CN114147306A - Offset parameter determination method - Google Patents

Offset parameter determination method Download PDF

Info

Publication number
CN114147306A
CN114147306A CN202111538287.XA CN202111538287A CN114147306A CN 114147306 A CN114147306 A CN 114147306A CN 202111538287 A CN202111538287 A CN 202111538287A CN 114147306 A CN114147306 A CN 114147306A
Authority
CN
China
Prior art keywords
parameter
value
parameter value
offset
values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202111538287.XA
Other languages
Chinese (zh)
Inventor
程媛媛
徐佩
陷雨飞
王亚东
朱红刚
同博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Aviation Power Co Ltd
Original Assignee
AECC Aviation Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Aviation Power Co Ltd filed Critical AECC Aviation Power Co Ltd
Priority to CN202111538287.XA priority Critical patent/CN114147306A/en
Publication of CN114147306A publication Critical patent/CN114147306A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/14Making holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H11/00Auxiliary apparatus or details, not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Numerical Control (AREA)

Abstract

The invention discloses an offset parameter determination method, belongs to the technical field of electric spark machining, and can solve the problem of poor accuracy of machining array holes. The offset parameter determination method comprises the following steps: placing the workpieces corresponding to the N array holes on a workbench, and controlling the workbench to move according to the M motion parameter values; acquiring M deviation values in the process of the movement of the workbench, and establishing M corresponding relations according to M movement parameter values and M deviation values respectively; acquiring N first parameter values and N second parameter values corresponding to N array holes, wherein each array hole corresponds to one first parameter value, each array hole corresponds to one second parameter value, and N is a positive integer; based on the M corresponding relations and according to the N target parameter values, respectively determining N offset values, based on the N offset values and the N second parameter values, respectively determining N third parameter values, wherein one offset value corresponds to one third parameter value, and one second parameter value corresponds to one third parameter value.

Description

Offset parameter determination method
Technical Field
The invention belongs to the technical field of offset parameter determination, and particularly relates to an offset parameter determination method.
Background
Generally, when a plurality of array holes are machined in a combustion chamber part by using a spark erosion small hole machining process, the position of each array hole can be determined according to machining parameters of each array hole, and then the machining operation of the plurality of array holes can be respectively carried out according to the position of each array hole.
However, since the workpieces corresponding to a plurality of array holes may be deformed, the processing parameters of each array hole may be inaccurate.
Therefore, the accuracy of machining the array holes is poor.
Disclosure of Invention
The embodiment of the invention aims to provide a method for determining offset parameters, which can solve the problem of poor accuracy of processing array holes and ensure the processing accuracy of the array holes.
In order to solve the technical problem, the invention is realized as follows:
a method of offset parameter determination, the method comprising:
placing the workpieces corresponding to the N array holes on a workbench, and controlling the workbench to move according to M motion parameter values;
acquiring the deviant values of M motion parameter values in the motion process of the workbench, and establishing the corresponding relation between the M motion parameter values and the deviant values of the motion parameter values according to the M motion parameter values and the deviant values of the M motion parameter values; in the corresponding relation, each motion parameter value corresponds to the deviation value of the motion parameter value;
acquiring N first parameter values and N second parameter values corresponding to N array holes, wherein each array hole corresponds to one first parameter value and each array hole corresponds to one second parameter value; the first parameter value is used for representing the rotation angle of the workbench, the second parameter value is used for representing the distance between one array hole and the rotation center, and N is a positive integer;
respectively determining offset values corresponding to the N array holes respectively according to target parameter values of the N array holes based on the M corresponding relations, wherein each corresponding relation is a corresponding relation between one parameter value and one offset value, and each target parameter value comprises at least one of a first parameter value and a second parameter value; one target parameter value corresponds to one offset value, and M is a positive integer;
respectively determining N third parameter values based on the N deviation values and the N second parameter values, wherein one deviation value corresponds to one third parameter value, one second parameter value corresponds to one third parameter value, and one third parameter value is as follows: the sum of one offset value and the corresponding second parameter value.
Preferably, the target parameter value is a second parameter value;
the determining N offset values according to the N target parameter values based on the M correspondence relationships includes:
according to the ith target parameter value in the N target parameter values, determining a third parameter value matched with the ith target parameter value from M motion parameter values in the M corresponding relations, wherein i is a positive integer;
determining the offset value corresponding to the third parameter value as the ith offset value;
wherein the ith offset value corresponds to the ith target parameter value.
Preferably, the target parameter value comprises a first parameter value and a second parameter value;
the determining N offset values according to the N target parameter values based on the M correspondence relationships includes:
according to the ith first parameter value in the N target parameter values, determining a fourth parameter value and a fifth parameter value corresponding to the ith first parameter value from M motion parameter values in the M corresponding relations, wherein i is a positive integer;
determining an ith offset value based on the offset value corresponding to the fifth parameter value and the offset value corresponding to the fourth parameter value;
wherein the fourth parameter value is less than the ith first parameter value, and the fifth parameter value is greater than the ith first parameter value;
the ith offset value corresponds to the ith first parameter value, and the ith offset value corresponds to the ith second parameter value.
Preferably, the determining an ith offset value based on the offset value corresponding to the fourth parameter value and the offset value corresponding to the fifth parameter value includes:
determining a first value according to a difference value between the fifth parameter value and the fourth parameter value;
determining a second numerical value according to a difference value between the offset value corresponding to the fifth parameter value and the offset value corresponding to the fourth parameter value;
determining a third value according to the fourth parameter value and the ith first parameter value;
and determining the ith offset value according to the offset value corresponding to the fourth parameter value, the first numerical value, the second numerical value and the third numerical value.
The present invention also provides an offset parameter determining apparatus, including: the device comprises a control module, an acquisition module and a determination module;
the control module is used for placing the workpieces corresponding to the N array holes on a workbench and controlling the workbench to move according to M motion parameter values;
the obtaining module is configured to obtain offset values of M motion parameter values during a motion process of the workbench, and establish a corresponding relationship between the M motion parameter values and the offset values of the motion parameter values according to the M motion parameter values and the offset values of the M motion parameter values, respectively; in the corresponding relation, each motion parameter value corresponds to the deviation value of the motion parameter value; acquiring N first parameter values and N second parameter values corresponding to N array holes, wherein each array hole corresponds to one first parameter value and each array hole corresponds to one second parameter value; the first parameter value is used for representing the rotation angle of the workbench, the second parameter value is used for representing the distance between one array hole and the rotation center, and N is a positive integer;
the determining module is configured to determine, based on the M correspondence relationships and according to target parameter values of the N array holes, offset values corresponding to the N array holes, respectively, where each correspondence relationship is a correspondence relationship between one parameter value and one offset value, and each target parameter value includes at least one of a first parameter value and a second parameter value; one target parameter value corresponds to one offset value, and M is a positive integer;
respectively determining N third parameter values based on the N deviation values and the N second parameter values, wherein one deviation value corresponds to one third parameter value, one second parameter value corresponds to one third parameter value, and one third parameter value is as follows: the sum of one offset value and the corresponding second parameter value.
Preferably, the target parameter value is a second parameter value;
the determining module is specifically configured to determine, according to an ith target parameter value of the N target parameter values, a third parameter value that matches the ith target parameter value from M motion parameter values in the M correspondence relationships, where i is a positive integer; determining the offset value corresponding to the third parameter value as the ith offset value;
wherein the ith offset value corresponds to the ith target parameter value.
Preferably, the target parameter value comprises a first parameter value and a second parameter value;
the determining module is specifically configured to determine, according to an ith first parameter value of the N target parameter values, a fourth parameter value and a fifth parameter value corresponding to the ith first parameter value from M motion parameter values in the M correspondence relationships, where i is a positive integer; determining an ith offset value based on the offset value corresponding to the fifth parameter value and the offset value corresponding to the fourth parameter value;
wherein the fourth parameter value is less than the ith first parameter value, and the fifth parameter value is greater than the ith first parameter value;
the ith offset value corresponds to the ith first parameter value, and the ith offset value corresponds to the ith second parameter value.
Preferably, the determining module is specifically configured to determine a first numerical value according to a difference between the fifth parameter value and the fourth parameter value; determining a second numerical value according to a difference value between the offset value corresponding to the fifth parameter value and the offset value corresponding to the fourth parameter value; determining a third value according to the fourth parameter value and the ith first parameter value; and determining the ith offset value according to the offset value corresponding to the fourth parameter value, the first numerical value, the second numerical value and the third numerical value.
The invention also provides a workpiece processing method, which is used for processing the workpiece with the array holes, and when the workpiece with the array holes is processed, the N first parameter values and the N third parameter values are determined by the offset parameter determination method, and the processing operation of the N array holes is carried out on the workpiece according to the N first parameter values and the N third parameter values.
The invention also provides an electronic device comprising a processor, a memory and a program or instructions stored on the memory and executable on the processor, which when executed by the processor, implement the steps of the offset parameter determination method of the invention as described above.
The invention has the following beneficial effects:
in the invention, the offset parameter determining device can place the workpieces corresponding to the N array holes on the workbench and control the workbench to move according to M motion parameter values; and in the process of the movement of the workbench, M deviation values are obtained, M corresponding relations are established according to M movement parameter values and the M deviation values, so that N first parameter values and N second parameter values corresponding to the N array holes can be obtained, based on the M corresponding relations (each corresponding relation is a corresponding relation between one parameter value and one deviation value), N deviation values are determined according to the N first parameter values (and/or one second parameter value), and then N third parameter values are determined based on the N deviation values and the N second parameter values. In the process of the movement of the workbench, M deviation values are obtained, and M corresponding relations are established according to M movement parameter values and M deviation values, so that the deviation parameter determining device can obtain first parameter values and second parameter values of N array holes firstly, and based on M corresponding relations, N deviation values are determined according to the first parameter values (and/or the second parameter values) of the N array holes respectively to determine N third parameter values.
Drawings
Fig. 1 is a schematic diagram of an offset parameter determining method according to an embodiment of the present invention;
FIG. 2 is a schematic view of a work piece with a work table corresponding to N array holes;
FIG. 3 is a second schematic diagram illustrating a method for determining an offset parameter according to an embodiment of the present invention;
fig. 4 is a third schematic diagram illustrating a method for determining an offset parameter according to an embodiment of the present invention;
fig. 5 is a schematic structural diagram of an offset parameter determining apparatus according to an embodiment of the present invention;
fig. 6 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are some, not all, embodiments of the present invention. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
The terms first, second and the like in the description and in the claims of the present invention are used for distinguishing between similar elements and not necessarily for describing a particular sequential or chronological order. It will be appreciated that the data so used may be interchanged under appropriate circumstances such that embodiments of the invention may be practiced other than those illustrated or described herein, and that the objects identified as "first," "second," etc. are generally a class of objects and do not limit the number of objects, e.g., a first object may be one or more. In addition, "and/or" in the specification and claims means at least one of connected objects, a character "/" generally means that a preceding and succeeding related objects are in an "or" relationship.
In order to solve the problems in the prior art, the invention adopts the following scheme:
in a first aspect, the present invention provides a method for determining an offset parameter, including: placing the workpieces corresponding to the N array holes on a workbench, and controlling the workbench to move according to the M motion parameter values; acquiring M deviation values in the process of the movement of the workbench, and establishing M corresponding relations according to M movement parameter values and M deviation values respectively; acquiring N first parameter values and N second parameter values corresponding to N array holes, wherein each array hole corresponds to one first parameter value, each array hole corresponds to one second parameter value, and N is a positive integer; respectively determining N deviation values according to N target parameter values based on M corresponding relations, wherein each corresponding relation is a corresponding relation between one parameter value and one deviation value, and one target parameter value comprises at least one of the following items: a first parameter value, a second parameter value; one target parameter value corresponds to one offset value, and M is a positive integer; and respectively determining N third parameter values based on the N offset values and the N second parameter values, wherein one offset value corresponds to one third parameter value, and one second parameter value corresponds to one third parameter value.
In a second aspect, the present invention provides an offset parameter determination apparatus, including: the device comprises a control module, an acquisition module and a determination module. The control module is used for placing the workpieces corresponding to the N array holes on the workbench and controlling the workbench to move according to the M motion parameter values. The acquisition module is used for acquiring M deviation values in the movement process of the workbench and establishing M corresponding relations according to the M movement parameter values and the M deviation values respectively; and acquiring N first parameter values and N second parameter values corresponding to the N array holes, wherein each array hole corresponds to one first parameter value, each array hole corresponds to one second parameter value, and N is a positive integer. A determining module, configured to determine N offset values according to N target parameter values based on M corresponding relationships, where each corresponding relationship is a corresponding relationship between one parameter value and one offset value, and one target parameter value includes at least one of the following: a first parameter value, a second parameter value; one target parameter value corresponds to one offset value, and M is a positive integer; and respectively determining N third parameter values based on the N offset values and the N second parameter values, wherein one offset value corresponds to one third parameter value, and one second parameter value corresponds to one third parameter value.
In a third aspect, an embodiment of the present invention provides an electronic device, which includes a processor, a memory, and a program or instructions stored on the memory and executable on the processor, and when executed by the processor, the program or instructions implement the steps of the method according to the first aspect.
In a fourth aspect, embodiments of the present invention provide a readable storage medium, on which a program or instructions are stored, which when executed by a processor implement the steps of the method according to the first aspect.
In a fifth aspect, an embodiment of the present invention provides a chip, where the chip includes a processor and a communication interface, where the communication interface is coupled to the processor, and the processor is configured to execute a program or instructions to implement the method according to the first aspect.
The offset parameter determining method provided by the embodiment of the present invention is described in detail below with reference to the accompanying drawings through specific embodiments and application scenarios thereof.
Fig. 1 shows a flowchart of an offset parameter determining method provided in an embodiment of the present invention. As shown in fig. 1, the offset parameter determining method provided by the embodiment of the present invention may include steps 101 to 105 described below.
And 101, placing the workpieces corresponding to the N array holes on a workbench by the offset parameter determining device, and controlling the workbench to move according to the M motion parameter values.
Optionally, in an embodiment of the present invention, the worktable may be a rotary worktable.
Further optionally, in the embodiment of the present invention, the workpiece corresponding to the N array holes may be placed on a rotary table of the electric discharge small hole machine, and a rotation center (target point) of the workpiece may be found to coincide with a rotation center of the rotary table 1. (because the workpiece has deformation, the workpiece can be roughly aligned in a mode of centering pairs of point pairs of four quadrant points of the workpiece in pairs).
Optionally, in this embodiment of the present invention, after the offset parameter determining apparatus places the workpiece corresponding to the N array holes on the workbench, the head of the dial indicator may be close to the first end surface of the workpiece, and then the workbench is controlled to rotate according to the M motion parameter values.
Further optionally, in an embodiment of the present invention, the first end surface may be: close to the end face of the target point.
For example, as shown in fig. 2, a workpiece 2 corresponding to N array holes is placed on a rotary table 1, and the workpiece 2 is a rotary workpiece, a dial indicator holder 4 may be disposed on a spindle 3 of a machine tool, a dial indicator 5 is fixed on the dial indicator holder 4, and a head of the dial indicator 5 is close to a first end surface of the workpiece, so that the rotary table 1 may be controlled to rotate around a rotary table rotation axis c (target point) of the machine tool according to M motion parameter values.
And 102, acquiring offset values corresponding to the M motion parameter values by the offset parameter determining device in the motion process of the workbench, and establishing M corresponding relations according to the M motion parameter values and the M offset values respectively.
Further alternatively, in this embodiment of the present invention, the offset parameter determining device may first control the workbench to move according to a first parameter value of the M motion parameter values, then read a reading of the dial indicator to obtain a first deviation value, and establish a first corresponding relationship according to the first parameter value and the first deviation value, then control the workbench to move according to a second parameter value of the M motion parameter values, then read a reading of the dial indicator to obtain a second deviation value, and establish a second corresponding relationship according to the second parameter value and the second deviation value, and so on, so as to establish the M corresponding relationships.
It can be understood that the C-axis of the workbench can be rotated, the rotary workbench 1 drives the workpieces corresponding to the N array holes to perform rotary motion, and the rotary angle parameter C of the rotary workbench of the machine tool is recorded according to corresponding frequencyMAnd angle of revolution CMReading X of corresponding dial indicatorMAll correspondences are recorded in the measurement point set PM(CM,XM) To obtain M correspondences.
Step 103, the offset parameter determining device obtains N first parameter values and N second parameter values corresponding to the N array holes.
Optionally, in this embodiment of the present invention, after a user inputs N pieces of parameter information (each piece of parameter information corresponds to one array hole) of the N array holes in the offset parameter determining device, the offset parameter determining device may obtain the N pieces of parameter information according to the input of the user to the offset parameter determining device, so as to obtain N first parameter values and N second parameter values.
Further optionally, in the embodiment of the present invention, for each of the N pieces of parameter information, one piece of parameter information may include one first parameter value and one second parameter value, where the one first parameter value is used to characterize a moving parameter of the stage, and the one second parameter value is used to characterize a distance between one array hole and the target point. Wherein, the motion parameter may specifically be any one of the following: rotation angle, movement distance.
Further optionally, in this embodiment of the present invention, each of the N first parameter values is different. Each of the N second parameter values may be the same, or some of the N second parameter values may be the same.
Illustratively, if a first parameter value is used to characterize the angle of rotation of the stage, a second parameter value is used to characterize the distance of an array aperture from the center of rotation (gyration).
In the embodiment of the present invention, each array hole of the N array holes corresponds to a first parameter value, each array hole corresponds to a second parameter value, and N is a positive integer.
It is understood that the offset parameter determining means may control the movement of the table according to a first parameter value and a second parameter value of an array hole, so that the machining electrode may be aligned with the position to be machined corresponding to the array hole.
Optionally, in an embodiment of the present invention, the N array holes may be any one of: annular array holes and rectangular array holes.
And step 104, the offset parameter determining device determines N offset values respectively according to the N target parameter values based on the M corresponding relations.
In an embodiment of the present invention, each of the M corresponding relationships is a corresponding relationship between a parameter value and an offset value, and a target parameter value includes at least one of the following: a first parameter value, a second parameter value; one target parameter value corresponds to one offset value, and M is a positive integer.
Optionally, in the embodiment of the present invention, the M corresponding relationships may specifically be: the offset parameter determination means determines the correspondence relationship stored in advance.
Optionally, in an embodiment of the present invention, for each of the M motion parameter values, one parameter value is used to characterize a motion parameter of the stage, and one offset value is used to characterize an offset value of an array aperture from a target point.
In the embodiment of the invention, because the workpiece corresponding to the N array holes (namely the workpiece of the N array holes to be processed) is deformed, if programming processing is carried out according to the theoretical perfect circle position, the condition that N parameter information of the N array holes is inaccurate can be caused, namely the included angle between the adjacent array holes of the N array holes and the size of the hole center distance end face do not meet the requirements, therefore, the deviation value of each array hole can be determined according to the M corresponding relations, and the position of a processing electrode can be adjusted.
Optionally, in this embodiment of the present invention, the M target parameter values may specifically be any one of the following: a first parameter value; a first parameter value and a second parameter value.
Optionally, in a possible implementation manner of the embodiment of the present invention, the one target parameter value is a second parameter value. Specifically, referring to fig. 1, as shown in fig. 3, the step 104 can be implemented by the following steps 104a and 104 b.
And step 104a, the offset parameter determining device determines a third parameter value matched with the ith target parameter value from M motion parameter values in the M corresponding relations according to the ith target parameter value in the N target parameter values.
In the embodiment of the invention, i is a positive integer.
It should be noted that the above "matching" can be understood as: the difference is equal to or smaller than the preset threshold.
And step 104b, the offset parameter determining device determines the offset value corresponding to the third parameter value as the ith offset value.
In an embodiment of the present invention, the ith offset value corresponds to an ith target parameter value.
It will be appreciated that the above-described ith offset value corresponds to the ith second parameter value.
Exemplarily, it is assumed that the parameter information (central theoretical point position) of the ith array well of the N array wells is P0(C0,X0) Wherein, C0For the value of the rotation angle parameter, X, of the table corresponding to the ith array hole0The distance of the ith array aperture from the target point (centre of gyration).
The offset parameter determining means may be based on C0From the M values of the motion parameter, the value C is determined0Matching third parameter value (e.g. C)n) And is combined withAdding the CnCorresponding offset value (e.g. X)n) And determined as the ith offset value.
In this embodiment of the present invention, the offset parameter determining apparatus may determine the N offset values according to each target parameter value of the N target parameter values by using the step 104a and the step 104 b.
Therefore, the condition that workpieces corresponding to the N array holes (namely the workpieces of the N array holes to be processed) deform can occur, if programming processing is still performed according to the theoretical perfect circle position, the condition that N parameter information of the N array holes is inaccurate can be caused, namely, the included angle of the N array holes adjacent to each other and the size of the hole center distance end face do not meet the requirement, therefore, the deviation value of each array hole can be determined according to the M corresponding relations, the position of a processing electrode can be adjusted, and therefore the accuracy of the determined position of the array hole can be improved.
Optionally, in another possible implementation manner of the embodiment of the present invention, the one target parameter value includes a first parameter value and a second parameter value. Specifically, referring to fig. 1, as shown in fig. 4, the step 104 can be implemented by the following steps 104c and 104 d.
And step 104c, the offset parameter determining device determines a fourth parameter value and a fifth parameter value corresponding to the ith first parameter value from M motion parameter values in the M corresponding relations according to the ith first parameter value in the N target parameter values.
In the embodiment of the invention, i is a positive integer.
In an embodiment of the present invention, the fourth parameter value is smaller than the ith first parameter value, and the fifth parameter value is larger than the ith first parameter value.
Optionally, in this embodiment of the present invention, the fourth parameter value may specifically be: the maximum parameter value in the M motion parameter values is smaller than the ith first parameter value; the fifth parameter value may specifically be: the minimum parameter value of the M motion parameter values is larger than the ith first parameter value.
For example, assuming that M motion parameter values are {1,3,5,7,9,11}, the ith first parameter value is {6}, and the fourth parameter value is the largest parameter value of the M motion parameter values that is smaller than {6} (i.e., {1,3,5}), i.e., {5 }; the fifth parameter value is the smallest parameter value of the M motion parameter values that is greater than {6} (i.e., {7,9,11 }).
Step 104d, the offset parameter determining device determines the ith offset value based on the offset value corresponding to the fifth parameter value and the offset value corresponding to the fourth parameter value.
In this embodiment of the present invention, the ith offset value corresponds to the ith first parameter value, and the ith offset value corresponds to the ith second parameter value.
Alternatively, the offset parameter determining device may determine the ith offset value based on the offset value corresponding to the fifth parameter value and the offset value corresponding to the fourth parameter value by using the first algorithm.
As will be described in detail below, the offset parameter determining apparatus determines the ith offset value based on the offset value corresponding to the fifth parameter value and the offset value corresponding to the fourth parameter value by using the first algorithm.
Alternatively, in the embodiment of the present invention, the step 104d may be specifically realized by the following steps 104d1 to 104d 4.
Step 104d1, the offset parameter determining means determines the first value based on the difference between the fifth parameter value and the fourth parameter value.
Step 104d2, the offset parameter determining means determines the second value according to the difference between the offset value corresponding to the fifth parameter value and the offset value corresponding to the fourth parameter value.
Step 104d3, the offset parameter determining means determines the third value according to the fourth parameter value and the ith first parameter value.
And step 104d4, the offset parameter determining device determines the ith offset value according to the offset value corresponding to the fourth parameter value, the first numerical value, the second numerical value and the third numerical value.
It is to be understood that the first algorithm may specifically be:
Figure BDA0003413585320000131
wherein Q isiIs the ith offset value, c0The value of the rotation angle parameter of the worktable corresponding to the ith array hole, cnIs a fourth parameter value, cnCorresponding offset value xn,cn+1Is a fifth parameter value, cn+1Corresponding offset value xn+1
Therefore, the condition that workpieces corresponding to the N array holes (namely the workpieces of the N array holes to be processed) deform can occur, if programming processing is still performed according to the theoretical perfect circle position, the condition that N parameter information of the N array holes is inaccurate can be caused, namely, the included angle of the N array holes adjacent to each other and the size of the hole center distance end face do not meet the requirement, therefore, the deviation value of each array hole can be determined according to the M corresponding relations, the position of a processing electrode can be adjusted, and therefore the accuracy of the determined position of the array hole can be improved.
Step 105, the offset parameter determining device determines N third parameter values based on the N offset values and the N second parameter values, respectively.
In the embodiment of the present invention, for each offset value of the N offset values, one offset value corresponds to one third parameter value, and one second parameter value corresponds to one third parameter value.
Alternatively, in this embodiment of the present invention, the offset parameter determining device may determine the sum of the first offset value and the first second parameter value as the first third parameter value, determine the sum of the second offset value and the second parameter value as the second third parameter value, and so on, to determine the N third parameter values.
Optionally, in this embodiment of the present invention, when one target parameter value is one second parameter value, the offset parameter determining device may respectively determine N third parameter values according to the N offset values and the N second parameter values by using a second algorithm.
Further optionally, in an embodiment of the present invention, the second algorithm specifically may be:
f(c0)=x0+xn,c0=cn
wherein, f (c)0) For the ith third parameter value, the ith array well parameter information (with the central theoretical point being) is P0(c0,x0),c0The value of the rotation angle parameter, x, of the worktable corresponding to the ith array hole0Is the distance, x, of the ith array aperture from the target point (center of gyration)0Is c0Matching third parameter value (e.g., c)n) The corresponding offset value.
Optionally, in this embodiment of the present invention, in a case that one target parameter value includes one first parameter value and one second parameter value, the offset parameter determining device may determine, by using a third algorithm, N third parameter values according to the N offset values and the N second parameter values, respectively.
Further optionally, in an embodiment of the present invention, the third algorithm may specifically be:
Figure BDA0003413585320000141
wherein, f (c)0) For the ith third parameter value, the ith array well parameter information (with the central theoretical point being) is P0(c0,x0),c0The value of the rotation angle parameter, x, of the worktable corresponding to the ith array hole0The distance of the ith array hole from the target point (center of gyration), cnIs a fourth parameter value, cnCorresponding offset value xn,cn+1Is a fifth parameter value, cn+1Corresponding offset value xn+1
Optionally, in an embodiment of the present invention, after the offset parameter determining device determines the N third parameter values, the offset parameter determining device may perform the machining operation on the N array holes according to the N first parameter values and the N third parameter values.
In the embodiment of the present invention, since the workpiece corresponding to the N array holes may deform, which may cause the N second parameter values to be inaccurate, the offset parameter determining apparatus may re-determine the N second parameter values (i.e., the N third parameter values) by using the steps 101 to 105, and perform the processing operation on the N array holes according to the N first parameter values and the N third parameter values.
According to the offset parameter determining method provided by the embodiment of the invention, the offset parameter determining device can place the workpieces corresponding to the N array holes on the workbench and control the workbench to move according to the M motion parameter values; and in the process of the movement of the workbench, M deviation values are obtained, M corresponding relations are established according to M movement parameter values and the M deviation values, so that N first parameter values and N second parameter values corresponding to the N array holes can be obtained, based on the M corresponding relations (each corresponding relation is a corresponding relation between one parameter value and one deviation value), N deviation values are determined according to the N first parameter values (and/or one second parameter value), and then N third parameter values are determined based on the N deviation values and the N second parameter values. In the process of the movement of the workbench, M deviation values are obtained, and M corresponding relations are established according to M movement parameter values and M deviation values, so that the deviation parameter determining device can obtain first parameter values and second parameter values of N array holes firstly, and based on M corresponding relations, N deviation values are determined according to the first parameter values (and/or the second parameter values) of the N array holes respectively to determine N third parameter values.
It should be noted that, in the offset parameter determining method provided in the embodiment of the present invention, the executing body may be an offset parameter determining device, or a control module in the offset parameter determining device for executing the offset parameter determining method. In the embodiment of the present invention, an example in which an offset parameter determining apparatus executes an offset parameter determining method is taken as an example, and the offset parameter determining method provided in the embodiment of the present invention is described.
Fig. 5 shows a schematic diagram of a possible structure of the offset parameter determining apparatus according to the embodiment of the present invention. As shown in fig. 5, the offset parameter determining means 60 may include: a control module 61, an acquisition module 62 and a determination module 63.
The control module 61 is configured to place the workpieces corresponding to the N array holes on the workbench, and control the workbench to move according to the M motion parameter values. An obtaining module 62, configured to obtain M deviation values during a movement process of the workbench, and establish M corresponding relationships according to M movement parameter values and the M deviation values, respectively; and acquiring N first parameter values and N second parameter values corresponding to the N array holes, wherein each array hole corresponds to one first parameter value, each array hole corresponds to one second parameter value, and N is a positive integer. A determining module 62, configured to determine N offset values according to N target parameter values based on M corresponding relationships, where each corresponding relationship is a corresponding relationship between one parameter value and one offset value, and one target parameter value includes at least one of the following: a first parameter value, a second parameter value; one target parameter value corresponds to one offset value, and M is a positive integer; and respectively determining N third parameter values based on the N offset values and the N second parameter values, wherein one offset value corresponds to one third parameter value, and one second parameter value corresponds to one third parameter value.
In a possible implementation, the one target parameter value is a second parameter value. The determining module 62 is specifically configured to determine, according to an ith target parameter value of the N target parameter values, a third parameter value matched with the ith target parameter value from M motion parameter values in the M corresponding relationships, where i is a positive integer; and determining the offset value corresponding to the third parameter value as the ith offset value. Wherein the ith offset value corresponds to the ith target parameter value.
In a possible implementation, the one target parameter value includes a first parameter value and a second parameter value. The determining module 62 is specifically configured to determine, according to an ith first parameter value of the N target parameter values, a fourth parameter value and a fifth parameter value corresponding to the ith first parameter value from M motion parameter values in the M corresponding relationships, where i is a positive integer; and determining the ith offset value based on the offset value corresponding to the fifth parameter value and the offset value corresponding to the fourth parameter value. Wherein, the fourth parameter value is smaller than the ith first parameter value, and the fifth parameter value is larger than the ith first parameter value; the ith offset value corresponds to an ith first parameter value, and the ith offset value corresponds to an ith second parameter value.
In a possible implementation manner, the determining module 62 is specifically configured to determine the first value according to a difference between the fifth parameter value and the fourth parameter value; determining a second numerical value according to the difference value between the offset value corresponding to the fifth parameter value and the offset value corresponding to the fourth parameter value; determining a third value according to the fourth parameter value and the ith first parameter value; and determining the ith offset value according to the offset value corresponding to the fourth parameter value, the first numerical value, the second numerical value and the third numerical value.
According to the offset parameter determining device provided by the embodiment of the invention, because the offset parameter determining device can firstly obtain the first parameter value and the second parameter value of the N array holes, and respectively determine the N offset values according to the first parameter value (and/or the second parameter value) of the N array holes based on the corresponding relation M, so as to determine the N third parameter values, and perform the processing operation on the N array holes according to the N first parameter values and the N third parameter values, the situation that the processing electrode is not aligned to the scribe line can be avoided, so that the error of the processed array hole can be reduced, and thus, the accuracy of processing the array hole can be improved.
The offset parameter determination device in the embodiment of the present invention may be a device, or may be a component, an integrated circuit, or a chip in a terminal. The device can be mobile electronic equipment or non-mobile electronic equipment. For example, the mobile electronic device may be a mobile phone, a tablet computer, a notebook computer, a palmtop ultra-mobile personal computer (UMPC), or a netbook, and the non-mobile electronic device may be a server, a Personal Computer (PC), and embodiments of the present invention are not limited in particular.
The offset parameter determination device in the embodiment of the present invention may be a device having an operating system. The operating system may be a windows operating system, an iOS operating system, or other possible operating systems, and embodiments of the present invention are not limited in particular.
The offset parameter determining apparatus provided in the embodiment of the present invention can implement each process implemented by the method embodiments of fig. 1 to fig. 4, and is not described here again to avoid repetition.
Optionally, as shown in fig. 6, an electronic device 70 according to an embodiment of the present invention is further provided, and includes a processor 72, a memory 71, and a program or an instruction stored in the memory 71 and executable on the processor 72, where the program or the instruction is executed by the processor 72 to implement each process of the foregoing offset parameter determining method embodiment, and can achieve the same technical effect, and in order to avoid repetition, details are not repeated here.
It should be noted that the electronic device in the embodiment of the present invention includes the mobile electronic device and the non-mobile electronic device described above.
An embodiment of the present invention further provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or the instruction is executed by a processor, the program or the instruction implements each process of the foregoing offset parameter determining method, and can achieve the same technical effect, and in order to avoid repetition, details are not repeated here.
The processor is the processor in the electronic device described in the above embodiment. The readable storage medium includes a computer-readable storage medium, such as a Read-Only Memory (ROM), a Random Access Memory (RAM), a magnetic disk, or an optical disk.
The embodiment of the present invention further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to execute a program or an instruction to implement each process of the above-mentioned offset parameter determining method embodiment, and can achieve the same technical effect, and in order to avoid repetition, details are not repeated here.
It should be understood that the chips mentioned in the embodiments of the present invention may also be referred to as a system-on-chip, or a system-on-chip.
It should be noted that, in this document, the terms "comprises," "comprising," or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Without further limitation, an element defined by the phrase "comprising an … …" does not exclude the presence of other like elements in a process, method, article, or apparatus that comprises the element. Further, it should be noted that the scope of the methods and apparatus of embodiments of the present invention is not limited to performing functions in the order illustrated or discussed, but may include performing functions in a substantially simultaneous manner or in a reverse order based on the functions involved, e.g., the methods described may be performed in an order different than that described, and various steps may be added, omitted, or combined. In addition, features described with reference to certain examples may be combined in other examples.
Through the above description of the embodiments, those skilled in the art will clearly understand that the method of the above embodiments can be implemented by software plus a necessary general hardware platform, and certainly can also be implemented by hardware, but in many cases, the former is a better implementation manner. Based on such understanding, the technical solution of the present invention may be embodied in the form of a software product, which is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk) and includes instructions for enabling a terminal (such as a mobile phone, a computer, a server, an air conditioner, or a network device) to execute the method according to the embodiments of the present invention.
While the present invention has been described with reference to the embodiments shown in the drawings, the present invention is not limited to the embodiments, which are illustrative and not restrictive, and it will be apparent to those skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope of the invention as defined in the appended claims.

Claims (10)

1. A method for determining an offset parameter, the method comprising:
placing the workpieces corresponding to the N array holes on a workbench, and controlling the workbench to move according to M motion parameter values;
acquiring the deviant values of M motion parameter values in the motion process of the workbench, and establishing the corresponding relation between the M motion parameter values and the deviant values of the motion parameter values according to the M motion parameter values and the deviant values of the M motion parameter values; in the corresponding relation, each motion parameter value corresponds to the deviation value of the motion parameter value;
acquiring N first parameter values and N second parameter values corresponding to N array holes, wherein each array hole corresponds to one first parameter value and each array hole corresponds to one second parameter value; the first parameter value is used for representing the rotation angle of the workbench, the second parameter value is used for representing the distance between one array hole and the rotation center, and N is a positive integer;
respectively determining offset values corresponding to the N array holes respectively according to target parameter values of the N array holes based on the M corresponding relations, wherein each corresponding relation is a corresponding relation between one parameter value and one offset value, and each target parameter value comprises at least one of a first parameter value and a second parameter value; one target parameter value corresponds to one offset value, and M is a positive integer;
respectively determining N third parameter values based on the N deviation values and the N second parameter values, wherein one deviation value corresponds to one third parameter value, one second parameter value corresponds to one third parameter value, and one third parameter value is as follows: the sum of one offset value and the corresponding second parameter value.
2. The offset parameter determining method of claim 1, wherein said one target parameter value is a second parameter value;
the determining N offset values according to the N target parameter values based on the M correspondence relationships includes:
according to the ith target parameter value in the N target parameter values, determining a third parameter value matched with the ith target parameter value from M motion parameter values in the M corresponding relations, wherein i is a positive integer;
determining the offset value corresponding to the third parameter value as the ith offset value;
wherein the ith offset value corresponds to the ith target parameter value.
3. The offset parameter determining method of claim 1, wherein said one target parameter value comprises a first parameter value and a second parameter value;
the determining N offset values according to the N target parameter values based on the M correspondence relationships includes:
according to the ith first parameter value in the N target parameter values, determining a fourth parameter value and a fifth parameter value corresponding to the ith first parameter value from M motion parameter values in the M corresponding relations, wherein i is a positive integer;
determining an ith offset value based on the offset value corresponding to the fifth parameter value and the offset value corresponding to the fourth parameter value;
wherein the fourth parameter value is less than the ith first parameter value, and the fifth parameter value is greater than the ith first parameter value;
the ith offset value corresponds to the ith first parameter value, and the ith offset value corresponds to the ith second parameter value.
4. The offset parameter determining method of claim 3, wherein determining the ith offset value based on the offset value corresponding to the fourth parameter value and the offset value corresponding to the fifth parameter value comprises:
determining a first value according to a difference value between the fifth parameter value and the fourth parameter value;
determining a second numerical value according to a difference value between the offset value corresponding to the fifth parameter value and the offset value corresponding to the fourth parameter value;
determining a third value according to the fourth parameter value and the ith first parameter value;
and determining the ith offset value according to the offset value corresponding to the fourth parameter value, the first numerical value, the second numerical value and the third numerical value.
5. An offset parameter determination apparatus, characterized in that the offset parameter determination apparatus comprises: the device comprises a control module, an acquisition module and a determination module;
the control module is used for placing the workpieces corresponding to the N array holes on a workbench and controlling the workbench to move according to M motion parameter values;
the obtaining module is configured to obtain offset values of M motion parameter values during a motion process of the workbench, and establish a corresponding relationship between the M motion parameter values and the offset values of the motion parameter values according to the M motion parameter values and the offset values of the M motion parameter values, respectively; in the corresponding relation, each motion parameter value corresponds to the deviation value of the motion parameter value; acquiring N first parameter values and N second parameter values corresponding to N array holes, wherein each array hole corresponds to one first parameter value and each array hole corresponds to one second parameter value; the first parameter value is used for representing the rotation angle of the workbench, the second parameter value is used for representing the distance between one array hole and the rotation center, and N is a positive integer;
the determining module is configured to determine, based on the M correspondence relationships and according to target parameter values of the N array holes, offset values corresponding to the N array holes, respectively, where each correspondence relationship is a correspondence relationship between one parameter value and one offset value, and each target parameter value includes at least one of a first parameter value and a second parameter value; one target parameter value corresponds to one offset value, and M is a positive integer;
respectively determining N third parameter values based on the N deviation values and the N second parameter values, wherein one deviation value corresponds to one third parameter value, one second parameter value corresponds to one third parameter value, and one third parameter value is as follows: the sum of one offset value and the corresponding second parameter value.
6. An offset parameter determining apparatus as claimed in claim 5, wherein said one target parameter value is a second parameter value;
the determining module is specifically configured to determine, according to an ith target parameter value of the N target parameter values, a third parameter value that matches the ith target parameter value from M motion parameter values in the M correspondence relationships, where i is a positive integer; determining the offset value corresponding to the third parameter value as the ith offset value;
wherein the ith offset value corresponds to the ith target parameter value.
7. An offset parameter determining apparatus as claimed in claim 5, wherein said one target parameter value comprises a first parameter value and a second parameter value;
the determining module is specifically configured to determine, according to an ith first parameter value of the N target parameter values, a fourth parameter value and a fifth parameter value corresponding to the ith first parameter value from M motion parameter values in the M correspondence relationships, where i is a positive integer; determining an ith offset value based on the offset value corresponding to the fifth parameter value and the offset value corresponding to the fourth parameter value;
wherein the fourth parameter value is less than the ith first parameter value, and the fifth parameter value is greater than the ith first parameter value;
the ith offset value corresponds to the ith first parameter value, and the ith offset value corresponds to the ith second parameter value.
8. The offset parameter determining apparatus of claim 7, wherein the determining module is specifically configured to determine the first value according to a difference between the fifth parameter value and the fourth parameter value; determining a second numerical value according to a difference value between the offset value corresponding to the fifth parameter value and the offset value corresponding to the fourth parameter value; determining a third value according to the fourth parameter value and the ith first parameter value; and determining the ith offset value according to the offset value corresponding to the fourth parameter value, the first numerical value, the second numerical value and the third numerical value.
9. A workpiece processing method for processing a workpiece having an array of holes, wherein N first parameter values and N third parameter values are determined by the offset parameter determination method according to any one of claims 1 to 4 when processing the workpiece having the array of holes, and wherein N array of holes are processed on the workpiece based on the N first parameter values and the N third parameter values.
10. An electronic device comprising a processor, a memory, and a program or instructions stored on the memory and executable on the processor, the program or instructions, when executed by the processor, implementing the steps of the offset parameter determination method according to any one of claims 1 to 4.
CN202111538287.XA 2021-12-15 2021-12-15 Offset parameter determination method Withdrawn CN114147306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111538287.XA CN114147306A (en) 2021-12-15 2021-12-15 Offset parameter determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111538287.XA CN114147306A (en) 2021-12-15 2021-12-15 Offset parameter determination method

Publications (1)

Publication Number Publication Date
CN114147306A true CN114147306A (en) 2022-03-08

Family

ID=80451523

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111538287.XA Withdrawn CN114147306A (en) 2021-12-15 2021-12-15 Offset parameter determination method

Country Status (1)

Country Link
CN (1) CN114147306A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113449393A (en) * 2021-06-25 2021-09-28 西安市群健航空精密制造有限公司 Array hole machining method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113449393A (en) * 2021-06-25 2021-09-28 西安市群健航空精密制造有限公司 Array hole machining method

Similar Documents

Publication Publication Date Title
CN104084654A (en) Six-axis linkage space shaking electrosparking method
CN113449393B (en) Array hole processing method
CN114147306A (en) Offset parameter determination method
CN112631200A (en) Machine tool axis measuring method and device
JP2016201031A (en) Numerical control device capable of checking interference between tool and workpiece
CN114425643A (en) Method and device for automatically processing batch parts
CN108668441B (en) Method and system for manufacturing printed circuit board appearance and computer equipment
CN115081136A (en) Design method and device for grinder bearing steel clamp and storage medium
CN113779731A (en) Method and device for generating machining program of numerical control electric discharge machine tool and storage medium
Chang et al. Applying a pyramid part in the performance evaluation of multiple types of five axis machine tools
CN112355711B (en) Workpiece machining method and system based on CNC machine tool
CN114970005A (en) Method and device for designing bearing clamp moving block of ultrasonic grinder and storage medium
Hermana et al. A Comparative Study: The Precision of CNC Machines Using a Sliding Mode Controller (SMC) and a Wi-Fi ESP32
CN109870977B (en) Data control method and system for machine tool, computer readable storage medium and machine tool
CN115816158B (en) Random angle switching processing control system and non-standard angle switching processing method for complex parts
JPS61213713A (en) Apparatus for measuring plural places of machine tool
CN109732399A (en) A kind of presetting cutter method of numerically-controlled machine tool, device, electronic equipment and storage medium
CN117681055A (en) Machine tool debugging method and device and machine tool
CN112985267B (en) Five-axis AC type water cutting tool length measuring method, system and equipment
CN108227621B (en) DXF track processing method based on double-edge milling of double-edge milling lathe
CN114563979B (en) Compensation method and system for single-channel semi-closed-loop multi-spindle multi-station processing
US20240085882A1 (en) Method of computer numerical control (cnc) machining and hybrid manufacturing
CN115268367A (en) Software adjusting method and system for placing position of electric spark workpiece and storage medium
CN114799754B (en) Stator blade ring machining method, electronic equipment and machining equipment
CN113759829B (en) Post-processing method and device for five-axis machine tool with tool tip tracking function

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20220308