CN114142627B - 一种无线电能传输系统 - Google Patents

一种无线电能传输系统 Download PDF

Info

Publication number
CN114142627B
CN114142627B CN202111528796.4A CN202111528796A CN114142627B CN 114142627 B CN114142627 B CN 114142627B CN 202111528796 A CN202111528796 A CN 202111528796A CN 114142627 B CN114142627 B CN 114142627B
Authority
CN
China
Prior art keywords
capacitor
circuit
mos tube
lclcc
inductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111528796.4A
Other languages
English (en)
Other versions
CN114142627A (zh
Inventor
苟先太
刘凡
刘富銘
雷潇
荣海娜
张葛祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Electric Power Research Institute of State Grid Sichuan Electric Power Co Ltd
Original Assignee
Southwest Jiaotong University
Electric Power Research Institute of State Grid Sichuan Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University, Electric Power Research Institute of State Grid Sichuan Electric Power Co Ltd filed Critical Southwest Jiaotong University
Priority to CN202111528796.4A priority Critical patent/CN114142627B/zh
Publication of CN114142627A publication Critical patent/CN114142627A/zh
Application granted granted Critical
Publication of CN114142627B publication Critical patent/CN114142627B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种无线电能传输系统,直流电源依次通过高频逆变电路、LCL谐振补偿电路连接到发射线圈;接收线圈依次通过LCLCC谐振补偿电路、整流滤波电路连接到负载;所述LCLCC谐振补偿电路包括第二电容、第三电容、第四电容、第四电感和第五电感;第二电容的输入端连接到接收线圈的一端,输出端依次串联第四电感、第五电感构成LCLCC谐振补偿电路的一个输出端;第三电容的一端连接到第二电容的输入端,第四电容的一端连接到第四电感的输出端,第三电容和第四电容的另一端连接到接收线圈的另一端构成LCLCC谐振补偿电路的另一个输出端。本发明的有益效果在于,在无线传能传统结构上加之LCLCC补偿电路,能够很好地稳定输出电压电流,提高电能传输效率。

Description

一种无线电能传输系统
技术领域
本发明涉及电能传输技术领域,特别是一种无线电能传输系统。
背景技术
谐振是发生在正弦电路中的一种特殊物理现象,电路谐振时能量会在电感元件和电容元件中相互转换,电路状态为纯阻性,此时电路中的电流最大,能量传输效率最高。线圈自身有高频杂散电容,但如果依靠这一杂散电容与线圈电感达到谐振,传输过程既不稳定也不易于控制。在实际中常采用加入补偿电容使电路工作在谐振状态,提高系统的传输性能。根据补偿电容与线圈的不同连接结构,补偿结构有串联补偿和并联补偿两类。因此,发射线圈和接收线圈与补偿电容的组合形式主要可分为串联-串联(S-S)、串联-并联(S-P)、并联-并联(P-P)、并联-串联(P-S)四种拓扑结构,第一个S或P为发射线圈与补偿电容的连接形式,第二个S或P为接收线圈与补偿电容的连接形式,S表示串联补偿,P表示并联补偿。然而,以往的结构存在一些缺陷和不足之处:基础的串联或并联补偿电路无法实现发射线圈的恒流和接收端的恒压输出。
发明内容
本发明的目的是提供一种无线电能传输系统。
实现本发明目的的技术方案如下:
一种无线电能传输系统,直流电源依次通过高频逆变电路、LCL谐振补偿电路连接到发射线圈;接收线圈依次通过LCLCC谐振补偿电路、整流滤波电路连接到负载;所述LCLCC谐振补偿电路包括第二电容、第三电容、第四电容、第四电感和第五电感;第二电容的输入端连接到接收线圈的一端,输出端依次串联第四电感、第五电感构成LCLCC谐振补偿电路的一个输出端;第三电容的一端连接到第二电容的输出端,第四电容的一端连接到第四电感的输出端,第三电容和第四电容的另一端连接到接收线圈的另一端构成LCLCC谐振补偿电路的另一个输出端。
进一步的技术方案,所述高频逆变电路为全桥逆变电路:第一MOS管的源极连接第二MOS管的漏极,第二MOS管的源极连接第四MOS管的源极,第四MOS管的漏极连接第三MOS管的源极,第三MOS管的漏极连接第一MOS管的漏极;还包括控制全桥逆变电路的频率跟踪控制电路:依次连接的电流采样电路、过零比较电路、锁相环和驱动电路;所述电流采样电路的输入端连接到发射线圈的一端;所述驱动电路的四个输出端分别连接到第一MOS管、第二MOS管、第三MOS管和第四MOS管的栅极。
本发明的有益效果在于,在无线传能传统结构上加之LCLCC补偿电路,能够很好地稳定输出电压电流,提高电能传输效率;加入频率跟踪电路有利于稳定频率从而抵抗外部干扰。
附图说明
图1为本发明原理图。
图2为本发明的电路结构图。
图3为锁相环的电路结构图。
图4为LCL-LCLCC补偿电路等效电路图。
具体实施方式
以下结合附图和具体实施例对本发明进一步说明。
如图1所示,包括发射侧和接收侧。发射侧包括直流电源、高频逆变电路、LCL谐振补偿电路、频率跟踪控制电路和发射线圈;接收侧包括接收线圈、LCLCC谐振补偿电路、整流滤波电路和负载。
发射侧的直流电源连接高频逆变电路,高频逆变电路连接LCL谐振补偿电路,LCL谐振补偿电路连接发射线圈,并在发射线圈附近采集电流进行过零比较,连接锁相环再连接驱动电路,驱动电路连接高频逆变电路的控制器件。
接收侧的接收线圈连接LCLCC补偿谐振电路,LCLCC补偿谐振电路连接整流滤波电路,整流滤波电路连接负载。
直流电源输入依次经过发射侧的高频逆变电路、LCL谐振补偿电路到达发射线圈,发射线圈将电能通过无线方式传输到接收线圈,接收线圈将电能输出到LCLCC谐振网络,然后经过整流滤波电路后到达负载,为负载供电。
如图2所示,电流采样电路采集发射线圈L2电流传送到过零比较电路,产生与发射线圈电流同频同相的方波信号ui,此信号经锁相环与反馈回来的驱动信号uo进行比较产生与ui同频率的驱动逻辑信号进入驱动电路,从而控制四个开关器件即第一MOS管V1、第二MOS管V2、第三MOS管V3、第四MOS管V4的开通与关断。
如图3所示,锁相环的基本工作原理:当输入信号ui(t)与输出信号uo(t)频率不相等时,两信号会产生相位差Δθ。ui(t)和uo(t)经鉴相器进行相位比较,并根据两信号的相位差产生电压号ud(t),其大小近似与Δθ成比例;之后环路滤波器将ud(t)中的高频信号与干扰信号滤除,得到控制压控振荡器的电压信号uc(t);压控振荡器根据uc(t)的大小输出相应频率的信号uo(t)传送到驱动电路,如此不断调整uo(t)与ui(t)间的相位差,使两信号相位差为零、频率相同,完成频率跟踪过程,达到锁定状态。
当系统固有谐振频率因外界因素影响而发生偏离,而系统仍以原工作频率工作,此时逆变电路的开关器件会处于非正常状态,影响系统的输出特性,甚至损害开关器件,使系统不能工作。频率跟踪控制通过检测系统固有谐振频率改变开关器件的驱动信号,从而改变系统的工作频率,使系统维持谐振状态,开关管接近软开关状态,降低开关器件的应力。
高频电路将直流电逆变为交流电,且结合频率跟踪电路来控制开关器件,更有利于抗外界因素干扰,从而提高工作效率。
下面,对LCL-LCLCC谐振补偿电路的特性进行分析。
LCL-LCLCC谐振补偿电路的等效电路图如图4所示,其中,R1~R5分别为各个回路中的电感、电容、和线圈所带的寄生电阻之和,RL表示负载电阻,而图4中的电感和电容均视为理想器件。其中,ZM=jωM为耦合阻抗。
对等效电路进行分析,当电路谐振时,即每个网孔的电感和电容谐振,则可以有以下联合方程:
Figure GDA0004170244490000031
将矩阵公式导入到MATLAB里面,可以得到如下带LCL-LCLCC谐振补偿电路的无线电能传输的效率公式(为使得效率公式清晰明了,因此有所简化):
Figure GDA0004170244490000032
在忽略寄生阻抗,即R1~R5,因此可以得到如下表达式:
输入电流为
Figure GDA0004170244490000033
发射线圈电流为
Figure GDA0004170244490000034
负载电流为
Figure GDA0004170244490000035
负载电压为
Figure GDA0004170244490000036
输出功率为
Figure GDA0004170244490000037
综上所述,通过表达式可以看出:
(1)输入电流呈现纯阻性,从理论上说明了实现电路零相角
(2)发射线圈的电流与输入电压及第一电容C1的值有关,与负载无关,实现了发射线圈L2的恒流。
(3)输出电压与负载无关,达成了恒压输出的条件,揭示了输出电压与输入电压、线圈耦合程度、电容C1、C2、C4有关。
(4)可以调节负载RL或者电压来获得需要的输出功率。
(5)尽可能减少寄生电阻有利于提高效率,理想状况下,当R1~R5=0时η=1。
由于有频率跟踪电路控制,不容易受到外界因素干扰,保证了上式的稳定性,两者相辅相成,在频率有波动的时候及时反馈达到新的平衡,从而提高了无线电能传输的效率。
本发明带有频率跟踪电路和LCLCC的谐振补偿电路,使得电能传输效率更高,与传统结构LCC-S相比传输更加稳定,抗外部干扰能力更强。

Claims (1)

1.一种无线电能传输系统,其特征在于,直流电源依次通过高频逆变电路、LCL谐振补偿电路连接到发射线圈;接收线圈依次通过LCLCC谐振补偿电路、整流滤波电路连接到负载;所述LCLCC谐振补偿电路包括第二电容、第三电容、第四电容、第四电感和第五电感;第二电容的输入端连接到接收线圈的一端,输出端依次串联第四电感、第五电感构成LCLCC谐振补偿电路的一个输出端;第三电容的一端连接到第二电容的输出端,第四电容的一端连接到第四电感的输出端,第三电容和第四电容的另一端连接到接收线圈的另一端构成LCLCC谐振补偿电路的另一个输出端;
所述高频逆变电路为全桥逆变电路:第一MOS管的源极连接第二MOS管的漏极,第二MOS管的源极连接第四MOS管的源极,第四MOS管的漏极连接第三MOS管的源极,第三MOS管的漏极连接第一MOS管的漏极;还包括控制全桥逆变电路的频率跟踪控制电路:依次连接的电流采样电路、过零比较电路、锁相环和驱动电路;所述电流采样电路的输入端连接到发射线圈的一端;所述驱动电路的四个输出端分别连接到第一MOS管、第二MOS管、第三MOS管和第四MOS管的栅极。
CN202111528796.4A 2021-12-14 2021-12-14 一种无线电能传输系统 Active CN114142627B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111528796.4A CN114142627B (zh) 2021-12-14 2021-12-14 一种无线电能传输系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111528796.4A CN114142627B (zh) 2021-12-14 2021-12-14 一种无线电能传输系统

Publications (2)

Publication Number Publication Date
CN114142627A CN114142627A (zh) 2022-03-04
CN114142627B true CN114142627B (zh) 2023-05-16

Family

ID=80382739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111528796.4A Active CN114142627B (zh) 2021-12-14 2021-12-14 一种无线电能传输系统

Country Status (1)

Country Link
CN (1) CN114142627B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104300698A (zh) * 2014-11-06 2015-01-21 哈尔滨工业大学 一种具有高谐振频率稳定性的谐振增强型无线电能传输结构
CN108471173A (zh) * 2018-04-23 2018-08-31 哈尔滨工业大学 兼具恒压及恒流输出的无线能量传输系统
CN110635545A (zh) * 2019-09-27 2019-12-31 青岛大学 一种基于单管电路实现恒流恒压无线充电的装置及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746462B (zh) * 2013-07-11 2016-01-20 重庆米亚车辆技术有限公司 一种用于无线电能传输的双边lcc补偿网络及其调谐方法
US11420524B2 (en) * 2019-12-20 2022-08-23 Ut-Battelle, Llc Wireless power system
CN212063636U (zh) * 2020-05-20 2020-12-01 温州大学 一种基于复合lcc补偿的无线电能传输装置
CN113572274A (zh) * 2021-08-17 2021-10-29 广东工业大学 一种带有lcc-lclcc补偿网络的谐振式无线电能传输系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104300698A (zh) * 2014-11-06 2015-01-21 哈尔滨工业大学 一种具有高谐振频率稳定性的谐振增强型无线电能传输结构
CN108471173A (zh) * 2018-04-23 2018-08-31 哈尔滨工业大学 兼具恒压及恒流输出的无线能量传输系统
CN110635545A (zh) * 2019-09-27 2019-12-31 青岛大学 一种基于单管电路实现恒流恒压无线充电的装置及方法

Also Published As

Publication number Publication date
CN114142627A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
US11901760B2 (en) Receive end and transmit end of wireless charging system, method, electrical terminal, and system
CN109302070A (zh) 电力变换器电路拓扑结构及其控制方法
CN109617250B (zh) 一种基于组合型拓扑的抗偏移无线电能传输系统
CN106560976B (zh) 无线充电发射系统和无线充电接收系统
CN109120072B (zh) S/sp型无线充电系统恒压及效率优化控制方法
CN112564308B (zh) 一种用于双负载wpt系统的双频补偿及功率解耦控制系统
CN106602579A (zh) 一种无线充电双向能量传输的谐振补偿电路及方法
US20230129480A1 (en) Electronic device and control method therefor
KR20210082244A (ko) 무선 충전 수신 장치, 방법, 단말기 및 시스템
Cochran et al. Frequency synchronization and control for a 6.78 MHz WPT active rectifier
CN111082543B (zh) 抗偏移的clc-s型无线电能传输系统及其参数设计方法
CN114142627B (zh) 一种无线电能传输系统
CN111030317A (zh) 抗偏移的ccc-s型无线电能传输系统及其参数设计方法
CN111987812B (zh) 一种面向串串补偿拓扑的无线充电系统动态调谐方法
CN211151627U (zh) 一种基于llc拓扑结构的无线供电电路
CN104901404A (zh) 一种充电电路及输出控制方法
CN114243951B (zh) 一种无需参数辨识的磁耦合式无线电能传输系统
CN115912677A (zh) 一种具有恒流恒压输出特性的双谐振拓扑及其参数设计方法
CN114552800A (zh) 一种接收端高阶lc补偿的磁谐振无线电能传输系统
Rong et al. A Fractional-order Wireless Power Transfer System with Misalignment and Detuning Tolerance
Liu et al. Control of wireless power transfer systems under large coil misalignments
CN218386957U (zh) 一种能量信号同传系统及设备
CN104124863A (zh) 基于无线电能传输系统的功率因素校正的方法及系统
CN104485687A (zh) 基于电流连续模式和电流断续模式切换的光伏并网逆变器pi谐振控制方法
Wang et al. Research on Efficiency Optimization of Medium and Small Power Wireless Energy Transfer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant