CN114142522A - 一种基于小波包模糊控制平抑风电功率波动的方法 - Google Patents

一种基于小波包模糊控制平抑风电功率波动的方法 Download PDF

Info

Publication number
CN114142522A
CN114142522A CN202111472454.5A CN202111472454A CN114142522A CN 114142522 A CN114142522 A CN 114142522A CN 202111472454 A CN202111472454 A CN 202111472454A CN 114142522 A CN114142522 A CN 114142522A
Authority
CN
China
Prior art keywords
power
fuzzy control
wind power
wavelet packet
energy storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111472454.5A
Other languages
English (en)
Inventor
吕慧香
陈才学
李彦
杨旭涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN202111472454.5A priority Critical patent/CN114142522A/zh
Publication of CN114142522A publication Critical patent/CN114142522A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • H02J15/008Systems for storing electric energy using hydrogen as energy vector
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/50Charging of capacitors, supercapacitors, ultra-capacitors or double layer capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明涉及一种平抑风电功率波动的方法,特别涉及一种基于小波包模糊控制平抑风电功率波动的方法。它包括以下步骤:采用小波包分解法分解风电输出功率信号,得到满足并网功率要求的功率分量和混合储能平抑的功率分量,进行对风电功率的一次分配;采用模糊控制调整储能元件的充放电功率,实现对超级电容SOC控制,进行功率的二次分配。本发明考虑了储能设备工作寿命及系统运行安全问题,从而提高平抑效果。

Description

一种基于小波包模糊控制平抑风电功率波动的方法
技术领域
本发明涉及一种平抑风电功率波动的方法,特别涉及一种基于小波包模糊控制平抑风电功率波动的方法。
背景技术
随着现代社会的不断发展,能源的消耗日趋严重,风力发电作为可持续发展且绿色清洁的新能源发电技术受到世界各国的的广泛关注和应用,但因其波动性和间歇性等特点,大规模的风电并网会给电网的稳定运行造成诸多的影响。储能系统在平抑风电功率波动方面扮演着重要角色。功率型储能和能量型储能构成的混合储能能弥补单一储能的不足,提高系统安全性和可靠性。
氢作为能量型储能元件,因具有存储容量大且绿色环保等优点得到快速发展,被认为是非常有潜力的大规模储能技术。氢储能系统由电解槽、储氢罐和燃料电池构成,其系统的响应速度较慢。超级电容作为功率型储能元件,因其功率密度高且响应速度快,在电网中得到广泛应,但其具有容量小等缺点。因此采用氢和超级电容构成的混合储能能够优势互补,对平抑风电功率波动具有重要意义。
依据不同类型储能的性能特点使有限的储能容量最大限度地平抑风电输出功率波动,这对平抑控制策略提出了较高要求,对此国内外已取得了一定的研究成果。主要有滑动平均算法、一阶低通滤波算法、卡尔曼滤波等方法,但是没有考虑储能设备工作寿命及系统运行安全问题,这会导致储能系统的过度充放电,从而降低储能系统的使用寿命。
发明内容:
为了解决风力发电波动性的技术问题,本发明提供了一种基于小波包模糊控制平抑风电功率波动的方法。
本发明解决上述技术问题的技术方案是:
采用小波包分解法分解风电输出功率信号,得到满足并网功率要求的功率分量和混合储能平抑的功率分量,进行对风电功率的一次分配;
采用模糊控制调整储能元件的充放电功率,实现对超级电容SOC控制,进行功率的二次分配。
附图说明:
图1是6层小波包分解示意图;
图2是模糊控制输入1的隶属度函数;
图3是模糊控制输入2的隶属度函数;
图4是模糊控制输出的隶属度函数;
表1是模糊控制规则。
具体实施方式:
为便于对本发明实施例的理解,下面将结合附图以具体实施例来做进一步的解释说明,实施例中并不构成对本发明实施例的限定。
本发明实例中,采用小波包分解法将风电输出功率信号分解为高频信号和低频信号,图1所示即为本文所提6层小波包分解示意图。风电输出功率为Pw(t),对其进行6层小波包分解,表达式如下:
Figure BDA0003391689760000031
式(1)中,
Figure BDA0003391689760000032
为第6层分解低频系数;
Figure BDA0003391689760000033
为第6层分解高频系数;P5,0(t)为第五层分解重构信号。
第6层小波重构算法为:
Figure BDA0003391689760000034
式(2)中,P6,0(t)为第6层低频重构信号;P6,1(t)第6层高频重构信号;
Figure BDA0003391689760000035
为低通滤波系数;
Figure BDA0003391689760000036
为低频重构系数,
Figure BDA0003391689760000037
为高频重构系数;
Figure BDA0003391689760000038
重构高通滤波系数。
风电功率分配如下:
Figure BDA0003391689760000039
式(3)中,P1(t)为低频信号;P2(t)~P5(t)为次高频信号,P6(t)~P64(t)为高频信号。Po(t)为t时刻并网功率;Psc(t)为t时刻分配给超级电容储能装置的功率分量;Ph(t)为t时刻分配给氢储能装置的功率分量。
为保证超级电容工作在其SOC允许范围内,需满足:
SOCmin≤SOC(t)≤SOCmax (4)
式(4)中,SOCmin为超级电容所允许的最小SOC,SOCmax为超级电容所允许的最大SOC。
考虑超级电容SOC,采用模糊控制方法制定模糊规则,修正储能元件之间功率分配,在保证满足并网功率要求的同时使超级电容SOC在合理范围内,从而提高平抑效果。
以下叙述模糊控制对超级电容的荷电状态进行控制的具体步骤:
步骤一:设定模糊控制方法的输入和输出;
输入1:t-1时段结束时超级电容的荷电状态SOC(t-1)与t时段所需超级电容荷电状态SOC(t)的变化量ΔSOC,输入范围为[-1,1],模糊论域为{-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10},模糊子集为{NB,NM,NS,PS,PM,PB}。
输入2:t-1时段结束时超级电容的荷电状态SOC(t-1),输入范围为[0,1],模糊论域为{0,1,2,3,4,5,6,7,8,9,10},模糊子集为{NB,NS,ZO,PS,PB}。
输出:超级电容的功率调节系数k,输入范围为[0,1],模糊论域为{0,1,2,3,4,5,6,7,8,9,10},模糊子集为{NB,NM,NS,PS,PM,PB}。
步骤二:将模糊控制方法的输入和输出通过三角形隶属度函数转换成模糊集,实现模糊化。图2所示为模糊控制输入1的隶属度函数;图3所示为模糊控制输入2的隶属度函数;图4所示为模糊控制输出的隶属度函数;
步骤三:制定模糊控制规则进行模糊推理;表1所示为模糊控制规则;
模糊规则的设计遵循以下原则:在超级电容SOC适中时不调整混合储能之间的功率,减少对氢储能系统的影响;在超级电容SOC接近上限值或下限值,则调整混合储能之间的功率,分配一部分功率给氢储能承担。
步骤四:采用最大隶属度法进行解模糊,得到输出值。
经过修正后得到的超级电容和氢储能的功率值如下:
Figure BDA0003391689760000051
式(5)中,Psc1(t)、Ph1(t)分别为超级电容和氢储能修正后二次分配的功率,Psc(t)、Ph(t)分别为超级电容和氢储能一次分配的功率,k为修正系数。
采用SOC表示超级电容储能装置的出力特性,经过修正后的超级电容的SOC可表示为:
Figure BDA0003391689760000052
式(6)中,SOC(t)为t时刻超级电容的SOC;E(t)为t时刻超级电容累计存储的能量;EN为超级电容的额定容量;Eini为超级电容的初始容量;λch为超级电容的充电效率;λdh为超级电容的放电效率。
采用储氢罐内压强描述氢储能系统的存储状态SOCh,计算公式为:
Figure BDA0003391689760000061
式(7)中,Ph(t)为t时刻储氢罐内部压强,V为储氢罐体积,T为储氢罐温度。PN为储氢罐最大压强,nH2(t)为t时刻的储氢罐储氢量。

Claims (3)

1.一种基于小波包模糊控制平抑风电功率波动的方法,包括以下步骤:
采用小波包分解法分解风电输出功率信号,得到满足并网功率要求的功率分量和混合储能平抑的功率分量,进行对风电功率的一次分配;
采用模糊控制调整储能元件的充放电功率,实现对超级电容SOC控制,进行功率的二次分配。
2.根据权利要求1所述的基于小波包模糊控制平抑风电功率波动的方法,所述采用的小波包分解法,分解风电输出功率原始信号,得到高频信号和低频信号,然后继续分解出来的信号再进行高频信号和低频信号的分解,直到达到分解要求。
步骤一:分解算法;
Figure FDA0003391689750000011
步骤二:重构算;
Figure FDA0003391689750000012
3.根据权利要求1所述的基于小波包模糊控制平抑风电功率波动的方法,所述采用的模糊控制方法包含:
步骤一:设定模糊控制方法的输入和输出;
步骤二:将模糊控制方法的输入和输出通过三角形隶属度函数转换成模糊集,实现模糊化;
步骤三:制定模糊控制规则进行模糊推理;
步骤四:采用最大隶属度法进行解模糊,得到输出值。
CN202111472454.5A 2021-12-03 2021-12-03 一种基于小波包模糊控制平抑风电功率波动的方法 Pending CN114142522A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111472454.5A CN114142522A (zh) 2021-12-03 2021-12-03 一种基于小波包模糊控制平抑风电功率波动的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111472454.5A CN114142522A (zh) 2021-12-03 2021-12-03 一种基于小波包模糊控制平抑风电功率波动的方法

Publications (1)

Publication Number Publication Date
CN114142522A true CN114142522A (zh) 2022-03-04

Family

ID=80388065

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111472454.5A Pending CN114142522A (zh) 2021-12-03 2021-12-03 一种基于小波包模糊控制平抑风电功率波动的方法

Country Status (1)

Country Link
CN (1) CN114142522A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105406498A (zh) * 2016-01-13 2016-03-16 沈阳工业大学 风力发电混合储能系统控制方法
CN107623334A (zh) * 2017-09-08 2018-01-23 上海电力学院 一种平抑光伏功率波动的混合储能功率控制方法
CN112003311A (zh) * 2020-08-20 2020-11-27 内蒙古工业大学 一种风电系统功率波动平抑方法、装置以及风电系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105406498A (zh) * 2016-01-13 2016-03-16 沈阳工业大学 风力发电混合储能系统控制方法
CN107623334A (zh) * 2017-09-08 2018-01-23 上海电力学院 一种平抑光伏功率波动的混合储能功率控制方法
CN112003311A (zh) * 2020-08-20 2020-11-27 内蒙古工业大学 一种风电系统功率波动平抑方法、装置以及风电系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
付菊霞: "平抑风电波动的混合储能系统控制策略*", 《电测与仪表》 *
吴杰等: "采用自适应小波包分解的混合储能平抑风电波动控制策略", 《电力系统自动化》 *
孙泽伦: "基于混合储能平抑风电波动的负反馈分层模糊控制策略", 《电力电容器与无功补偿》 *

Similar Documents

Publication Publication Date Title
Xu et al. The control of lithium‐ion batteries and supercapacitors in hybrid energy storage systems for electric vehicles: a review
CN103887816B (zh) 一种基于功率预测的多元复合储能系统并网控制方法
CN103178538B (zh) 混合储能型风力发电系统的风电功率波动抑制方法
CN110086181B (zh) 一种离网运行时电-热联供微电网中功率自适应协同控制方法
CN108767872B (zh) 一种应用于风光混合储能微网系统的模糊控制方法
Sun et al. Model predictive control and improved low-pass filtering strategies based on wind power fluctuation mitigation
CN109659970A (zh) 基于变分模态分解的储能系统平抑风功率波动的控制方法
CN105406498A (zh) 风力发电混合储能系统控制方法
CN110535177B (zh) 一种电网友好型风电场储能容量优化配置方法
CN112003311A (zh) 一种风电系统功率波动平抑方法、装置以及风电系统
CN114614480A (zh) 平抑风电波动的混合储能容量配置及运行控制方法
CN107623334B (zh) 一种平抑光伏功率波动的混合储能功率控制方法
CN116231826A (zh) 一种基于动态虚拟阻抗网络的混合储能系统功率分配方法
CN114142522A (zh) 一种基于小波包模糊控制平抑风电功率波动的方法
CN114021249A (zh) 一种分层的多电飞机混合动力系统模型及能量管理方法
CN103580045B (zh) 一种平抑间歇式电源功率波动的混合储能系统控制方法
CN108539727A (zh) 一种应用于偏远地区可再生能源系统的混合储能电源
Lin et al. Decentralised power distribution and SOC management algorithm for the hybrid energy storage of shipboard integrated power system
CN117154770A (zh) 基于超级电容的电-氢混合储能容量优化配置方法
CN111725825A (zh) 一种基于下垂控制的混合储能协调控制方法
CN113696749B (zh) 一种燃料电池复合电源控制方法
CN116565894A (zh) 一种用于平抑风电波动的混合储能出力控制方法
CN115498744A (zh) 一种电动车多源系统协同运行控制方法
CN114865745A (zh) 一种基于超级电容荷电状态的混合储能系统
CN111404374B (zh) 运用遗传算法优化的双向dc-dc变换器的控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220304