integration of reference points in positive identification cells min The judging method comprises the following steps:
Figure BDA0002671507730000114
in the formula, k is the scale of wavelet transformation; n is k The k-th scale is a transverse reliability index; j. the design is a square k A module maximum value set in a credible interval of the kth scale wave head;
Figure BDA0002671507730000115
indicating an empty set.
In a preferred embodiment of the apparatus, the step of locally correcting the reference point in the correction recognition unit is as follows: at the k-th min Results of scale wavelet transform
Figure BDA0002671507730000116
From the second place to
Figure BDA0002671507730000117
The point starts searching forward until finding less than
Figure BDA0002671507730000118
The first point of (2), the latter point of the point is taken as the reference point after the local correction; wherein k is min Is the minimum scale of the reference point for comprehensive credibility, N is the total number of the traveling wave current data,
Figure BDA0002671507730000119
is the kth min The ith point of the scale wavelet transform result,
Figure BDA00026715077300001110
is the k-th min A reference point on a scale.
The method adopts multiple comprehensive technologies such as longitudinal credibility interval searching, transverse feasibility judgment, datum point local correction and the like under multi-scale wavelet transformation, wherein the longitudinal credibility interval searching ensures that the optimal scale of the arrival of the traveling wave head can be represented, the transverse credibility judgment can eliminate the scale with larger noise and serious interference, the datum point local correction realizes fine adjustment of the datum point, and the wave head identification result is closer to the actual wave head arrival time. The method has obvious effect of improving the traveling wave identification precision with gentle wave head change.
The present application is not limited to the above embodiments, and the above embodiments are only used for facilitating the understanding of the core idea of the present application, and any modification made to the present application or equivalent substitution made according to the idea of the present application and the modification made within the scope of the present application shall fall within the protection scope of the present application.

Claims (14)

1. A wave head identification method under multi-scale wavelet transform is characterized by comprising the following steps:
step 1: acquiring fault traveling wave current data, performing multi-scale wavelet transformation on the traveling wave current data, and solving a modulus maximum value set under each scale;
and 2, step: searching in a small scale longitudinally layer by taking the first mode maximum value of the maximum scale as a reference point, and sequentially obtaining the reference point of each scale in a wave head credible interval;
and step 3: each scale calculates a transverse credibility index from each datum point;
and 4, step 4: finding the minimum scale of the comprehensive credibility of the reference points according to the reference points of all scales and the transverse credibility indexes, and locally correcting the reference points, wherein the time corresponding to the locally corrected reference points is taken as the wave head time;
the step of locally correcting the reference point is as follows: at the k-th min Results of scale wavelet transform
Figure FDA0003863433400000011
From the second
Figure FDA0003863433400000019
The point starts searching until finding less than
Figure FDA0003863433400000013
The first point of (2), the latter point of the first point is taken as the reference point after local correction; wherein k is min Is the minimum scale of the reference point for comprehensive credibility, N is the total number of the traveling wave current data,
Figure FDA0003863433400000014
is the k-th min The ith point of the scale wavelet transform result,
Figure FDA0003863433400000015
is the k-th min A reference point on a scale.
2. The method for identifying the wave head under the multi-scale wavelet transform as claimed in claim 1, wherein: in the step 1, the multi-scale wavelet transform method is n-scale dyadic wavelet transform, wherein n is more than or equal to 3.
3. The method for wave-head recognition under multi-scale wavelet transform as claimed in claim 1, wherein: in step 1, the modulus maximum value set at each scale is calculated as follows:
Figure FDA0003863433400000016
in the formula, k is the scale of wavelet transformation, k =1, 2, \8230;, n; n is the maximum scale of wavelet transform; i represents the serial number of the wavelet transformation result; m is k,i-1 、m k,i 、m k,i+1 Absolute values of wavelet transformation results of ith-1, ith and i +1 points of the kth scale respectively;
Figure FDA0003863433400000017
is the maximum value of the absolute value of the k-th scale wavelet transform result,
Figure FDA0003863433400000018
n is the number of travelling wave currentsThe total number of the data; l is coefficient, and the value range is [0.2,0.5 ]]。
4. The method for identifying the wave head under the multi-scale wavelet transform as claimed in claim 1, wherein: in the step 2, the wave head confidence interval under each scale is as follows:
Figure FDA0003863433400000021
in the formula, n is the maximum scale of wavelet transformation; I.C. A n A set of modulus maxima at the nth scale; k is the scale of wavelet transform;
Figure FDA0003863433400000022
is a reference point at the k +1 th scale; c k And the wave head credibility interval at the k-th scale is shown.
5. The method for identifying the wave head under the multi-scale wavelet transform as claimed in claim 1, wherein: in the step 2, the calculation method of the reference points of each scale is as follows:
Figure FDA0003863433400000023
in the formula, k is the scale of wavelet transformation; j. the design is a square k A modulus maximum value set in a credible interval of a kth scale wave head; n is the maximum scale of wavelet transform; i is k A set of mode maximum values at the kth scale; I.C. A k,j Is I k The jth element of (1); c k A wave head credible interval under the k scale;
Figure FDA0003863433400000025
is a reference point at the k-th scale; min (J) k ) Is a set J k The minimum value of all elements in (c).
6. The method for identifying the wave head under the multi-scale wavelet transform as claimed in claim 1, wherein: in step 3, the transverse reliability index at each scale is the number of elements in the modulus maximum value set at the scale, which are smaller than the reference point at the scale, and the calculation formula is as follows:
Figure FDA0003863433400000024
in the formula, k is the scale of wavelet transformation; I.C. A k A set of modulus maxima at the k-th scale; I.C. A k,j Is I k The jth element of (1);
Figure FDA0003863433400000026
is a reference point at the k-th scale; n is k And the k-th scale is a transverse reliability index.
7. The method for identifying the wave head under the multi-scale wavelet transform as claimed in claim 1, wherein: in the step 4, the smallest scale k for the reference points to be comprehensively credible min The judging method comprises the following steps:
Figure FDA0003863433400000031
in the formula, k is the scale of wavelet transformation; n is k The k-th scale is a transverse reliability index; j. the design is a square k A modulus maximum value set in a credible interval of a kth scale wave head;
Figure FDA0003863433400000032
indicating an empty set.
8. A wave head recognition device under multi-scale wavelet transform is characterized by comprising a modulus maximum value set calculation unit, a datum point calculation unit, a transverse reliability index calculation unit and a correction recognition unit which are sequentially connected; wherein:
the modulus maximum value set calculation unit: the system is used for acquiring fault traveling wave current data, performing multi-scale wavelet transformation on the traveling wave current data and solving a modulus maximum value set under each scale;
the reference point calculating unit: the device is used for searching layer by layer in the longitudinal direction of the small scale by taking the first mode maximum value with the maximum scale as a reference point, and sequentially solving the reference point of each scale in a wave head credible interval;
the lateral reliability index calculation unit: the device is used for solving the transverse credibility index of each reference point according to each scale;
the correction recognition unit: the device is used for finding the smallest comprehensively credible scale of the reference point according to the reference point of each scale and the transverse credibility index, and performing local correction on the reference point, wherein the time corresponding to the locally corrected reference point is taken as the wave head time; in the correction recognition unit, the step of locally correcting the reference point is as follows: at the k-th min Scale wavelet transform results
Figure FDA0003863433400000033
From the second
Figure FDA0003863433400000034
The point starts searching forward until finding less than
Figure FDA0003863433400000035
The first point of (2), the latter point of the first point is taken as the reference point after local correction; wherein k is min Is the minimum scale of the reference point for comprehensive credibility, N is the total number of the traveling wave current data,
Figure FDA0003863433400000036
is the k-th min The ith point of the scale wavelet transform result,
Figure FDA0003863433400000037
is the k-th min A reference point on a scale.
9. The apparatus for wave-front recognition under multi-scale wavelet transform according to claim 8, wherein: in the module maximum value set calculation unit, the multi-scale wavelet transformation method is n-scale dyadic wavelet transformation, wherein n is more than or equal to 3.
10. The apparatus for wave-front recognition under multi-scale wavelet transform according to claim 8, wherein: in the module maximum value set calculation unit, the module maximum value set under each scale is calculated according to the following formula:
Figure FDA0003863433400000038
in the formula, k is the scale of wavelet transformation, k =1, 2, \8230, n; n is the maximum scale of wavelet transformation; i represents the serial number of the wavelet transformation result; m is a unit of k,i-1 、m k,i 、m k,i+1 Absolute values of wavelet transformation results of ith-1, ith and i +1 points of the kth scale respectively;
Figure FDA0003863433400000041
is the maximum value of the absolute value of the kth-scale wavelet transform result,
Figure FDA0003863433400000042
n is the total number of the traveling wave current data; l is coefficient, and the value range is [0.2,0.5 ]]。
11. The apparatus for recognizing a wave head under the multi-scale wavelet transform according to claim 8, wherein: in the reference point calculation unit, the wave head confidence interval under each scale is as follows:
Figure FDA0003863433400000043
in the formula, n is the maximum scale of wavelet transformation; I.C. A n A set of mode maximum values at the nth scale; k is the scale of wavelet transformation;
Figure FDA0003863433400000044
is a reference point at the k +1 th scale; c k And the wave head confidence interval at the k-th scale.
12. The apparatus for wave-front recognition under multi-scale wavelet transform according to claim 8, wherein: in the reference point calculation unit, the calculation method of the reference points of each scale is as follows:
Figure FDA0003863433400000045
in the formula, k is the scale of wavelet transformation; j. the design is a square k A module maximum value set in a credible interval of the kth scale wave head; n is the maximum scale of wavelet transformation; I.C. A k A set of modulus maxima at the k-th scale; I.C. A k,j Is shown as I k The jth element of (1); c k Is a wave head credible interval under the k-th scale;
Figure FDA0003863433400000046
is a reference point at the k-th scale; min (J) k ) Is a set J k Minimum of all elements in (c).
13. The apparatus for wave-front recognition under multi-scale wavelet transform according to claim 8, wherein: in the transverse reliability index calculation unit, the transverse reliability index under each scale is the number of elements in the modulus maximum value set under the scale, which are smaller than the reference point under the scale, and the calculation formula is as follows:
Figure FDA0003863433400000047
in the formula, k is the scale of wavelet transformation; I.C. A k A set of mode maximum values at the kth scale; I.C. A k,j Is I k The jth element of (1); i is k b is a radical on the k-th scaleA quasi point; n is k And the k-th scale is a transverse reliability index.
14. The apparatus for wave-front recognition under multi-scale wavelet transform according to claim 8, wherein: in the correction identification unit, the minimum scale k with credible integrated reference points min The judging method comprises the following steps:
Figure FDA0003863433400000051
in the formula, k is the scale of wavelet transformation; n is a radical of an alkyl radical k The k-th scale is a transverse reliability index; j. the design is a square k A modulus maximum value set in a credible interval of a kth scale wave head;
Figure FDA0003863433400000052
indicating an empty set.
CN202010943842.6A 2020-09-08 2020-09-08 Wave head identification method and device under multi-scale wavelet transform Active CN114152837B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010943842.6A CN114152837B (en) 2020-09-08 2020-09-08 Wave head identification method and device under multi-scale wavelet transform
PCT/CN2021/087227 WO2022052465A1 (en) 2020-09-08 2021-04-14 Wave head identification method and apparatus based on multi-scale wavelet transform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010943842.6A CN114152837B (en) 2020-09-08 2020-09-08 Wave head identification method and device under multi-scale wavelet transform

Publications (2)

Publication Number Publication Date
CN114152837A CN114152837A (en) 2022-03-08
CN114152837B true CN114152837B (en) 2023-02-10

Family

ID=80462416

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010943842.6A Active CN114152837B (en) 2020-09-08 2020-09-08 Wave head identification method and device under multi-scale wavelet transform

Country Status (2)

Country Link
CN (1) CN114152837B (en)
WO (1) WO2022052465A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116243108A (en) * 2023-03-16 2023-06-09 国网江苏省电力有限公司南通市通州区供电分公司 Distribution network fault point positioning method, system, equipment and medium
CN117930120B (en) * 2024-03-21 2024-05-31 浙江厚能科技有限公司 High-efficiency heat dissipation low-voltage current transformer detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520315A (en) * 2011-12-05 2012-06-27 西南交通大学 Fault single end positioning method of power transmission line based on traveling wave multi-scale information
CN107807308A (en) * 2017-10-10 2018-03-16 南京南瑞继保电气有限公司 A kind of transmission line travelling wave velocity of wave self-learning method and traveling wave ranging device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291055B (en) * 2008-06-18 2010-08-18 昆明理工大学 Method for precisely marking arriving time of initial wave of fault generated traveling waves for electricity transmission line
US8954173B1 (en) * 2008-09-03 2015-02-10 Mark Fischer Method and apparatus for profiling and identifying the source of a signal
US20130015878A1 (en) * 2011-06-20 2013-01-17 Erlphase Power Technologies Limited Power system fault zone detection
CN102944818B (en) * 2012-11-27 2015-06-24 广东电网公司佛山供电局 Geographic information system (GIS) terminal cable fault on-line location method
CN103033804A (en) * 2012-12-14 2013-04-10 武汉大学 Laser radar signal processing method based on wavelet entropy threshold value and modulus maximum value method
CN103995950A (en) * 2014-01-13 2014-08-20 哈尔滨工程大学 Wavelet coefficient partial discharge signal noise elimination method based on related space domain correction threshold values
CN105738760B (en) * 2014-12-12 2019-01-11 国家电网公司 A kind of high resistive fault distance measuring method of frequency domain method in conjunction with traveling wave method
CN105223466B (en) * 2015-09-24 2017-11-10 昆明理工大学 It is a kind of using modulus maximum than extra high voltage direct current transmission line method of single end distance measurement
CN105445624A (en) * 2015-11-26 2016-03-30 重庆大学 Cable fault positioning method according to combination of wavelet transformation and curve fitting
CN106841918B (en) * 2017-01-22 2019-04-23 华南理工大学 A kind of cable low resistance faults localization method combined using mono- both-end
CN107461611B (en) * 2017-08-24 2019-07-09 南京邮电大学 The leakage detection method and leak detecting device combined is reconstructed based on small echo and EMD
CN108594068B (en) * 2018-04-04 2020-09-08 南京南瑞继保电气有限公司 Traveling wave distance measurement method
CN108802563B (en) * 2018-04-10 2021-02-09 南京南瑞继保电气有限公司 Double-end traveling wave distance measurement method independent of time setting
CN108732465B (en) * 2018-05-30 2020-08-04 广东电网有限责任公司 Power distribution network fault positioning method based on wavelet transformation and CNN
CN109375051B (en) * 2018-08-29 2021-03-12 国网浙江省电力有限公司电力科学研究院 Lightning transient signal identification method and system based on spectral density attenuation
CN109870628B (en) * 2018-08-31 2020-12-04 国网江苏省电力有限公司苏州供电分公司 Fault line identification method for multi-terminal flexible direct current transmission system
CN109633761B (en) * 2018-12-13 2021-05-28 吉林大学 Magnetic resonance signal power frequency noise reduction method based on wavelet transformation modulus maximum value method
CN110542833A (en) * 2019-09-18 2019-12-06 南方电网科学研究院有限责任公司 Method and device for positioning high-resistance grounding fault section of power distribution network and storage medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520315A (en) * 2011-12-05 2012-06-27 西南交通大学 Fault single end positioning method of power transmission line based on traveling wave multi-scale information
CN107807308A (en) * 2017-10-10 2018-03-16 南京南瑞继保电气有限公司 A kind of transmission line travelling wave velocity of wave self-learning method and traveling wave ranging device

Also Published As

Publication number Publication date
WO2022052465A1 (en) 2022-03-17
CN114152837A (en) 2022-03-08

Similar Documents

Publication Publication Date Title
CN114152837B (en) Wave head identification method and device under multi-scale wavelet transform
CN113469110A (en) UWB non-line-of-sight signal identification method based on deep learning
CN108957403B (en) Gaussian fitting envelope time delay estimation method and system based on generalized cross correlation
CN105738760A (en) Frequency domain method and traveling wave method-combined high-resistance fault location method
CN104503432A (en) Autonomous underwater robot fault identification method based on wavelet energy
CN104865570B (en) Tracking before a kind of quick Dynamic Programming detection
CN104462803A (en) Autonomous underwater robot fault identification method based on wavelet approximate entropy
CN107179473B (en) A kind of power transmission line fault locating method
CN106338662A (en) Transformer winding deformation diagnosis method based on mathematical morphology
CN111398738A (en) Distributed power distribution network fault positioning method and system
CN113300986B (en) Unmanned aerial vehicle image transmission signal and hotspot signal identification method, medium and computer equipment
CN104665875A (en) Ultrasonic Doppler envelope and heart rate detection method
CN117593601A (en) Water gauge tide checking method based on deep learning
CN111446998B (en) Direction-of-arrival estimation method based on deep learning
CN111901268A (en) BPSK/QPSK signal modulation identification method based on frequency spectrum rearrangement and Gumbel distribution fitting test
CN116594057A (en) Earthquake early warning method and device based on deep learning and edge calculation
CN109945075B (en) Method and device for detecting leakage degree of water supply pipeline
CN105467270B (en) Single Terminal Traveling Wave Fault Location back wave identification algorithm based on frequency spectrum similarity evaluation
CN104361892B (en) Method for recognizing narrow-band interference with aliasing of interference signals and voice modulation signals
CN109061725B (en) Automatic identification method of elastic wave data acquisition jumping point and equipment used by same
CN112305378A (en) Photoelectric composite submarine cable fault distance measurement system and fault distance measurement method
CN108427063A (en) A kind of Mintrop wave localization method based on cross-validation method, empirical modal and Teager kurtosis
CN111624585A (en) Underwater target passive detection method based on convolutional neural network
CN115542408B (en) Ocean transient electromagnetic data preprocessing and rapid regional imaging method
CN112964963B (en) Mixed direct current line fault location method and system based on CA-WMM

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant