CN114142051A - 一种氮/磷掺杂碳复合催化剂及其制备方法与应用 - Google Patents

一种氮/磷掺杂碳复合催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN114142051A
CN114142051A CN202111451393.4A CN202111451393A CN114142051A CN 114142051 A CN114142051 A CN 114142051A CN 202111451393 A CN202111451393 A CN 202111451393A CN 114142051 A CN114142051 A CN 114142051A
Authority
CN
China
Prior art keywords
phosphorus
nitrogen
doped carbon
carbon composite
composite catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111451393.4A
Other languages
English (en)
Inventor
白亚峰
冯勇
陈晓涛
刘富亮
石斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Meiling Power Supply Co Ltd
Original Assignee
Guizhou Meiling Power Supply Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Meiling Power Supply Co Ltd filed Critical Guizhou Meiling Power Supply Co Ltd
Priority to CN202111451393.4A priority Critical patent/CN114142051A/zh
Publication of CN114142051A publication Critical patent/CN114142051A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明属于燃料电池技术领域,具体涉及一种氮/磷掺杂碳复合催化剂及其制备方法与应用,该催化剂是通过液相超声法将块状结构的g‑C3N4和黑磷剥离成片状结构,再通过抽滤形成双层状复合片,然后置于饱和盐溶液中加热盐封后,在保护性气体中高温热解,最后一次经水洗、干燥即得氮/磷掺杂碳复合催化剂;本发明提供的氮/磷掺杂碳复合催化剂具有较高的成碳率、优异的氧还原催化活性和稳定性。

Description

一种氮/磷掺杂碳复合催化剂及其制备方法与应用
技术领域
本发明属于燃料电池技术领域,具体涉及一种氮/磷掺杂碳复合催化剂及其制备方法与应用。
背景技术
随着能源短缺以及环境污染的问题日趋严重,为实现这一重大任务,必须大力推广应用新能源,诸如锂离子电池、太阳能电池以及氢能等新能源,提升其在国家能源利用中的占比。燃料电池是一种清洁高效的能源转化装置,可以直接将燃料中的化学能转化为电能。目前应用最广泛的燃料电池催化剂即为铂(Pt)基材料,然而Pt作为一种贵重金属,其特定的高成本以及低回收率解决方案决定了其不能大规模应用。因此,开发新型的非Pt催化剂具有重要的意义。
二维片状纳米材料是由单层原子堆叠而成的晶体,是研究者寻找新材料的一个重要方向。如石墨烯、g-C3N4、二维过渡金属硫化物等,因其优异的物理和化学性质受到人们的广泛关注。并在锂离子电池、燃料电池、太阳能电池等新能源领域得到了广泛的应用。然而二维片状纳米材料的制备较为困难,同时在热解后会造成二维结构的破坏,其作为催化剂的衍生物不具备较好的结构稳定性以及催化剂性能。例如,Zhang等通过将未处理的g-C3N4与著名的金属有机框架材料ZIF-67 复合,通过热解后得到了一种氮掺杂的非贵金属催化剂,具有良好的催化性能,其在碱性电解质中的催化性能甚至超过了商业Pt/C催化剂(Journal of Materials Chemistry A,2018,6(14):5752-5761)。Chen等基于对23种过渡金属(TM)的掺杂进行的计算筛选,使用第一性原理研究来探索TM–N4嵌入的碳化黑磷单分子层(b-PC)的ORR和OER 活性。研究表明黑磷作为一种二维材料进行掺杂,为设计和开发高性能二维材料单原子催化剂(SACs)提供了一种新的方法(Nanoscale, 2020,12(36):18721-18732)。
CN110841670A零维黑磷量子点/一维管状氮化碳复合光催化剂及其制备方法,包括以下步骤:将一维管状氮化碳与零维黑磷量子点溶液混合,真空干燥,得到零维黑磷量子点/一维管状氮化碳复合光催化剂。本发明复合光催化剂具有光吸收能力强、光生载流子分离和迁移能力强、光催化活性高、稳定性好的等优点,可广泛用于催化还原重金属污染物以及降解有机污染物,能够将重金属污染物、有机污染物从介质中有效去除,有着很高的使用价值和应用前景。
CN111167497A黑磷/富氧多孔石墨相氮化碳复合材料及其制备方法和应用,包括:将多孔石墨相氮化碳纳米片酸化使其表面暴露氧活性位点,得富氧多孔石墨相氮化碳纳米片;将所述富氧多孔石墨相氮化碳纳米片分散到含有二维黑磷薄片的有机溶剂中,超声搅拌后,得黑磷/富氧多孔石墨相氮化碳复合材料。所述二维黑磷薄片是通过溶剂剥离法从块状黑磷材料上剥离得到的。
虽然现有技术提出了非金属与氮化碳的复合,但是一方面现有技术并非显示出磷与氮化碳复合在电催化剂方面的应用,另一方面现有的复合材料高温煅烧过程中结构不稳定,而若不仅高温煅烧,难以形成致密结果,因此材料复合效果不佳。
鉴于此,我们对g-C3N4和黑磷的物化特性进行研究,以方法简易、成本低和电催化活性为靶向目标,对两者进行合成探究,以期有利于推动燃料电池实际应用。
发明内容
本发明针对现有技术的不足,提供了一种氮/磷掺杂碳复合催化剂及其制备方法与应用。
具体是通过以下技术方案来实现的:
一种氮/磷掺杂碳复合催化剂,是通过液相超声法将块状结构的 g-C3N4和黑磷剥离成片状结构,再通过抽滤形成双层状复合片,然后置于饱和盐溶液中加热盐封后,在保护性气体中高温热解,最后一次经水洗、干燥即得氮/磷掺杂碳复合催化剂。
所述饱和盐溶液为氯化钠、氯化钙、氯化钾、碳酸钠、碳酸钾中任一种;优选为饱和氯化钠溶液。
所述氮/磷掺杂碳复合催化剂的制备方法,包括如下步骤:
(1)块状结构的g-C3N4的制备:将具有C/N元素的小分子化合物用锡箔纸密封后置于高温管式炉中,在空气中升温至400-700℃条件下,保温1-6h后取出,即为块状结构的g-C3N4
(2)块状结构的黑磷的制备:在充满高纯氩气的环境下,称取高纯红磷,按照球料比为10-40:1的比例将高纯红磷置于高能球磨机中,在500-1000r/min的转速条件球磨0.2-6h后,即得块状结构的黑磷;
(3)双层状复合片的制备:取质量比为1:1的块状结构的g-C3N4和黑磷,置于有机溶剂中,在100-500W的超声功率下进行超声剥离 1-6h,超声后进行抽滤,即为双层状复合片;
(4)盐封过程:将双层状复合片置于饱和盐溶液中至复合片被完全浸没,搅拌并加热至110℃,使饱和盐溶液中的去离子水完全蒸发,得到盐封后的双层状复合片;
(5)氮/磷掺杂碳复合催化剂的制备方法:将盐封后的双层状复合片置于保护性气氛的高温管式炉中,升温至500-1000℃,保温热解 2-8h,然后用去离子水洗去氮/磷掺杂碳复合氧还原催化剂表面包覆的盐,干燥,得到氮/磷掺杂碳复合氧还原催化剂。
所述具有C/N元素的小分子化合物为高纯的尿素、三聚氰胺或双氰胺中任意一种或多种。
优选,在步骤(1)中所述加热条件为:温度500-600℃,时间 2-5.5h;进一步优选为:520-550℃,3-5h。
优选,球料比为20-35:1;进一步优选为:球料比为30:1。
所述有机溶剂为为二甲基甲酰胺(DMF)、二甲基硫氧化物 (DMSO)、N-甲基吡咯烷酮(NMP)、异丙醇中的任意一种或多种。
优选,在步骤(2)中所述球磨转速为700-900r/min,球磨时间为3-6h;进一步优选为:所述球磨转速为800-850r/min,球磨时间为 4-5h。
优选,在步骤(3)中所述超声功率为200-400W,时间为2-5.5h;进一步优选为:所述超声功率为300-400W,时间为3-5h。
优选,在步骤(3)中所述高温热解条件为:温度600-900℃,时间3-6h;进一步优选为:所述高温热解条件为:温度700-800℃,时间3-4h。
步骤(1)中控制加热温度500-600℃能够使尿素、三聚氰胺或双氰胺转化为g-C3N4,步骤(2)中控制球磨转速和时间能够确保红磷转为黑磷。
所述保护性气氛为Ar、He、N2中的任一种。
所述氮/磷掺杂碳复合催化剂用于氧还原反应。
进一步的,所述氮/磷掺杂碳复合催化剂用作燃料电池催化剂;用于燃料电池的氧还原催化反应。
有益效果:
本发明提供的氮/磷掺杂碳复合催化剂具有以下优点:
本发明首次制备了一种双层状复合片,其由片状结构的g-C3N4 和黑磷组成。同时,本发明对双层状复合片进行盐封处理,使其复合化合物的片状堆积更加致密,两种片状材料的复合结构更加稳定,再通过高温热解,改善了催化活性位点数量和分布,且本发明方法的成碳率高。
相比石墨烯以及MXene等二维材料,本发明选择黑磷及g-C3N4 价格低廉且制备方法简单。本发明方法具有操作简单,成本低廉,合成周期短的优点。采用本发明方法制备的氮/磷掺杂碳复合催化剂是一种含有高密度分布的燃料电池ORR催化活性位点且结构稳定、致密的材料,进而具有优异的ORR催化活性和稳定性;经电化学测试验证,本发明的催化剂具有很好的起始电位、半波电位及极限电流密度,在碱性介质中氧还原催化性能媲美商业Pt/C催化剂。
电化学测试主要是以可逆氢电极(RHE)为参比电极、Pt丝为对电极、涂覆有催化剂的直径为3mm的玻碳电极为工作电极组成三电极测试体系,以O2饱和的0.1M KOH溶液为电解液进行一系列电化学测试,采用线性伏安扫描法、计时电流法考察该催化剂在碱性条件下ORR催化活性。结果表明,本发明的ORR催化剂有很好的起始电位、半波电位及极限电流密度,在碱性介质中氧还原催化性能媲美商业Pt/C催化剂。
附图说明
图1为实施例1制备的氮/磷掺杂碳复合催化剂的SEM照片。
图2为实施例1制备的氮/磷掺杂碳复合催化剂的LSV曲线。
图3为实施例1制备的氮/磷掺杂碳复合催化剂的CV曲线。
图4为实施例2步骤(4)所得盐封后的双层状复合片的热重曲线。
具体实施方式
下面对本发明的具体实施方式作进一步详细的说明,但本发明并不局限于这些实施方式,任何在本实施例基本精神上的改进或代替,仍属于本发明权利要求所要求保护的范围。
实施例1
一种氮/磷掺杂碳复合催化剂及其制备方法的制备,包括下述步骤:
(1)块状结构的g-C3N4的制备:将20g高纯尿素粉末用锡箔纸密封后置于高温管式炉中,在空气中加热至550℃,保温5h后取出,得到的淡黄色粉末即为块状结构的g-C3N4
(2)块状结构的黑磷的制备:在充满高纯氩气的手套箱中称量 20g的高纯红磷,按照30:1的球料比置于高能球磨机中,设定球磨电压100V,在850rpm/min的球磨转速中,球磨5h后即得块状结构的黑磷;
(3)双层状复合片的制备:取质量比为1:1的块状结构的g-C3N4和黑磷,置于100ml的异丙醇溶剂中进行超声剥离,设定超声功率为 350W、超声时间为4h,超声后进行抽滤,即为双层状复合片;
(4)盐封过程:将5g双层状复合片置于饱和氯化钠溶液中至复合片被完全浸没,搅拌并加热至110℃,使饱和氯化钠溶液中的去离子水完全蒸发,得到盐封后的双层状复合片;
(5)氮/磷掺杂碳复合催化剂的制备方法:将盐封后的双层状复合片置于充有N2的高温管式炉中,升温至800℃保温3h,用去离子水清洗热解后的化合物,以充分洗去热解所得化合物表面包覆的氯化钠,真空干燥,得到氮/磷掺杂碳复合催化剂。
实施例2
一种氮/磷掺杂碳复合催化剂及其制备方法的制备,包括下述步骤:
(1)块状结构的g-C3N4的制备:将20g三聚氰胺粉末用锡箔纸密封后置于高温管式炉中,在空气中加热至550℃,保温5h后取出,得到的淡黄色粉末即为块状结构的g-C3N4
(2)块状结构的黑磷的制备:在充满高纯氩气的手套箱中称量 20g的高纯红磷,按照30:1的球料比置于高能球磨机中,设定球磨电压100V,在850rpm/min的球磨转速中,球磨5h后即得块状结构的黑磷;
(3)双层状复合片的制备:取质量比为1:1的块状结构的g-C3N4和黑磷,置于100ml的DMF溶剂中进行超声剥离,设定超声功率为 400W、超声时间为4h,超声后进行抽滤,即为双层状复合片;
(4)盐封过程:将5g双层状复合片置于饱和氯化钠溶液中至复合片被完全浸没,搅拌并加热至110℃,使饱和氯化钠溶液中的去离子水完全蒸发,得到盐封后的双层状复合片;
(5)氮/磷掺杂碳复合催化剂的制备方法:将盐封后的双层状复合片置于充有Ar气的高温管式炉中,升温至750℃保温3h,用去离子水清洗热解后的化合物,以充分洗去热解所得化合物表面包覆的氯化钠,真空干燥,得到氮/磷掺杂碳复合催化剂。
实施例3
一种氮/磷掺杂碳复合催化剂及其制备方法的制备,包括下述步骤:
(1)块状结构的g-C3N4的制备:将20g三聚氰胺粉末用锡箔纸密封后置于高温管式炉中,在空气中加热至500℃,保温2h后取出,得到的淡黄色粉末即为块状结构的g-C3N4
(2)块状结构的黑磷的制备:在充满高纯氩气的手套箱中称量 20g的高纯红磷,按照20:1的球料比置于高能球磨机中,设定球磨电压100V,在700rpm/min的球磨转速中,球磨3h后即得块状结构的黑磷;
(3)双层状复合片的制备:取质量比为1:1的块状结构的g-C3N4和黑磷,置于100ml的DMSO溶剂中进行超声剥离,设定超声功率为 200W、超声时间为2h,超声后进行抽滤,即为双层状复合片;
(4)盐封过程:将5g双层状复合片置于饱和氯化钠溶液中至复合片被完全浸没,搅拌并加热至110℃,使饱和氯化钠溶液中的去离子水完全蒸发,得到盐封后的双层状复合片;
(5)氮/磷掺杂碳复合催化剂的制备方法:将盐封后的双层状复合片置于充有Ar气的高温管式炉中,升温至600℃保温2h,用去离子水清洗热解后的化合物,以充分洗去热解所得化合物表面包覆的氯化钠,真空干燥,得到氮/磷掺杂碳复合催化剂。
实施例4
一种氮/磷掺杂碳复合催化剂及其制备方法的制备,包括下述步骤:
(1)块状结构的g-C3N4的制备:将20g三聚氰胺粉末用锡箔纸密封后置于高温管式炉中,在空气中加热至700℃,保温2h后取出,得到的淡黄色粉末即为块状结构的g-C3N4
(2)块状结构的黑磷的制备:在充满高纯氩气的手套箱中称量 20g的高纯红磷,按照40:1的球料比置于高能球磨机中,设定球磨电压100V,在1000rpm/min的球磨转速中,球磨6h后即得块状结构的黑磷;
(3)双层状复合片的制备:取质量比为1:1的块状结构的g-C3N4和黑磷,置于100ml的NMP溶剂中进行超声剥离,设定超声功率为 500W、超声时间为6h,超声后进行抽滤,即为双层状复合片;
(4)盐封过程:将5g双层状复合片置于饱和氯化钠溶液中至复合片被完全浸没,搅拌并加热至110℃,使饱和氯化钠溶液中的去离子水完全蒸发,得到盐封后的双层状复合片;
(5)氮/磷掺杂碳复合催化剂的制备方法:将盐封后的双层状复合片置于充有氮气的高温管式炉中,升温至1000℃保温8h,用去离子水清洗热解后的化合物,以充分洗去热解所得化合物表面包覆的氯化钠,得到氮/磷掺杂碳复合催化剂。
实施例5
一种氮/磷掺杂碳复合催化剂及其制备方法的制备,包括下述步骤:
(1)块状结构的g-C3N4的制备:将20g三聚氰胺粉末用锡箔纸密封后置于高温管式炉中,在空气中加热至400℃,保温1h后取出,得到的淡黄色粉末即为块状结构的g-C3N4
(2)块状结构的黑磷的制备:在充满高纯氩气的手套箱中称量 20g的高纯红磷,按照10:1的球料比置于高能球磨机中,设定球磨电压100V,在800rpm/min的球磨转速中,球磨0.2h后即得块状结构的黑磷;
(3)双层状复合片的制备:取质量比为1:1的块状结构的g-C3N4和黑磷,置于100ml的DMSO溶剂中进行超声剥离,设定超声功率为 300W、超声时间为4h,超声后进行抽滤,即为双层状复合片;
(4)盐封过程:将5g双层状复合片置于饱和氯化钠溶液中至复合片被完全浸没,搅拌并加热至110℃,使饱和氯化钠溶液中的去离子水完全蒸发,得到盐封后的双层状复合片;
(5)氮/磷掺杂碳复合催化剂的制备方法:将盐封后的双层状复合片置于充有Ar气的高温管式炉中,升温至750℃保温4h,用去离子水清洗热解后的化合物,以充分洗去热解所得化合物表面包覆的氯化钠,真空干燥,得到氮/磷掺杂碳复合催化剂。
实验例1
电化学测试主要是以可逆氢电极(RHE)为参比电极、Pt丝为对电极、涂覆有催化剂的直径为3mm的玻碳电极为工作电极组成三电极测试体系,以O2饱和的0.1M KOH溶液为电解液进行一系列电化学测试,采用线性伏安扫描法、计时电流法考察实施例1-5制备的氮/磷掺杂碳复合催化剂在碱性条件下ORR催化活性;
图1为实施例1制备的氮/磷掺杂碳复合催化剂的SEM照片;
图2为实施例1制备的氮/磷掺杂碳复合催化剂的LSV曲线;
图3为实施例1制备的氮/磷掺杂碳复合催化剂的CV曲线;
图4为实施例2制备的氮/磷掺杂碳复合催化剂的热重曲线;
其他实施例结果与实施例1的结果无显著性差别;由此可知:本发明方法制备的氮/磷掺杂碳复合催化剂有很好的起始电位、半波电位及极限电流密度,在碱性介质中氧还原催化性能媲美商业Pt/C催化剂。

Claims (10)

1.一种氮/磷掺杂碳复合催化剂,其特征在于,所述催化剂是通过液相超声法将块状结构的g-C3N4和黑磷剥离成片状结构,再通过抽滤形成双层状复合片,然后置于饱和盐溶液中加热盐封后,在保护性气体中高温热解,最后一次经水洗、干燥即得氮/磷掺杂碳复合催化剂。
2.如权利要求1所述一种氮/磷掺杂碳复合催化剂,其特征在于,所述饱和盐溶液为氯化钠、氯化钙、氯化钾、碳酸钠、碳酸钾中任一种;优选为饱和氯化钠溶液。
3.如权利要求1所述一种氮/磷掺杂碳复合催化剂的制备方法,其特征在于,包括如下步骤:
(1)块状结构的g-C3N4的制备:将具有C/N元素的小分子化合物用锡箔纸密封后置于高温管式炉中,在空气中升温至400-700℃条件下,保温1-6h后取出,即为块状结构的g-C3N4
(2)块状结构的黑磷的制备:在充满高纯氩气的环境下,称取高纯红磷,按照球料比为10-40:1的比例将高纯红磷置于高能球磨机中,在500-1000r/min的转速条件球磨0.2-6h后,即得块状结构的黑磷;
(3)双层状复合片的制备:取质量比为1:1的块状结构的g-C3N4和黑磷,置于有机溶剂中,在100-500W的超声功率下进行超声剥离1-6h,超声后进行抽滤,即为双层状复合片;
(4)盐封过程:将双层状复合片置于饱和盐溶液中至复合片被完全浸没,搅拌并加热至110℃,使饱和盐溶液中的去离子水完全蒸发,得到盐封后的双层状复合片;
(5)氮/磷掺杂碳复合催化剂的制备方法:将盐封后的双层状复合片置于保护性气氛的高温管式炉中,升温至500-1000℃,保温热解2-8h,然后用去离子水洗去氮/磷掺杂碳复合氧还原催化剂表面包覆的盐,干燥,得到氮/磷掺杂碳复合氧还原催化剂。
4.如权利要求3所述一种氮/磷掺杂碳复合催化剂的制备方法,其特征在于,所述具有C/N元素的小分子化合物为高纯的尿素、三聚氰胺或双氰胺中任意一种或多种。
5.如权利要求3所述一种氮/磷掺杂碳复合催化剂的制备方法,其特征在于,在步骤(1)中所述加热条件为:温度500-600℃,时间2-5.5h。
6.如权利要求3所述一种氮/磷掺杂碳复合催化剂的制备方法,其特征在于,所述有机溶剂为DMF、DMSO、NMP、异丙醇中的任意一种或多种。
7.如权利要求3所述一种氮/磷掺杂碳复合催化剂的制备方法,其特征在于,在步骤(2)中所述球磨转速为700-900r/min,球磨时间为3-6h。
8.如权利要求3所述一种氮/磷掺杂碳复合催化剂的制备方法,其特征在于,在步骤(3)中所述超声功率为200-400W,时间为2-5.5h;所述高温热解条件为:温度600-900℃,时间3-6h;所述保护性气氛为Ar、He、N2中的任一种。
9.如权利要求1所述一种氮/磷掺杂碳复合催化剂用作燃料电池催化剂,用于燃料电池的氧还原催化反应。
10.如权利要求3所述制备方法制备的氮/磷掺杂碳复合催化剂用作燃料电池催化剂,用于燃料电池的氧还原催化反应。
CN202111451393.4A 2021-11-30 2021-11-30 一种氮/磷掺杂碳复合催化剂及其制备方法与应用 Pending CN114142051A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111451393.4A CN114142051A (zh) 2021-11-30 2021-11-30 一种氮/磷掺杂碳复合催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111451393.4A CN114142051A (zh) 2021-11-30 2021-11-30 一种氮/磷掺杂碳复合催化剂及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN114142051A true CN114142051A (zh) 2022-03-04

Family

ID=80386807

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111451393.4A Pending CN114142051A (zh) 2021-11-30 2021-11-30 一种氮/磷掺杂碳复合催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114142051A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190381487A1 (en) * 2018-06-14 2019-12-19 Soochow University Carbon nitride membrane composite material modified by black phosphorus/ metal organic framework, and preparation method thereof and application in waste gas treatment
CN111167497A (zh) * 2020-01-10 2020-05-19 苏州科技大学 黑磷/富氧多孔石墨相氮化碳复合材料及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190381487A1 (en) * 2018-06-14 2019-12-19 Soochow University Carbon nitride membrane composite material modified by black phosphorus/ metal organic framework, and preparation method thereof and application in waste gas treatment
CN111167497A (zh) * 2020-01-10 2020-05-19 苏州科技大学 黑磷/富氧多孔石墨相氮化碳复合材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIA WANG等: ""Interfacial Covalent Bonds Regulated Electron-Deficient 2D Black Phosphorus for Electrocatalytic Oxygen Reactions"", 《ADVANCED MATERIALS》, vol. 33, no. 20, pages 1 - 8 *
林舟: ""碳化钼的制备与氢析出性能研究及乙醇电氧化的原位红外光谱研究"", 中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》, no. 12, pages 014 - 185 *

Similar Documents

Publication Publication Date Title
Liu et al. Boosting energy storage and electrocatalytic performances by synergizing CoMoO4@ MoZn22 core-shell structures
Zhang et al. MXene‐based nanocomposites for energy conversion and storage applications
Asaithambi et al. Synthesis and characterization of various transition metals doped SnO2@ MoS2 composites for supercapacitor and photocatalytic applications
CN108385124B (zh) 一种用于析氢反应的过渡族金属/碳管/石墨烯电催化剂的制备方法
Yadav et al. Three-dimensional nanoflower–like hierarchical array of multifunctional copper cobaltate electrode as efficient electrocatalyst for oxygen evolution reaction and energy storage application
Alqahtani et al. Effect of metal ion substitution on electrochemical properties of cobalt oxide
Chen et al. Ultra-thin carbon nanosheets-assembled 3D hierarchically porous carbon for high performance zinc-air batteries
Luo et al. Self-assembled Ni2P nanosheet-implanted reduced graphene oxide composite as highly efficient electrocatalyst for oxygen evolution reaction
Wang et al. Vertically oriented CoO@ FeOOH nanowire arrays anchored on carbon cloth as a highly efficient electrode for oxygen evolution reaction
CN106654300A (zh) 一种电化学溶胀石墨制备单分散金属原子/石墨烯复合材料的方法
CN103346024B (zh) 高导电性柔性石墨烯膜电极的制备方法
Osaimany et al. A study of synergistic effect on oxygen reduction activity and capacitive performance of NiCo2O4/rGO hybrid catalyst for rechargeable metal-air batteries and supercapacitor applications
Wang et al. Iron phosphides supported on three-dimensional iron foam as an efficient electrocatalyst for water splitting reactions
KR101349912B1 (ko) Pt/GR(Graphene) 나노복합체 및 그 제조방법
Tamilselvi et al. Reduced graphene oxide (rGO): supported NiO, Co 3 O 4 and NiCo 2 O 4 hybrid composite on carbon cloth (CC)—bi-functional electrode/catalyst for energy storage and conversion devices
Kim et al. Preparation and capacitance of Ni metal organic framework/reduced graphene oxide composites for supercapacitors as nanoarchitectonics
Yavuz et al. Electrochemical synthesis of CoOOH–Co (OH) 2 composite electrode on graphite current collector for supercapacitor applications
Sheng et al. Solid-state synthesis and superior electrochemical performance of MnMoO4 nanorods for asymmetric supercapacitor
Mankge et al. Review of electrochemical production of doped graphene for energy storage applications
Bagtache et al. Facile preparation of the spinel CuCo2O4 application to hydrogen photo-production
Yin et al. Cu-doped CoS2 polyhedrons with high catalytic activity and long-term stability
Yang et al. Enhanced electrocatalytic performance of Fe-TiO 2/N-doped graphene cathodes for rechargeable Li-O 2 batteries
Sun et al. In-situ phosphating Co@ Nitrogen-doping graphene boosts overall water splitting under alkaline condition
Vinayan Heteroatom-doped graphene-based hybrid materials for hydrogen energy conversion
Veeramani et al. Nitrogen and high oxygen-containing metal-free porous carbon nanosheets for supercapacitor and oxygen reduction reaction applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination