CN114148330A - 一种考虑多车博弈的车辆交互换道方法 - Google Patents

一种考虑多车博弈的车辆交互换道方法 Download PDF

Info

Publication number
CN114148330A
CN114148330A CN202111430951.9A CN202111430951A CN114148330A CN 114148330 A CN114148330 A CN 114148330A CN 202111430951 A CN202111430951 A CN 202111430951A CN 114148330 A CN114148330 A CN 114148330A
Authority
CN
China
Prior art keywords
vehicle
lane
changing
distance
longitudinal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111430951.9A
Other languages
English (en)
Inventor
马艳丽
吕志良
徐小鹏
娄艺苧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202111430951.9A priority Critical patent/CN114148330A/zh
Publication of CN114148330A publication Critical patent/CN114148330A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/047Optimisation of routes or paths, e.g. travelling salesman problem

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Mechanical Engineering (AREA)
  • Game Theory and Decision Science (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Marketing (AREA)
  • Development Economics (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明涉及一种考虑多车博弈的车辆交互换道方法,包括如下步骤:步骤一、计算换道前后跟驰状态下车辆行驶的需求安全距离;步骤二、计算换道实施状态下车辆纵向需求安全距离和侧向需求安全距离;步骤三、计算换道车辆的纵向需求安全距离和侧向安全距离,确定单个车辆的交互区域;步骤四、根据交互区域的重叠面积得出车辆间的交互程度;步骤五、计算车辆换道驾驶收益,得出换道驾驶收益函数。本发明通过多车交互运行规律下的车辆换道过程,加入博弈理论,能够为驾驶员换道决策提供方案,提高了行车的安全性,并减小对交互车辆的影响。

Description

一种考虑多车博弈的车辆交互换道方法
技术领域
本发明属于道路交通安全技术领域,具体涉及一种考虑多车博弈的车辆交互换道方法。
背景技术
跟驰与换道是道路交通流中最基本的两种驾驶行为,相比于跟驰行为,换道除了要考虑本车道前车的运行状况,还需要考虑目标车道前后车以及本车道前后车的运行状态,是一个多车动态交互的过程。据统计,由换道行为引发的道路交通事故数约占总道路交通事故的27%,而其中由于驾驶员换道过程中对周围车辆的交互考虑不足,进而引发的事故约占换道事故总量的75%。此外,驾驶决策在车载辅助驾驶、自动驾驶路径规划中都是极其重要的控制因素。
目前大多数研究关注换道决策和实施过程,或是周围车辆对换道车辆所产生的影响,而对于换道过程中车辆间的博弈,换道车辆与周围车辆间的多车交互的研究较少。因此,目前急需对换道过程中车辆间的多车交互作用,尤其是换道车辆在其他车辆的影响下的换道决策进行研究,为高级辅助驾驶和自动驾驶车辆路径规划提供决策的方法。
发明内容
本发明为解决换道驾驶员的决策失误率高,由换道引发的事故率高的问题,提出一种考虑多车博弈的车辆交互换道方法。
本发明涉及一种考虑多车博弈的车辆交互换道方法,包括如下步骤:
步骤一、计算换道前后跟驰状态下车辆行驶的需求安全距离;
步骤二、计算换道实施状态下车辆纵向需求安全距离和侧向需求安全距离;
步骤三、计算换道车辆的纵向需求安全距离和侧向安全距离,确定单个车辆的交互区域;
步骤四、根据交互区域的重叠面积得出车辆间的交互程度;
步骤五、计算车辆换道驾驶收益,得出换道驾驶收益函数;
步骤六、结合换道驾驶收益函数确定换道方案。
有益效果
本发明通过研究多车交互运行规律下的车辆换道过程,加入博弈理论,能够为驾驶员换道决策提供指导性建议,可提高行车的安全性和减小对交互车辆的影响。
附图说明
图1为本发明换道车辆速度分解示意图;
图2为本发明换道过程多车交互区域示意图;
图3本发明交互区域示意图;
图4本发明换道过程示意图;
图5a为本发明换道车辆LC与目标车道后车Tb间距示意图;
图5b为本发明换道车辆LC与本车道前车Cf间距示意图;
图5c为本发明换道车辆LC与目标车道前车Tf间距示意图;
图5d为本发明换道车辆LC与本车道后车Cb间距示意图。
具体实施方式
以下结合附图对本实施方式进行说明。
本发明的一种考虑多车博弈的车辆交互换道方法,包括如下步骤:
设换道车辆为Lc,目标车道后车为Tb,目标车道前车为Tf,本车道后车为Cb,本车道前车为Cf。
步骤一、计算换道前后跟驰状态下车辆行驶的需求安全距离。
跟驰行驶时车辆间的需求安全距离主要取决于跟随车于前车的相对运行状态,而相对运行状态又主要由前车的运行状态所决定。因此,需要根据前车不同的运行状态分析相应的跟驰需求安全距离。第一种情况,前车运行状态为匀速或匀加速,则目标车辆与前车会以安全跟驰的运行状态继续行驶。第二种情况,前车运动状态为匀减速,则需要根据前车和后车的相对速度变化对跟驰车辆的需求安全距离做单独分析。
其中假定车辆性能相同,即车辆的最大减速度相同。
1)VLC>VCf,需求安全距离Xv公式如式(1)所示:
Figure BDA0003380154740000021
式中,LCf为前车制动距离(m);VCf为本车道前车的初始速度(km/h);Td为制动踏板延迟时间(s);am为车辆的最大减速度(m/s2);VLC为换道车辆的初始速度(km/h);Tr为驾驶员感知反应时间(s);d为紧急停车情况下前后车间的最小安全距离;
2)VLC=VCf,需求安全距离如式(1)所示;
3)VLC<VCf,车辆间的运行状态变化分为两个阶段,首先前车减速到与后车的速度相同,即VLC=VCf为第一个阶段,则此阶段前车所用时间如式(2)所示:
T1=Td+(VCf-VLC)/am (2)
式中,T1为前车减速到VLC=VCf阶段所有时间(s);
在T1阶段,后车运行状态不变,保持初始速度行驶状态,行驶的路程为LLC,1,其值等于变换车道车辆的速度与T1的乘积;当前车速度达到VLC=VCf后,跟随车为免碰撞须被动减速,所行驶的路程LLC,2如上式(1)所示,即LLC,2=LLC
整个过程中跟随车行驶总距离为LLC,1和LLC,2之和;前车均处于匀减速过程,前车在整个过程所行驶的距离如式(3):
Figure BDA0003380154740000031
则此种情况下,跟驰行驶的需求安全距离如式(4):
Figure BDA0003380154740000032
步骤二、计算换道实施状态下车辆纵向需求安全距离和侧向需求安全距离。
当LC换道意图产生后,换道车辆在换道过程中,其运行状态可以分解为纵向和横向两个方向,其分解如图1所示。
在非自由交通流中,换道车辆在本车道其期望速度无法满足,做出向相邻车道换道准备后,车辆换道行驶过程中换道车辆不仅会受到本车道前后车辆的制约,还会受到目标车道中车辆的侧向制约。制约着车辆间的相对距离,此时平衡距离既包括与本车道前后车辆间的纵向需求安全距离,也包括与目标车道前后车辆间的侧向需求安全距离。
纵向需求安全距离计算方式如式(5):
Figure BDA0003380154740000033
式中,设换道车辆为LC,目标车道后车为Tb,目标车道前车为Tf,本车道后车为Cb,本车道前车为Cf;Xv为最小纵向需求安全距离(m);aLC为LC的纵向加速度(m/s2);aCf为Cf的纵向加速度(m/s2);aTf为Tf的纵向加速度(m/s2);aCb为Cb的纵向加速度(m/s2);VLC为LC的纵向速度(km/h);VCb为Cb的纵向速度(km/h);VTb为Tb的纵向速度(km/h);W为车辆宽度(m);α为换道轨迹与中心车道线之间的夹角(°);T为安全跟车阈值(s);
式(5)中,(a)表示换道车辆LC与本车道前车Cf之间的纵向需求安全距离;(b)表示换道车辆LC与目标车道前车Tf之间的纵向需求安全距离;(c)表示换道车辆LC与本车道后车Cb之间的纵向需求安全距离;(d)表示换道车辆LC与目标车道后车Tb之间的纵向需求安全距离;
侧向需求安全距离计算方式如式(6):
Yh=VLC·sinα·t+l (6)
式中,Yh为侧向需求安全距离(m);l为满足车辆安全运行所需要占用的侧向净空(m),一般取值为1.5m。
步骤三、计算换道车辆的纵向需求安全距离和侧向安全距离,确定单个车辆的交互区域。
纵向安全距离ai取决于i车的纵向需求安全距离,根据纵向需求安全距离的计算,引入与纵向需求安全距离成正比的车辆尺寸影响因子、车辆速度影响因子、道路交通条件影响因子;侧向安全距离bi取决于i车的侧向需求安全距离,根据侧向需求安全距离的计算方法,引入与侧向需求安全距离成正比的车辆尺寸影响因子和车道宽度影响因子。
得到的单个车辆的交互区域如图2所示。
步骤四、根据交互区域的重叠面积得出车辆间的交互程度。
由步骤三得出交互区域,即为以纵向安全距离ai为交互区域长轴,以侧向安全距离bi为短轴的椭圆型面积,根据椭圆的面积计算方法可得车辆的交互区域面积Si;确定每个车辆的交互区域参数,计算出各自的交互区域面积,首先计算出i车与j车各自的车辆交互区域,然后根据两车间交互区域的重叠面积,可定义车辆间的交互程度为fij,其值等于i车与j车的重叠面积与i车与j车的最大重叠面积之比。
车辆间的交互程度fij处于[0,1]之间,fij值越大,表明两车间的交互程度越大,当fij=0时,则表明两车间不发生交互,说明这两辆车不在一个交互车辆簇中。但由于车辆在正常运行时需要保持一个安全间距,因此可知Sij存在一个临界最大值Sij,max,此时即为临界车头时距。
在LC换道过程中,周围交互车辆的运行状态是否会发生变化是一个概率事件,服从均匀分布,这一概率p与车辆间的交互程度相关,当fij=0时,周围车辆与LC不发生交互,所以周围车辆不会采取措施,即运动状态不会发生改变;当fij=1时,车辆间达到临界车头时距,此时周围车辆为安全起见必然会采取交互措施,其运动状态必然发生改变,当0<fij<1时,交互车辆是否采取措施主要取决于驾驶员的类型。
步骤五、计算车辆换道驾驶收益,得出换道驾驶收益函数;车辆换道驾驶总收益包括安全收益、空间收益和速度收益:
安全收益以换道过程中的车辆运行安全系数表示,安全收益如式(7):
Figure BDA0003380154740000051
式中,SPt为换道t时刻的安全系数;SP0为换道初始时刻的安全系数;
当两车相距足够远时,车头时距大于Tb。在这种情况下车辆是安全的,安全系数达到最大值。其中,交互车辆的Tb为T0和3中的最小值,T0为LC开始换道时,Tb和Tf之间的初始车头时距。其中3表示3s规则,该规则建议车辆之间应保持至少3s的车头时距。Tb表示如果交互车辆的初始车头时距大于3s,则假定其期望车头时距为3s。否则,换道初始时刻交互车辆的期望车头时距为Th,t=0,其值等于LC和Tb的初始纵向位置之差与Tb初始速度的比值。当车头时距小于Tb时,安全系数为两倍的t时刻车头时距与Tb的比值减去1。
空间收益Uspace估计空间因子RP的变化,RP定义为两个交互车辆间相对位置的函数。
Figure BDA0003380154740000052
式中,SPt为换道t时刻的安全系数;SP0为换道初始时刻的安全系数;
当目标车道后车Tb与换道车辆LC在不同的车道上时,且t时刻TTb-LC小于负三时,t时刻相互作用的空间因子为负一;当TTb-LC大于零时,t时刻相互作用的空间因子为一;在其他情况下,t时刻相互作用的空间因子为三分之二的TTb-LC加一,其中,TTb-LC为目标车道后车Tb与换道车辆LC的间距与目标车道后车Tb车速的比值;
速度收益函数Uvelocity估计速度因子VP的变化,VP定义为两个交互车辆间相对速度的函数;
Figure BDA0003380154740000061
式中,VPt——换道结束时刻的速度系数;VP0——换道初始时刻的速度系数;
总收益函数是三个收益的线性组合,如式(8):
U=W1Usafety+W2Uspace+W3Uvelocity (8)
式中,Wi为各收益的权重,W1+W2+W3=1。
步骤六、结合换道驾驶收益函数确定换道方案。
在确定多车动态交互博弈的换道驾驶收益函数后,动态交互博弈的车辆需要根据自身的驾驶收益来做出决策,为了便于决策,对于交互双方的驾驶收益用驾驶收益决策矩阵表示,如表1所示:
表1
Figure BDA0003380154740000062
将安全收益、空间收益和速度收益进行归一化处理后引入到决策模型中,目标函数如式(9)及式(10):
Figure BDA0003380154740000063
Figure BDA0003380154740000064
在约束条件中增加车辆之间的最小安全距离,即SPLC>K,约束条件定义如式(11)~式(14):
Vi≥0,i=LC,Tb (11)
amin≤ai≤amax,i=LC,Tb (12)
SPLC>K (13)
Figure BDA0003380154740000071
式中,Ui为i车的总收益;ai为i车的可能加速度(m/s2);cLC为换道车辆LC是否会换道;
Figure BDA0003380154740000072
为换道车辆LC的最佳加速度(m/s2);
Figure BDA0003380154740000073
为换道是否对换道车辆LC有利;γ2为目标车道后车Tb的最佳决策;SPLC为换道车辆LC的安全收益;ΓTb为已知换道车辆LC的决策下,目标车道后车Tb的决策;amin为车辆最小加速度(m/s2);amax为车辆最大加速度(m/s2);Xi为i车的车辆纵向位置(m);Li为i车的车辆长度(m)。
在约束条件下,结合目标车道后车Tb的决策,确定换道车辆的换道决策。
换道车辆的换道体方式如下:
如果目标车道后车Tb驾驶员为激进型,不避让的收益和换道车辆LC车道保持的收益之和最大,则换道车辆LC选择车道保持,如果目标车道后车Tb避让的收益和换道车辆LC换道的收益之和最大,则换道车辆LC选择换道;
如果目标车道后车Tb驾驶员为激进型,换道车辆LC驾驶员为保守型,车道保持的收益会大于换道的收益,选择车道保持;
如果目标车道后车Tb驾驶员为保守型,避让的收益会大于不必让的收益,如果换道车辆LC驾驶员为激进型,换道的收益会大于车道保持的收益,选择换道;
如果目标车道后车Tb驾驶员为保守型,如果换道车辆LC驾驶员同为保守型,如果目标车道后车Tb不避让的收益和换道车辆LC车道保持的收益之和最大,则换道车辆LC选择车道保持,如果目标车道后车Tb避让的收益和换道车辆LC换道的收益之和最大,则换道车辆LC选择换道。
采用以下实施例验证本发明的有益效果:
实施例:
对两条城市快速路基本路段进行车辆换道行为数据调查,验证本发明的有益效果:
数据集共调查两条城市快速路基本路段,两路段均为平直路段,调查时段天气良好,视野开阔,路面干燥。参数主要包括宏观交通流参数以及微观换道参数,宏观交通流数据包括交通量、密度以及交通流平均车速;微观换道数据包括LC、Tb、Cf、Cb以及Tf等车辆的唯一车辆编号,时间,纵向、横向坐标,纵向、横向速度,纵向、横向加速度,总共8种类型的数据。根据建立的多车交互换道决策方法,利用Matlab换道仿真程序模拟不同换道情况下换道车辆的决策过程、换道轨迹。
仿真过程中,标定换道纵加速度阈值为ax,max=5m/s2、ax,min=-4m/s2;换道横向加速度阈值为ay,max=4m/s2、ay,min=-3m/s2,多车交互换道时间阈值为4~12s,换道横向偏移量为车道宽度,即d=3.5m(或3.75m),各车辆采取交互措施的概率PTb、PCf、PTf和PCb分别标定为0.64、0.25、0.28和0.38。
仿真涉及到的其他参数值如下表2所示。
表2
Figure BDA0003380154740000081
LC初始速度会对交互车辆驾驶收益产生影响,在仿真环境中,通过设定不同的换道初始速度,分析在不同初始速度下的换道车辆与交互车辆间距的变化过程,其分析结果如图5所示。
根据不同初始速度下交互车辆间距变化结果分析可知,在换道过程中,交互车辆间距均会受到初始速度的影响,其仿真结果与实测值具有一致性,也符合实际的多车交互换道运行特征,因此,根据这一结论可验证本方法所建立的换道决策方法的有效性。
本实施例中,上述内容仅为本发明的较佳实施例,并非用于限制本发明的实施方案,本领域普通技术人员根据本发明的主要构思和精神,可以十分方便地进行相应的变通或修改,故本发明的保护范围应以权利要求书所要求的保护范围为准。

Claims (8)

1.一种考虑多车博弈的车辆交互换道方法,其特征在于,包括如下步骤:
步骤一、计算换道前后跟驰状态下车辆行驶的需求安全距离;
步骤二、计算换道实施状态下车辆纵向需求安全距离和侧向需求安全距离;
步骤三、计算换道车辆的纵向需求安全距离和侧向安全距离,确定单个车辆的交互区域;
步骤四、根据交互区域的重叠面积得出车辆间的交互程度;
步骤五、计算车辆换道驾驶收益,得出换道驾驶收益函数;
步骤六、结合换道驾驶收益函数确定换道方案。
2.根据权利要求1所述的考虑多车博弈的车辆交互换道方法,其特征在于,步骤一中,所述安全距离的具体计算方式如下:
根据前车不同的运行状态计算跟驰需求安全距离;设车辆性能相同,即车辆的最大减速度相同时:
1)VLC>VCf,需求安全距离Xv公式如式(1)所示:
Figure FDA0003380154730000011
式中,LCf为前车制动距离(m);VCf为本车道前车的初始速度(km/h);Td为制动踏板延迟时间(s);am为车辆的最大减速度(m/s2);VLC为换道车辆的初始速度(km/h);Tr为驾驶员感知反应时间(s);d为紧急停车情况下前后车间的最小安全距离;
2)VLC=VCf,需求安全距离如式(1)所示;
3)VLC<VCf,车辆间的运行状态变化分为两个阶段,首先前车减速到与后车的速度相同,即VLC=VCf为第一个阶段,则此阶段前车所用时间如式(2)所示:
T1=Td+(VCf-VLC)/am (2)
式中,T1为前车减速到VLC=VCf阶段所有时间(s);
在T1阶段,后车运行状态不变,保持初始速度行驶状态,行驶的路程为LLC,1,其值等于变换车道车辆的速度与T1的乘积;当前车速度达到VLC=VCf后,跟随车为免碰撞须被动减速,所行驶的路程LLC,2如上式(1)所示,即LLC,2=LLC
整个过程中跟随车行驶总距离为LLC,1和LLC,2之和;前车均处于匀减速过程,前车在整个过程所行驶的距离如式(3):
Figure FDA0003380154730000021
则此种情况下,跟驰行驶的需求安全距离如式(4):
Figure FDA0003380154730000022
3.根据权利要求1所述的考虑多车博弈的车辆交互换道方法,其特征在于,步骤二中,纵向需求安全距离计算方式如式(5):
Figure FDA0003380154730000023
式中,设换道车辆为LC,目标车道后车为Tb,目标车道前车为Tf,本车道后车为Cb,本车道前车为Cf;Xv为最小纵向需求安全距离(m);aLC为LC的纵向加速度(m/s2);aCf为Cf的纵向加速度(m/s2);aTf为Tf的纵向加速度(m/s2);aCb为Cb的纵向加速度(m/s2);VLC为LC的纵向速度(km/h);VCb为Cb的纵向速度(km/h);VTb为Tb的纵向速度(km/h);W为车辆宽度(m);α为换道轨迹与中心车道线之间的夹角(°);T为安全跟车阈值(s);
式(5)中,(a)表示换道车辆LC与本车道前车Cf之间的纵向需求安全距离;(b)表示换道车辆LC与目标车道前车Tf之间的纵向需求安全距离;(c)表示换道车辆LC与本车道后车Cb之间的纵向需求安全距离;(d)表示换道车辆LC与目标车道后车Tb之间的纵向需求安全距离;
侧向需求安全距离计算方式如式(6):
Yh=VLC·sinα·t+l (6)
式中,Yh为侧向需求安全距离(m);l为满足车辆安全运行所需要占用的侧向净空(m)。
4.根据权利要求1所述考虑多车博弈的车辆交互换道方法,其特征在于,步骤三中,纵向安全距离ai取决于i车的纵向需求安全距离,根据纵向需求安全距离的计算,引入与纵向需求安全距离成正比的车辆尺寸影响因子、车辆速度影响因子、道路交通条件影响因子;侧向安全距离bi取决于i车的侧向需求安全距离,根据侧向需求安全距离的计算方法,引入与侧向需求安全距离成正比的车辆尺寸影响因子和车道宽度影响因子。
5.根据权利要求1所述的考虑多车博弈的车辆交互换道方法,其特征在于,步骤四中,由步骤三得出交互区域,即为以纵向安全距离ai为交互区域长轴,以侧向安全距离bi为短轴的椭圆型面积,根据椭圆的面积计算方法可得车辆的交互区域面积Si;确定每个车辆的交互区域参数,计算出各自的交互区域面积,首先计算出i车与j车各自的车辆交互区域,然后根据两车间交互区域的重叠面积,可定义车辆间的交互程度为fij,其值等于i车与j车的重叠面积与i车与j车的最大重叠面积之比。
6.根据权利要求1所述的考虑多车博弈的车辆交互换道方法,其特征在于,步骤五中,车辆换道驾驶总收益包括安全收益、空间收益和速度收益:
安全收益以换道过程中的车辆运行安全系数表示,安全收益如式(7):
Figure FDA0003380154730000031
式中,SPt为换道t时刻的安全系数;SP0为换道初始时刻的安全系数;
空间收益Uspace估计空间因子RP的变化,RP定义为两个交互车辆间相对位置的函数;Uspace如式(8):
Figure FDA0003380154730000032
式中,RPt——换道t时刻的空间系数;RP0——换道初始时刻的空间系数;
当目标车道后车Tb与换道车辆LC在不同的车道上时,且t时刻TTb-LC小于负三时,t时刻相互作用的空间因子为负一;当TTb-LC大于零时,t时刻相互作用的空间因子为一;在其他情况下,t时刻相互作用的空间因子为三分之二的TTb-LC加一,其中,TTb-LC为目标车道后车Tb与换道车辆LC的间距与目标车道后车Tb车速的比值;
速度收益函数Uvelocity估计速度因子VP的变化,VP定义为两个交互车辆间相对速度的函数;Uvelocity如式(9):
Figure FDA0003380154730000033
式中,VPt——换道结束时刻的速度系数;VP0——换道初始时刻的速度系数;
总收益函数是三个收益的线性组合,如式(10):
U=W1Usafety+W2Uspace+W3Uvelocity (10)
式中,Wi为各收益的权重,W1+W2+W3=1。
7.根据权利要求1所述的考虑多车博弈的车辆交互换道方法,其特征在于,步骤五中,将安全收益、空间收益和速度收益进行归一化处理后引入到决策模型中,目标函数如式(11)及式(12):
Figure FDA0003380154730000041
Figure FDA0003380154730000042
在约束条件中增加车辆之间的最小安全距离,即SPLC>K,约束条件定义如式(13)~式(16):
Vi≥0,i=LC,Tb (13)
amin≤ai≤amax,i=LC,Tb (14)
SPLC>K (15)
Figure FDA0003380154730000043
式中,Ui为i车的总收益;ai为i车的可能加速度(m/s2);cLC为换道车辆LC是否会换道;
Figure FDA0003380154730000044
为换道车辆LC的最佳加速度(m/s2);
Figure FDA0003380154730000045
为换道是否对换道车辆LC有利;γ2为目标车道后车Tb的最佳决策;SPLC为换道车辆LC的安全收益;ΓTb为已知换道车辆LC的决策下,目标车道后车Tb的决策;amin为车辆最小加速度(m/s2);amax为车辆最大加速度(m/s2);Xi为i车的车辆纵向位置(m);Li为i车的车辆长度(m)。
在约束条件下,结合目标车道后车Tb的决策,确定换道车辆的换道决策。
8.根据权利要求7所述的考虑多车博弈的车辆交互换道方法,其特征在于,换道车辆的换道体方式如下:
如果目标车道后车Tb驾驶员为激进型,不避让的收益和换道车辆LC车道保持的收益之和最大,则换道车辆LC选择车道保持,如果目标车道后车Tb避让的收益和换道车辆LC换道的收益之和最大,则换道车辆LC选择换道;
如果目标车道后车Tb驾驶员为激进型,换道车辆LC驾驶员为保守型,车道保持的收益会大于换道的收益,选择车道保持;
如果目标车道后车Tb驾驶员为保守型,避让的收益会大于不必让的收益,如果换道车辆LC驾驶员为激进型,换道的收益会大于车道保持的收益,选择换道;
如果目标车道后车Tb驾驶员为保守型,如果换道车辆LC驾驶员同为保守型,如果目标车道后车Tb不避让的收益和换道车辆LC车道保持的收益之和最大,则换道车辆LC选择车道保持,如果目标车道后车Tb避让的收益和换道车辆LC换道的收益之和最大,则换道车辆LC选择换道。
CN202111430951.9A 2021-11-29 2021-11-29 一种考虑多车博弈的车辆交互换道方法 Pending CN114148330A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111430951.9A CN114148330A (zh) 2021-11-29 2021-11-29 一种考虑多车博弈的车辆交互换道方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111430951.9A CN114148330A (zh) 2021-11-29 2021-11-29 一种考虑多车博弈的车辆交互换道方法

Publications (1)

Publication Number Publication Date
CN114148330A true CN114148330A (zh) 2022-03-08

Family

ID=80784114

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111430951.9A Pending CN114148330A (zh) 2021-11-29 2021-11-29 一种考虑多车博弈的车辆交互换道方法

Country Status (1)

Country Link
CN (1) CN114148330A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114604241A (zh) * 2022-03-31 2022-06-10 北京百度网讯科技有限公司 车辆驾驶风险评估方法、装置、电子设备及边缘计算设备
CN114842644A (zh) * 2022-04-26 2022-08-02 河北工业大学 一种混合交通流交织区通行能力计算方法
CN114882705A (zh) * 2022-05-30 2022-08-09 武汉理工大学 一种基于换道决策系统的货运车辆交互博弈换道决策方法
CN115456392A (zh) * 2022-09-06 2022-12-09 长安大学 一种高速多车多驾驶行为冲突协同决策方法及装置
CN116805445A (zh) * 2023-07-21 2023-09-26 交通运输部公路科学研究所 车辆换道行驶控制方法及系统

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114604241A (zh) * 2022-03-31 2022-06-10 北京百度网讯科技有限公司 车辆驾驶风险评估方法、装置、电子设备及边缘计算设备
CN114842644A (zh) * 2022-04-26 2022-08-02 河北工业大学 一种混合交通流交织区通行能力计算方法
CN114842644B (zh) * 2022-04-26 2023-02-24 河北工业大学 一种混合交通流交织区通行能力计算方法
CN114882705A (zh) * 2022-05-30 2022-08-09 武汉理工大学 一种基于换道决策系统的货运车辆交互博弈换道决策方法
CN114882705B (zh) * 2022-05-30 2024-04-26 武汉理工大学 一种基于换道决策系统的货运车辆交互博弈换道决策方法
CN115456392A (zh) * 2022-09-06 2022-12-09 长安大学 一种高速多车多驾驶行为冲突协同决策方法及装置
CN115456392B (zh) * 2022-09-06 2023-09-05 长安大学 一种高速多车多驾驶行为冲突协同决策方法及装置
CN116805445A (zh) * 2023-07-21 2023-09-26 交通运输部公路科学研究所 车辆换道行驶控制方法及系统
CN116805445B (zh) * 2023-07-21 2024-04-02 交通运输部公路科学研究所 车辆换道行驶控制方法及系统

Similar Documents

Publication Publication Date Title
CN114148330A (zh) 一种考虑多车博弈的车辆交互换道方法
CN109035862B (zh) 一种基于车车通信的多车协同换道控制方法
CN108256233B (zh) 基于驾驶员风格的智能车轨迹规划及跟踪方法和系统
CN110298131B (zh) 一种混合驾驶环境下自动驾驶换道决策模型建立方法
CN110085056B (zh) 一种高速公路车路协同环境下车辆换道瞬时风险识别方法
CN103857550B (zh) 用于适应式控制距离和速度并且用于机动车停车的方法和系统以及借此运行的机动车
CN108919795A (zh) 一种自动驾驶汽车换道决策方法及装置
CN112046484B (zh) 一种基于q学习的车辆变道超车路径规划方法
CN111445697B (zh) 一种智能网联条件下的高速公路协同车辆换道控制方法
CN112002144A (zh) 无信号交叉路口行车风险态势评估方法及系统
CN112373485A (zh) 一种考虑交互博弈的自动驾驶车辆决策规划方法
CN112249008B (zh) 针对复杂动态环境的无人驾驶汽车预警方法
CN110390839A (zh) 考虑多车交互区域重叠面积的车辆换道方法
CN111216713A (zh) 一种自动驾驶车辆速度预瞄控制方法
CN113071482B (zh) 一种基于通行时间区间的智能车辆防碰撞方法
CN116740945B (zh) 混行环境下快速路合流区多车协同编组交汇方法及系统
CN114987461A (zh) 一种多车复杂交通环境下的智能客车动态变道轨迹规划方法
CN113222678A (zh) 一种网联环境下鼓励车辆协同换道的积分奖励方法
CN102505593B (zh) 出入口纵深长度确定方法
CN115140094A (zh) 一种基于纵向安全间距模型的实时换道决策方法
CN114228707A (zh) 一种无人驾驶车辆的防撞方法及系统
CN116142194A (zh) 一种拟人化的换道决策方法
CN116252796A (zh) 一种基于信息物理迭代博弈的换道轨迹规划方法
CN113830084B (zh) 基于多车道车辆主动避撞的控制方法及车辆
CN115817477A (zh) 一种基于博弈论的港口码头面自动驾驶换道决策方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination