CN114147231A - 超声驻波阵列雾化熔融金属进行微粉制备的装置及方法 - Google Patents

超声驻波阵列雾化熔融金属进行微粉制备的装置及方法 Download PDF

Info

Publication number
CN114147231A
CN114147231A CN202111389379.6A CN202111389379A CN114147231A CN 114147231 A CN114147231 A CN 114147231A CN 202111389379 A CN202111389379 A CN 202111389379A CN 114147231 A CN114147231 A CN 114147231A
Authority
CN
China
Prior art keywords
ultrasonic
ultrasonic transducer
molten metal
atomizing
ultrasonic transducers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111389379.6A
Other languages
English (en)
Other versions
CN114147231B (zh
Inventor
高胜东
董国军
郭思琪
肖金锋
周健
王洪淼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202111389379.6A priority Critical patent/CN114147231B/zh
Publication of CN114147231A publication Critical patent/CN114147231A/zh
Application granted granted Critical
Publication of CN114147231B publication Critical patent/CN114147231B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/086Cooling after atomisation
    • B22F2009/0876Cooling after atomisation by gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/01Use of vibrations

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

超声驻波阵列雾化熔融金属进行微粉制备的装置及方法,属于金属雾化微粉制备领域。两组超声换能器密封穿过雾化密封室的侧壁,高温熔炉固定在雾化密封室内的顶盖上,高温熔炉与设置在顶盖上的熔炉进料口连通,高温熔炉的底部设有出料输送管,粉末收集箱设置在出料输送管的下方,雾化密封室与雾化密封室气压控制系统及惰性气体气瓶连接,超声波电源与两组超声换能器电连接,每组超声换能器均包括主超声换能器和多个辅助超声换能器,两个主超声换能器相对设置,每组超声换能器的多个辅助超声换能器呈圆周阵列设置,两组超声换能器的多个辅助超声换能器一一对应设置,每组超声换能器与出料输送管之间设置有气体屏障幕喷嘴。本发明用于熔融金属微粉制备。

Description

超声驻波阵列雾化熔融金属进行微粉制备的装置及方法
技术领域
本发明属于金属雾化微粉制备领域,具体涉及一种超声驻波阵列雾化熔融金属进行微粉制备的装置及方法。
背景技术
超声驻波雾化采用两个超声换能器发射极相对布置,相对发射的两组超声波形成驻波场,使流入其中的液体进行破碎,无气体的大量消耗,在粉末制备领域具有很好的应用前景。
现有技术中有采用一对超声换能器发射极相对发射超声波,圆柱形液流进入超声驻波场波节位置,产生变形并在变扁的裙边破碎成液滴,液体在表面张力作用下形成球形,冷却后形成金属粉末。
由于流入驻波声场中的圆柱形液流产生变形、破碎、雾化需要消耗大量声场能量,且超声波在气体介质中传播已经进行了耗散,使得超声驻波场雾化的能量利用率大大降低,因此单一的超声驻波场进行液流雾化成粉的效率较低,需要较小直径的液流及较小的质量流量才能取得较好的雾化制粉效果。
发明内容
本发明的目的在于提供一种超声驻波阵列雾化熔融金属进行微粉制备的装置及方法,以解决现有技术中由于超声驻波场雾化的能量利用率低导致的粉末雾化不完全,雾化效率低等问题。
为实现上述目的,本发明采取的技术方案如下:
超声驻波阵列雾化熔融金属进行微粉制备的装置,包括超声波电源、高温熔炉、出料输送管、气体屏障幕喷嘴、粉末收集箱、雾化密封室、惰性气体气瓶、雾化密封室气压控制系统及两组超声换能器;所述两组超声换能器均水平密封穿过雾化密封室的侧壁设置在雾化密封室内,所述高温熔炉固定在雾化密封室内的顶盖上,高温熔炉的顶端与设置在雾化密封室顶盖上的熔炉进料口连通,高温熔炉的底部设有出料输送管,所述粉末收集箱设置在雾化密封室内的底部,并位于出料输送管的下方,所述雾化密封室依次与雾化密封室气压控制系统及惰性气体气瓶连接,所述气体屏障幕喷嘴也依次与雾化密封室气压控制系统及惰性气体气瓶连接,所述超声波电源与两组超声换能器电连接;
每组超声换能器均包括主超声换能器和多个辅助超声换能器,两组超声换能器的主超声换能器相对设置,每组超声换能器的多个辅助超声换能器以所述主超声换能器为中心呈圆周阵列设置,两组超声换能器的多个辅助超声换能器一一对应设置,每组超声换能器的主超声换能器的工具头端部与出料输送管之间设置有气体屏障幕喷嘴。
利用超声驻波阵列雾化熔融金属进行微粉制备的装置实现超声驻波阵列雾化熔融金属进行微粉制备的方法,所述方法包括以下步骤:
步骤一;先对高温熔炉、进料输送管、主超声换能器的工具头以及辅助超声换能器的工具头进行清洗,对待雾化的固体金属原料进行清洁处理,去除杂质和表面氧化物;
步骤二;将清洁处理后的固体金属原料放入高温熔炉内进行熔炼,熔炼温度高于金属熔点50-100℃;
步骤三;通过雾化密封室气压控制系统控制惰性气体气瓶对雾化密封室内充气,使雾化密封室内气压达到熔融金属雾化所需的环境气压值;
步骤四;打开气体屏障幕喷嘴,打开超声波电源的开关,使得两组超声换能器的主超声换能器的工具头以及辅助超声换能器的工具头的发射极产生超声波,在相对设置的两个主超声换能器的工具头的发射极之间以及一一对应设置的辅助超声换能器的工具头的发射极之间形成超声驻波场;
步骤五;利用压差控制从出料输送管流出的液流流量,使熔融金属液流流入超声驻波场压力节点处,由主超声换能器产生的驻波场提供的能量使得熔融金属液流进一步压扁后发生破碎,在熔融金属液流变扁的裙边处由辅助超声换能器形成的超声驻波场对熔融金属液流进一步雾化形成小液滴,小液滴在飞行过程中凝固成粉末,完成雾化过程,雾化产生的金属粉末用粉末收集箱进行收集。
本发明相对于现有技术的有益效果是:本发明提供的超声驻波阵列雾化熔融金属进行微粉制备的装置及方法将使得现有制粉技术实施过程中能量利用率、球形度、粒度可控度、粒度范围得到优化,且达到制粉过程中的抗污染抗氧化性大大提高的效果。本发明具有能量利用率高,粉末雾化完全,雾化效率高等特点。
附图说明
图1为本发明的超声驻波阵列雾化熔融金属进行微粉制备的装置的主视结构示意图;
图2为两组超声换能器布置的结构示意图;
图3为图2的左视图;
图4为出料输送管的中心孔为圆柱形孔的结构示意图;
图5为出料输送管的中心孔为扁形孔的结构示意图。
上述附图中涉及的部件名称及标号如下:
1-超声波电源、2-超声换能器、2a-主超声换能器、2b-辅助超声换能器、3-高温熔炉、4-熔炉进料口、5-出料输送管、51-圆柱形孔、52-扁形孔、6-气体屏障幕喷嘴、7-粉末收集箱、8-雾化密封室、9-惰性气体气瓶、10-雾化密封室气压控制系统、12-熔融金属液流。
具体实施方式
具体实施方式一:如图1-图3所示,本实施方式披露了一种超声驻波阵列雾化熔融金属进行微粉制备的装置,包括超声波电源1、高温熔炉3、出料输送管5、气体屏障幕喷嘴6、粉末收集箱7、雾化密封室8、惰性气体气瓶9、雾化密封室气压控制系统10及两组超声换能器2;所述两组超声换能器2均水平密封穿过雾化密封室8的侧壁设置在雾化密封室8内,所述高温熔炉3固定在雾化密封室8内的顶盖上(雾化密封室8包括顶盖及与顶盖密封连接的腔室),高温熔炉3的顶端与设置在雾化密封室8顶盖上的熔炉进料口4连通,高温熔炉3的底部设有出料输送管5,所述粉末收集箱7设置在雾化密封室8内的底部,并位于出料输送管5的下方,所述雾化密封室8依次与雾化密封室气压控制系统10及惰性气体气瓶9连接(雾化密封室气压控制系统10用于控制雾化密封室8内的气体压力),所述气体屏障幕喷嘴6也依次与雾化密封室气压控制系统10及惰性气体气瓶9连接,所述超声波电源1(输出稳定连续可调的电信号)与两组超声换能器2电连接,
每组超声换能器2均包括主超声换能器2a和多个辅助超声换能器2b,两组超声换能器2的主超声换能器2a相对设置,每组超声换能器2的多个辅助超声换能器2b以所述主超声换能器2a为中心呈圆周阵列设置(即圆周均布设置),两组超声换能器2的多个辅助超声换能器2b一一对应设置,每组超声换能器2的主超声换能器2a的工具头端部与出料输送管5之间设置有气体屏障幕喷嘴6(可防止雾化粉末附着在主超声换能器2a的工具头表面)。
具体实施方式二:如图1-图3所示,本实施方式是对具体实施方式一作出的进一步说明,所述两组超声换能器2的主超声换能器2a位于出料输送管5下方,两组超声换能器2的主超声换能器2a的轴线与出料输送管5的轴线相交(两组超声换能器2产生的超声驻波用以对出料输送管5流出的熔融金属液流12进行压扁形成扁片,并在边缘处产生破碎)。
具体实施方式三:如图1、图2所示,本实施方式是对具体实施方式一作出的进一步说明,所述两组超声换能器2的每两个一一对应的辅助超声换能器2b的安装轴线与被所述主超声换能器2a产生的声场所压扁的熔融金属液流12的边缘相交(进一步对熔融金属液流12的边缘施以声压,使其更进一步雾化成微小液滴)。
具体实施方式四:如图1-图3所示,本实施方式是对具体实施方式一作出的进一步说明,所述两组超声换能器2的主超声换能器2a产生的主超声波频率均为20KHz(为较低频率。大振幅,振幅能达到50微米及以上,用以对熔融金属液流12进行初步压成扁形,并在熔融金属液流12的边缘处产生破碎);两组超声换能器2的辅助超声换能器2b产生的辅助超声波频率均高于20KHz(为较高频率,频率一般能达到30-80KHz,用以对金属熔融液流12的扁片边缘处进行进一步雾化获取微细液滴)。
具体实施方式五:如图1、图2、图4及图5所示,本实施方式是对具体实施方式一作出的进一步说明,所述出料输送管5的中心孔采用扁形孔52,使产生的熔融金属液流12初始状态即为扁形液流(出料输送管5的中心孔通常采用圆柱形孔51,将圆柱形孔51设计为扁形孔52,熔融金属液流12形成扁形液流进入超声驻波场进行雾化,以进一步提升雾化效果,提高超声波雾化效率)。
具体实施方式六:如图1-图3所示,本实施方式是一种利用具体实施方式一至五中任一具体实施方式所述的装置实现超声驻波阵列雾化熔融金属进行微粉制备的方法,所述方法包括以下步骤:
步骤一;先对高温熔炉3、进料输送管5、主超声换能器2a的工具头以及辅助超声换能器2b的工具头进行清洗(用擦拭等方法,去除工具头表面杂质),对待雾化的固体金属原料进行清洁处理(采用机械方式清洁处理),去除杂质和表面氧化物;
步骤二;将清洁处理后的固体金属原料放入高温熔炉3内进行熔炼,熔炼温度高于金属熔点50-100℃;
步骤三;通过雾化密封室气压控制系统10控制惰性气体气瓶9对雾化密封室8内充气,使雾化密封室8内气压达到熔融金属雾化所需的环境气压值(5-10bar);
步骤四;打开气体屏障幕喷嘴6,打开超声波电源1的开关,使得两组超声换能器2的主超声换能器2a的工具头以及辅助超声换能器2b的工具头的发射极产生超声波,在相对设置的两个主超声换能器2a的工具头的发射极之间以及一一对应设置的辅助超声换能器2b的工具头的发射极之间形成超声驻波场;
步骤五;利用压差控制从出料输送管5流出的液流流量,使熔融金属液流12流入超声驻波场压力节点处,由主超声换能器2a产生的驻波场提供的能量使得熔融金属液流12进一步压扁后发生破碎,在熔融金属液流12变扁的裙边处由辅助超声换能器2b形成的超声驻波场对熔融金属液流12进一步雾化形成小液滴,小液滴在飞行过程中凝固成粉末,完成雾化过程,雾化产生的金属粉末用粉末收集箱7进行收集。
由超声波电源1、两组超声换能器2的主超声换能器2a以及辅助超声换能器2b组合构成超声驻波发生装置;
由高温熔炉3、熔炉进料口4及出料输送管5组合构成进料装置;所述出料输送管5的中心孔为扁形孔52。
由气体屏障幕喷嘴6及粉末收集箱7组合构成粉末收集装置;
由雾化密封室8、惰性气体气瓶9及雾化密封室气压控制系统10构成密封及气体填充装置。惰性气体气瓶9一般充入的是氮气。
超声波电源1输出一组功率稳定连续可调,同时控制两组电学特性和声学特性相同的超声换能器2,超声波电源1输出另一组功率同时控制电学特性和声学特性相同的两组超声换能器2的主超声换能器2a,两组超声换能器2均为压电陶瓷换能器或磁致伸缩换能器。
出料输送管5位于两组超声换能器2之间的中间位置的正上方,将高温熔炉3内的熔融金属液流12引入到两组超声换能器2产生的驻波场中。
雾化金属粉末的粒度分布及尺寸大小,可由主超声波频率及振幅、辅助超声波频率及振幅、环境背压、超声波辐射面距离、主超声换能器2a的工具头以及辅助超声换能器2b的工具头形状及尺寸来控制。
以上仅为本发明较佳的具体实施方式,但本发明的保护范围,并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (6)

1.一种超声驻波阵列雾化熔融金属进行微粉制备的装置,包括超声波电源(1)、高温熔炉(3)、出料输送管(5)、气体屏障幕喷嘴(6)、粉末收集箱(7)、雾化密封室(8)、惰性气体气瓶(9)、雾化密封室气压控制系统(10)及两组超声换能器(2);所述两组超声换能器(2)均水平密封穿过雾化密封室(8)的侧壁设置在雾化密封室(8)内,所述高温熔炉(3)固定在雾化密封室(8)内的顶盖上,高温熔炉(3)的顶端与设置在雾化密封室(8)顶盖上的熔炉进料口(4)连通,高温熔炉(3)的底部设有出料输送管(5),所述粉末收集箱(7)设置在雾化密封室(8)内的底部,并位于出料输送管(5)的下方,所述雾化密封室(8)依次与雾化密封室气压控制系统(10)及惰性气体气瓶(9)连接,所述气体屏障幕喷嘴(6)也依次与雾化密封室气压控制系统(10)及惰性气体气瓶(9)连接,所述超声波电源(1)与两组超声换能器(2)电连接,其特征在于:
每组超声换能器(2)均包括主超声换能器(2a)和多个辅助超声换能器(2b),两组超声换能器(2)的主超声换能器(2a)相对设置,每组超声换能器(2)的多个辅助超声换能器(2b)以所述主超声换能器(2a)为中心呈圆周阵列设置,两组超声换能器(2)的多个辅助超声换能器(2b)一一对应设置,每组超声换能器(2)的主超声换能器(2a)的工具头端部与出料输送管(5)之间设置有气体屏障幕喷嘴(6)。
2.根据权利要求1所述的超声驻波阵列雾化熔融金属进行微粉制备的装置,其特征在于:所述两组超声换能器(2)的主超声换能器(2a)位于出料输送管(5)下方,两组超声换能器(2)的主超声换能器(2a)的轴线与出料输送管(5)的轴线相交。
3.根据权利要求1所述的超声驻波阵列雾化熔融金属进行微粉制备的装置,其特征在于:所述两组超声换能器(2)的每两个一一对应的辅助超声换能器(2b)的安装轴线与被所述主超声换能器(2a)产生的声场所压扁的熔融金属液流(12)的边缘相交。
4.根据权利要求1所述的超声驻波阵列雾化熔融金属进行微粉制备的装置,其特征在于:所述两组超声换能器(2)的主超声换能器(2a)产生的主超声波频率均为20KHz;两组超声换能器(2)的辅助超声换能器(2b)产生的辅助超声波频率均高于20KHz。
5.根据权利要求1所述的超声驻波阵列雾化熔融金属进行微粉制备的装置,其特征在于:所述出料输送管(5)的中心孔采用扁形孔(52),使产生的熔融金属液流(12)初始状态即为扁形液流。
6.一种利用权利要求1至5中任一权利要求所述的装置实现超声驻波阵列雾化熔融金属进行微粉制备的方法,其特征在于:所述方法包括以下步骤:
步骤一;先对高温熔炉(3)、进料输送管(5)、主超声换能器(2a)的工具头以及辅助超声换能器(2b)的工具头进行清洗,对待雾化的固体金属原料进行清洁处理,去除杂质和表面氧化物;
步骤二;将清洁处理后的固体金属原料放入高温熔炉(3)内进行熔炼,熔炼温度高于金属熔点50-100℃;
步骤三;通过雾化密封室气压控制系统(10)控制惰性气体气瓶(9)对雾化密封室(8)内充气,使雾化密封室(8)内气压达到熔融金属雾化所需的环境气压值;
步骤四;打开气体屏障幕喷嘴(6),打开超声波电源(1)的开关,使得两组超声换能器(2)的主超声换能器(2a)的工具头以及辅助超声换能器(2b)的工具头的发射极产生超声波,在相对设置的两个主超声换能器(2a)的工具头的发射极之间以及一一对应设置的辅助超声换能器(2b)的工具头的发射极之间形成超声驻波场;
步骤五;利用压差控制从出料输送管(5)流出的液流流量,使熔融金属液流(12)流入超声驻波场压力节点处,由主超声换能器(2a)产生的驻波场提供的能量使得熔融金属液流(12)进一步压扁后发生破碎,在熔融金属液流(12)变扁的裙边处由辅助超声换能器(2b)形成的超声驻波场对熔融金属液流(12)进一步雾化形成小液滴,小液滴在飞行过程中凝固成粉末,完成雾化过程,雾化产生的金属粉末用粉末收集箱(7)进行收集。
CN202111389379.6A 2021-11-22 2021-11-22 超声驻波阵列雾化熔融金属进行微粉制备的装置及方法 Active CN114147231B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111389379.6A CN114147231B (zh) 2021-11-22 2021-11-22 超声驻波阵列雾化熔融金属进行微粉制备的装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111389379.6A CN114147231B (zh) 2021-11-22 2021-11-22 超声驻波阵列雾化熔融金属进行微粉制备的装置及方法

Publications (2)

Publication Number Publication Date
CN114147231A true CN114147231A (zh) 2022-03-08
CN114147231B CN114147231B (zh) 2024-02-27

Family

ID=80456999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111389379.6A Active CN114147231B (zh) 2021-11-22 2021-11-22 超声驻波阵列雾化熔融金属进行微粉制备的装置及方法

Country Status (1)

Country Link
CN (1) CN114147231B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117960431A (zh) * 2024-03-28 2024-05-03 北京交通大学 一种液体射流超声控制装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU782960A1 (ru) * 1979-01-04 1980-11-30 Украинский научно-исследовательский институт специальных сталей, сплавов и ферросплавов Устройство дл получени порошков распылением расплавов
US5164198A (en) * 1987-09-22 1992-11-17 Branson Ultaschall Niederlassung Der Emerson Technologies Gmbh & Co. Apparatus for pulverizing at least one jet of molten metal
CN102319898A (zh) * 2011-10-13 2012-01-18 西北工业大学 一种制备合金及金属基复合材料零部件的喷射成形系统
CN109622980A (zh) * 2019-01-28 2019-04-16 哈尔滨工业大学 一种熔融金属超声驻波非接触式雾化制粉装置及方法
CN110076346A (zh) * 2019-04-22 2019-08-02 中科音瀚声学技术(上海)有限公司 一种适用于制造金属细粉的超声驻波雾化装置
CN110303162A (zh) * 2019-08-14 2019-10-08 北京七弟科技有限公司 一种超声波制备金属球形粉体装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU782960A1 (ru) * 1979-01-04 1980-11-30 Украинский научно-исследовательский институт специальных сталей, сплавов и ферросплавов Устройство дл получени порошков распылением расплавов
US5164198A (en) * 1987-09-22 1992-11-17 Branson Ultaschall Niederlassung Der Emerson Technologies Gmbh & Co. Apparatus for pulverizing at least one jet of molten metal
CN102319898A (zh) * 2011-10-13 2012-01-18 西北工业大学 一种制备合金及金属基复合材料零部件的喷射成形系统
CN109622980A (zh) * 2019-01-28 2019-04-16 哈尔滨工业大学 一种熔融金属超声驻波非接触式雾化制粉装置及方法
CN110076346A (zh) * 2019-04-22 2019-08-02 中科音瀚声学技术(上海)有限公司 一种适用于制造金属细粉的超声驻波雾化装置
CN110303162A (zh) * 2019-08-14 2019-10-08 北京七弟科技有限公司 一种超声波制备金属球形粉体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117960431A (zh) * 2024-03-28 2024-05-03 北京交通大学 一种液体射流超声控制装置及方法

Also Published As

Publication number Publication date
CN114147231B (zh) 2024-02-27

Similar Documents

Publication Publication Date Title
CN105499048B (zh) 一种气助式低频静电超声雾化喷头
CN103448366B (zh) 一种喷墨打印系统及其应用
CN113997561B (zh) 一种单平板电极电场驱动多喷头喷射沉积微纳3d打印装置
CN109622980A (zh) 一种熔融金属超声驻波非接触式雾化制粉装置及方法
CN103433499A (zh) 一种球形金属粉末的超声雾化制备装置及制备方法
CN108656524A (zh) 一种集成喷头电场驱动喷射微纳3d打印装置及其工作方法
CN109049674B (zh) 一种针对微系统三维立体结构的增材制造装置及方法
CN110052340B (zh) 一种多级超声波雾化喷射装置
CN203900493U (zh) 离心式超声波金属粉末雾化机
CN114147231B (zh) 超声驻波阵列雾化熔融金属进行微粉制备的装置及方法
CN107175181A (zh) 一种含杠杆结构的压电膜片式微喷喷射阀
CN106142571B (zh) 无级变速多材料超声微滴喷射增材制造装置及方法
CN109261428A (zh) 一种压电陶瓷雾化片
CN113414398A (zh) 一种等离子体制备金属粉末的设备及其方法
CN108031848A (zh) 一种基于磁流体激振技术射流断裂制备微滴的装置
CN117102488A (zh) 通过熔滴加速实现高质量制备粉体的超声雾化系统
CN113059170A (zh) 一种在金属离心雾化中制备小粒径粉末的转盘装置
CN217412451U (zh) 一种静电效应下制备100μm以下均一焊球的装置
CN113953519A (zh) 一种热-磁-超声金属雾化制粉系统及方法
CN209577179U (zh) 一种微孔喷雾装置
CN205969971U (zh) 无级变速多材料超声微滴喷射增材制造装置
CN115625339A (zh) 一种采用射频等离子制备球形粉末的装置及方法
CN209364541U (zh) 一种新型微纳制造用工业电锤
CN209866390U (zh) 一种多级超声波雾化喷射装置
CN108101060B (zh) 等离子雾化制备高能量密度锂离子电池纳米硅用的装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant