CN114151138A - 涡轮转子叶片的层间组合冷却结构 - Google Patents

涡轮转子叶片的层间组合冷却结构 Download PDF

Info

Publication number
CN114151138A
CN114151138A CN202111222235.1A CN202111222235A CN114151138A CN 114151138 A CN114151138 A CN 114151138A CN 202111222235 A CN202111222235 A CN 202111222235A CN 114151138 A CN114151138 A CN 114151138A
Authority
CN
China
Prior art keywords
turbine rotor
cooling structure
turbulence
blade
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111222235.1A
Other languages
English (en)
Other versions
CN114151138B (zh
Inventor
陈永熙
古冬
程域钊
林凡迪
余剑
杨雨超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Sichuan Gas Turbine Research Institute
Original Assignee
AECC Sichuan Gas Turbine Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Sichuan Gas Turbine Research Institute filed Critical AECC Sichuan Gas Turbine Research Institute
Priority to CN202111222235.1A priority Critical patent/CN114151138B/zh
Publication of CN114151138A publication Critical patent/CN114151138A/zh
Application granted granted Critical
Publication of CN114151138B publication Critical patent/CN114151138B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

本发明提供了一种涡轮转子叶片的层间组合冷却结构,包括:叶身,设置有内腔和间隙腔,内腔通过冲击孔与间隙腔连通,间隙腔通过冷却气膜孔与叶身外部连通;多个扰流柱,沿叶尖朝向叶根方向,多个扰流柱间隔设置在间隙腔内。本发明的有益效果是,本发明实施例通过在间隙腔内设置有多个扰流柱,可以在采用内腔冲击冷却的基础上,提高外层冷气换热能力,进一步降低外层温度水平以及内外层温差,同时多个扰流柱的设置,可以提高涡轮转子叶片的内腔的强度。

Description

涡轮转子叶片的层间组合冷却结构
技术领域
本发明涉及燃气涡轮发动机技术领域,具体涉及一种涡轮转子叶片的层间组合冷却结构。
背景技术
现有技术中双层壁结构以其相对较高的冷却效率,成为高推重比发动机金属基材料涡轮叶片的发展趋势,已在国外先进发动机中有所应用,并取得良好的冷却效果。
通常双层壁叶片的外层壁和内层壁的温差过大,会导致微观的冷却结构应力集中,降低了叶片的使用寿命。目前一般的双层壁叶片冷却结构,在结构上侧重于冷却设计,着重于提高冷却效率,对于叶片静强度、寿命往往顾此失彼,因此急需一种高可靠性、高冷却效率的双层壁层间冷却结构。
发明内容
本发明提供了一种涡轮转子叶片的层间组合冷却结构,以达到提升冷却效率的同时,达到提高内腔的强度的目的。
本发明解决其技术问题所采用的技术方案是:一种涡轮转子叶片的层间组合冷却结构,包括:叶身,设置有内腔和间隙腔,内腔通过冲击孔与间隙腔连通,间隙腔通过冷却气膜孔与叶身外部连通;多个扰流柱,沿叶尖朝向叶根方向,多个扰流柱间隔设置在间隙腔内。
进一步地,每个扰流柱的横截面形状均为腰形。
进一步地,多个扰流柱包括多个第一扰流柱和多个第二扰流柱,在叶尖朝向叶根方向,第一扰流柱的长度大于第二扰流柱的长度。
进一步地,沿叶尖朝向叶根方向,多个第一扰流柱和多个第二扰流柱间隔均布。
进一步地,相邻两个第一扰流柱之间设置有至少两个间隔均布的第二扰流柱。
进一步地,冲击孔为多个,多个冲击孔沿叶尖朝向叶根方向间隔均布。
进一步地,每个第一扰流柱旁均对应设置有一个冲击孔。
进一步地,多个第一扰流柱的连线形成扰流柱分布线,至少两个相邻的冲击孔构成一个冲击孔组,相邻两冲击孔组分别设置在扰流柱分布线的两侧。
进一步地,冲击孔为椭圆形,且每个冲击孔的长轴均与竖直方向平行。
进一步地,间隙腔为多个,多个间隙腔沿叶身的延伸方向间隔均布。
本发明的有益效果是,本发明实施例通过在间隙腔内设置有多个扰流柱,可以在采用内腔冲击冷却的基础上,提高外层冷气换热能力,进一步降低外层温度水平以及内外层温差,同时多个扰流柱的设置,可以提高涡轮转子叶片的内腔的强度。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例的结构示意图;
图2为图1的A-A向剖视图。
图中附图标记:1、叶身;2、纵向隔板;3、外层壁;4、内层壁;5、冲击孔;6、扰流柱;7、冷却气膜孔;8、内腔;9、间隙腔。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
如图1和图2所示,本发明实施例提供了一种涡轮转子叶片的层间组合冷却结构,包括叶身1和多个扰流柱6。叶身1设置有内腔8和间隙腔9,内腔8通过冲击孔5与间隙腔9连通,间隙腔9通过冷却气膜孔与叶身1外部连通;多个扰流柱6沿叶尖朝向叶根方向,多个扰流柱6间隔设置在间隙腔9内。
本发明实施例通过在间隙腔9内设置有多个扰流柱6,可以在采用内腔冲击冷却的基础上,提高外层冷气换热能力,进一步降低外层温度水平以及内外层温差,同时多个扰流柱6的设置,可以提高涡轮转子叶片的内腔的强度。
多个扰流柱6包括多个第一扰流柱和多个第二扰流柱,在叶尖朝向叶根方向,第一扰流柱的长度大于第二扰流柱的长度。多个第一扰流柱和多个第二扰流柱的设置可增加外层壁与内层壁之间的连接刚度,降低应力集中,满足叶片高可靠性的使用要求。本实施例中,每个扰流柱6的横截面形状均为腰形。
在一种实施例中,沿叶尖朝向叶根方向,多个第一扰流柱和多个第二扰流柱间隔均布。采用间隔均布形式多个第一扰流柱和多个第二扰流柱能够基本实现降低外层温度水平以及内外层温差的目的,同时保证外层壁与内层壁之间的连接刚度。
优选地,相邻两个第一扰流柱之间设置有至少两个间隔均布的第二扰流柱。此种布置形式不仅能最大限度的布置下更多的扰流柱6,提升换热面积,又不破坏间隙腔9内的冷气流通性能,实现了高冷气流通性、高换热效率的对流换热目标。
如图1所示,叶身1具有外层壁3、内层壁4和纵向隔板2,外层壁3、内层壁4和纵向隔板2按照设定位置布置,从而围成上述的内腔8和间隙腔9。
本实施例中,冲击孔5设置在内层壁4上,且冲击孔5为多个,多个冲击孔5沿叶尖朝向叶根方向间隔均布。每个第一扰流柱旁均对应设置有一个冲击孔5。冲击孔5的出口与第一扰流柱相邻,加强了对流换热,实现了高均匀性、高填充性、高效率的冲击冷却目标。
本实施例中间隙腔9的供气方式是采用冲击孔5从内腔8供气,冷气通道不是像现有技术中的内腔一样直接连接伸根和榫头,因此,本实施例可以降低榫头和伸根的结构复杂程度,进而降低其铸造工艺难度。
优选地,多个第一扰流柱的连线形成扰流柱分布线,至少两个相邻的冲击孔5构成一个冲击孔组,相邻两冲击孔组分别设置在扰流柱分布线的两侧。
每个第一扰流柱对应一个冲击孔5,从叶尖朝向叶根方向,相邻两冲击孔组分别设置在扰流柱分布线的两侧,从而增加了间隙腔9的冲击均匀性。
在本实施例中,冲击孔5为椭圆形,且每个冲击孔5的长轴均与竖直方向平行。即每个冲击孔5的长轴与离心力方向大致平行,降低了冲击孔5的孔边应力集中,在满足冲击冷却的同时,提高了整体强度寿命水平,满足叶片高可靠性的使用要求。
如图1所示,本实施例中间隙腔9为多个,多个间隙腔9沿叶身1的延伸方向间隔均布。且每个间隙腔9内均设置有上述的扰流柱6,从而实现利用更高品质(内腔沿程温升相对更低)的冷却气体,降低外层基体温度以及内外层温差。
外层壁3上设置有多个冷却气膜孔7,每个间隙腔9均通过对应的冷却气膜孔7与外界连通,从而实现冷却气体的排出。
本发明实施例还包括提供了一种涡轮转子叶片,包括涡轮转子叶片的层间组合冷却结构,其中涡轮转子叶片的层间组合冷却结构为上述的涡轮转子叶片的层间组合冷却结构。该涡轮转子叶片的前缘为冲击与气膜复合冷却,该涡轮转子叶片的尾缘为全劈缝冷却结构。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:本发明实施例通过在间隙腔9内设置有多个扰流柱6,可以在采用内腔冲击冷却的基础上,提高外层冷气换热能力,进一步降低外层温度水平以及内外层温差,同时多个扰流柱6的设置,可以提高涡轮转子叶片的内腔的强度。
以上所述,仅为本发明的具体实施例,不能以其限定发明实施的范围,所以其等同组件的置换,或依本发明专利保护范围所作的等同变化与修饰,都应仍属于本专利涵盖的范畴。另外,本发明中的技术特征与技术特征之间、技术特征与技术方案之间、技术方案与技术方案之间均可以自由组合使用。

Claims (10)

1.一种涡轮转子叶片的层间组合冷却结构,其特征在于,包括:
叶身(1),设置有内腔(8)和间隙腔(9),内腔(8)通过冲击孔(5)与间隙腔(9)连通,间隙腔(9)通过冷却气膜孔与叶身(1)外部连通;
多个扰流柱(6),沿叶尖朝向叶根方向,多个扰流柱(6)间隔设置在间隙腔(9)内。
2.根据权利要求1所述的涡轮转子叶片的层间组合冷却结构,其特征在于,每个扰流柱(6)的横截面形状均为腰形。
3.根据权利要求2所述的涡轮转子叶片的层间组合冷却结构,其特征在于,多个扰流柱(6)包括多个第一扰流柱和多个第二扰流柱,在叶尖朝向叶根方向,所述第一扰流柱的长度大于所述第二扰流柱的长度。
4.根据权利要求3所述的涡轮转子叶片的层间组合冷却结构,其特征在于,沿叶尖朝向叶根方向,多个第一扰流柱和多个第二扰流柱间隔均布。
5.根据权利要求4所述的涡轮转子叶片的层间组合冷却结构,其特征在于,相邻两个所述第一扰流柱之间设置有至少两个间隔均布的所述第二扰流柱。
6.根据权利要求5所述的涡轮转子叶片的层间组合冷却结构,其特征在于,冲击孔(5)为多个,多个冲击孔(5)沿叶尖朝向叶根方向间隔均布。
7.根据权利要求6所述的涡轮转子叶片的层间组合冷却结构,其特征在于,每个所述第一扰流柱旁均对应设置有一个冲击孔(5)。
8.根据权利要求7所述的涡轮转子叶片的层间组合冷却结构,其特征在于,多个所述第一扰流柱的连线形成扰流柱分布线,至少两个相邻的冲击孔(5)构成一个冲击孔组,相邻两冲击孔组分别设置在扰流柱分布线的两侧。
9.根据权利要求8所述的涡轮转子叶片的层间组合冷却结构,其特征在于,冲击孔(5)为椭圆形,且每个冲击孔(5)的长轴均与竖直方向平行。
10.根据权利要求1至9中任一项所述的涡轮转子叶片的层间组合冷却结构,其特征在于,间隙腔(9)为多个,多个间隙腔(9)沿叶身(1)的延伸方向间隔均布。
CN202111222235.1A 2021-10-20 2021-10-20 涡轮转子叶片的层间组合冷却结构 Active CN114151138B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111222235.1A CN114151138B (zh) 2021-10-20 2021-10-20 涡轮转子叶片的层间组合冷却结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111222235.1A CN114151138B (zh) 2021-10-20 2021-10-20 涡轮转子叶片的层间组合冷却结构

Publications (2)

Publication Number Publication Date
CN114151138A true CN114151138A (zh) 2022-03-08
CN114151138B CN114151138B (zh) 2023-05-05

Family

ID=80462863

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111222235.1A Active CN114151138B (zh) 2021-10-20 2021-10-20 涡轮转子叶片的层间组合冷却结构

Country Status (1)

Country Link
CN (1) CN114151138B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114575931A (zh) * 2022-03-16 2022-06-03 中国航发沈阳发动机研究所 一种高承温能力涡轮叶片冷却结构
CN115875084A (zh) * 2023-03-02 2023-03-31 中国航发四川燃气涡轮研究院 应用于涡轮叶片压力面的层板冷却结构

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752186A (en) * 1981-06-26 1988-06-21 United Technologies Corporation Coolable wall configuration
US5695320A (en) * 1991-12-17 1997-12-09 General Electric Company Turbine blade having auxiliary turbulators
US5738493A (en) * 1997-01-03 1998-04-14 General Electric Company Turbulator configuration for cooling passages of an airfoil in a gas turbine engine
JP2001349202A (ja) * 2000-06-06 2001-12-21 Hitachi Ltd ガスタービン
US20050047932A1 (en) * 2003-08-14 2005-03-03 Tomoyoshi Nakae Heat exchanging wall, gas turbine using the same, and flying body with gas turbine engine
US20060210399A1 (en) * 2003-11-21 2006-09-21 Tsuyoshi Kitamura Turbine cooling vane of gas turbine engine
CN103806951A (zh) * 2014-01-20 2014-05-21 北京航空航天大学 一种缝气膜冷却加扰流柱的组合式涡轮叶片
CN107060892A (zh) * 2017-03-30 2017-08-18 南京航空航天大学 一种气液耦合的涡轮叶片冷却单元
JP2018141393A (ja) * 2017-02-27 2018-09-13 三菱日立パワーシステムズ株式会社 翼及びガスタービン
US20180266253A1 (en) * 2016-05-19 2018-09-20 Rolls-Royce Corporation Actively cooled component
CN111764967A (zh) * 2020-07-06 2020-10-13 中国航发湖南动力机械研究所 涡轮叶片尾缘冷却结构
CN111927562A (zh) * 2020-07-16 2020-11-13 中国航发湖南动力机械研究所 涡轮转子叶片及航空发动机
CN113090335A (zh) * 2021-05-14 2021-07-09 中国航发湖南动力机械研究所 一种用于涡轮转子叶片的冲击加气膜双层壁冷却结构
CN113374536A (zh) * 2021-06-09 2021-09-10 中国航发湖南动力机械研究所 燃气涡轮导向叶片
CN113513372A (zh) * 2021-07-28 2021-10-19 中国航发湖南动力机械研究所 一种小引气量的双层壁涡轮导向叶片

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752186A (en) * 1981-06-26 1988-06-21 United Technologies Corporation Coolable wall configuration
US5695320A (en) * 1991-12-17 1997-12-09 General Electric Company Turbine blade having auxiliary turbulators
US5738493A (en) * 1997-01-03 1998-04-14 General Electric Company Turbulator configuration for cooling passages of an airfoil in a gas turbine engine
JP2001349202A (ja) * 2000-06-06 2001-12-21 Hitachi Ltd ガスタービン
US20050047932A1 (en) * 2003-08-14 2005-03-03 Tomoyoshi Nakae Heat exchanging wall, gas turbine using the same, and flying body with gas turbine engine
US20060210399A1 (en) * 2003-11-21 2006-09-21 Tsuyoshi Kitamura Turbine cooling vane of gas turbine engine
CN103806951A (zh) * 2014-01-20 2014-05-21 北京航空航天大学 一种缝气膜冷却加扰流柱的组合式涡轮叶片
US20180266253A1 (en) * 2016-05-19 2018-09-20 Rolls-Royce Corporation Actively cooled component
JP2018141393A (ja) * 2017-02-27 2018-09-13 三菱日立パワーシステムズ株式会社 翼及びガスタービン
CN107060892A (zh) * 2017-03-30 2017-08-18 南京航空航天大学 一种气液耦合的涡轮叶片冷却单元
CN111764967A (zh) * 2020-07-06 2020-10-13 中国航发湖南动力机械研究所 涡轮叶片尾缘冷却结构
CN111927562A (zh) * 2020-07-16 2020-11-13 中国航发湖南动力机械研究所 涡轮转子叶片及航空发动机
CN113090335A (zh) * 2021-05-14 2021-07-09 中国航发湖南动力机械研究所 一种用于涡轮转子叶片的冲击加气膜双层壁冷却结构
CN113374536A (zh) * 2021-06-09 2021-09-10 中国航发湖南动力机械研究所 燃气涡轮导向叶片
CN113513372A (zh) * 2021-07-28 2021-10-19 中国航发湖南动力机械研究所 一种小引气量的双层壁涡轮导向叶片

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
卢元丽等: "扰流柱对层板冷却叶片前缘传热影响的数值研究", 《航空发动机》 *
吴向宇;丁新星;谢建文;张志述;韩绪军;: "前缘气膜孔布局对涡轮转子叶片流动传热的影响" *
敖良波;李磊;王宇魁;岳珠峰;: "局部冷却特征对高温合金叶片强度影响规律的研究" *
赵广超等: "楔形通道中束腰结构扰流柱对强化传热特性的影响", 《科技资讯》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114575931A (zh) * 2022-03-16 2022-06-03 中国航发沈阳发动机研究所 一种高承温能力涡轮叶片冷却结构
CN114575931B (zh) * 2022-03-16 2024-06-07 中国航发沈阳发动机研究所 一种高承温能力涡轮叶片冷却结构
CN115875084A (zh) * 2023-03-02 2023-03-31 中国航发四川燃气涡轮研究院 应用于涡轮叶片压力面的层板冷却结构
CN115875084B (zh) * 2023-03-02 2023-06-30 中国航发四川燃气涡轮研究院 应用于涡轮叶片压力面的层板冷却结构

Also Published As

Publication number Publication date
CN114151138B (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
JP5603552B2 (ja) タービンブレード先端シュラウド
JP5379493B2 (ja) タービンブレード先端シュラウド
US6981846B2 (en) Vortex cooling of turbine blades
CN114151138A (zh) 涡轮转子叶片的层间组合冷却结构
US7513739B2 (en) Cooling circuits for a turbomachine moving blade
US6742991B2 (en) Turbine blade and gas turbine
JP5513746B2 (ja) タービン動翼先端シュラウド
CN110030036B (zh) 一种涡轮叶片尾缘的冲击劈缝气膜冷却结构
US9890646B2 (en) Internally cooled airfoil for a rotary machine
CN104791020A (zh) 一种具有纵向相交肋冷却结构的燃气透平叶片
US20150184537A1 (en) Interior cooling circuits in turbine blades
CN113374536B (zh) 燃气涡轮导向叶片
JP2009168015A (ja) タービンブレード先端シュラウド
CN205382958U (zh) 涡轮叶片以及航空发动机
CN113513371A (zh) 双层壁冷却叶片、应用该冷却叶片的涡轮叶片及燃气轮机
CN114109515B (zh) 一种涡轮叶片吸力面冷却结构
CN113550794B (zh) 一种涡轮转子叶片的多腔高效冷却结构及其冷却方法
JPS6380004A (ja) ガスタ−ビン静翼
CN113565573A (zh) 内部冷却通道仿蜂窝排布的涡轮叶片及燃气轮机
CN110770415B (zh) 包括改进的冷却回路的叶片
JP4798416B2 (ja) タービン翼部品
CN113266429B (zh) 一种涡轮导叶端壁复合冷却结构
CN115111002B (zh) 一种发动机高压涡轮导向叶片冷却结构
JP2020513092A (ja) 改良された構造を有するタービンブレード
KR20190029839A (ko) 가스 터빈용 블레이드

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant