CN114134418B - 一种经济型高强度抗震钢筋用钢及其生产工艺 - Google Patents
一种经济型高强度抗震钢筋用钢及其生产工艺 Download PDFInfo
- Publication number
- CN114134418B CN114134418B CN202111391435.XA CN202111391435A CN114134418B CN 114134418 B CN114134418 B CN 114134418B CN 202111391435 A CN202111391435 A CN 202111391435A CN 114134418 B CN114134418 B CN 114134418B
- Authority
- CN
- China
- Prior art keywords
- percent
- temperature
- steel
- nitrogen
- equal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/46—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
- B21B1/466—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a non-continuous process, i.e. the cast being cut before rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/0056—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/06—Deoxidising, e.g. killing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/065—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/08—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires for concrete reinforcement
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
- C22C33/06—Making ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
本发明提供了一种经济型高强度抗震钢筋用钢及其生产工艺,钢中化学成分按重量百分比计为:C 0.20%~0.23%、Si 0.45%~0.55%、Mn 1.35%~1.45%、Cr 0.10%~0.18%、P≤0.030%、S≤0.030%、V 0.065%~0.090%、N 120ppm~160ppm,碳当量Ceq≤0.55%;采用复氮合金包芯线喂丝方式增氮。本发明采用“钒氮合金(V77N16)+铬铁+喂丝增氮”工艺成功开发出经济型低成本HRB500E抗震钢筋,满足了国标要求,强屈比控制较为稳定,提高了企业竞争力。
Description
技术领域
本发明涉及钢铁冶金技术领域,尤其涉及一种经济型高强度抗震钢筋用钢及其生产工艺。
背景技术
高强度级别抗震钢筋要求具有较高的力学性能和抗震性能,即在建筑物受到地震波冲击时,可延缓建筑物断裂发生时间、避免建筑物在瞬间整体倒塌,从而提高建筑物的抗震性能。
国内多数企业多采用钒氮合金微合金化技术生产(V含量为0.80%~1.10%),但存在如下问题,1、国内钢企多采用钒氮微合金化工艺生产,普遍存在强屈比偏低问题,尤其是小规格更为严重。2、合金含量高合金成本较高。3、要求加热温度较高,燃耗和氧化烧损较大。4、部分企业生产HRB500E还含存在屈服不明显问题。国内少数企业采用了铌钒复合微合金化工艺,但存在合金成本较高问题。
合金成本高,强屈比偏低且不稳定影响抗震钢筋HRB500E的生产、推广和应用。
发明内容
本发明的目的在于提供一种经济型高强度抗震钢筋用钢及其生产工艺,本发明采用“钒氮合金(V77N16)+铬铁+喂丝增氮”工艺成功开发出经济型低成本HRB500E抗震钢筋,满足了国标要求,强屈比控制较为稳定,提高了企业竞争力。
为了达到上述目的,本发明采用以下技术方案实现:
一种经济型高强度抗震钢筋用钢,钢中化学成分按重量百分比计为:C 0.20%~0.23%、Si 0.45%~0.55%、Mn 1.35%~1.45%、Cr 0.10%~0.18%、P≤0.030%、S≤0.030%、V0.065%~0.090%、N 120ppm~160ppm,碳当量Ceq≤0.55%;采用复氮合金包芯线喂丝方式增氮。
不同钢筋规格V含量不同:Φ10mm~Φ14mm:V 0.065%~0.080%;
Φ16mm~Φ25mm:V 0.070%~0.085%;
Φ28mm~Φ40mm:V 0.075%~0.090%。
所述的复氮合金包芯线中芯粉成份包括:N 22wt%~32wt%,Si≥32wt%,其它为少量杂质。
一种经济型高强度抗震钢筋用钢的生产工艺,转炉冶炼出钢,进行钢水合金化操作,静吹氩后采用喂复氮合金包芯线的方式增氮。
具体包括如下步骤:
1)转炉冶炼:废钢占5~10%,铁水占90~95%;氧气顶底复吹,出钢温度1700~1720℃,出钢终点C为0.10%~0.15%,P≤0.025%,严禁下渣;
2)钢包合金化:出钢1/4~1/3时加入石灰、预脱氧剂及铁合金进行脱氧合金化;其中V元素采用钒氮合金(V77N16);
3)静吹氩:静吹氩时间≥10min,处理前温度1640℃~1650℃,处理后温度1610℃~1620℃,静吹氩后喂复氮合金包芯线1kg~1.2kg/t·钢,喂线速度3m/s;
4)连铸:平台温度1615℃~1625℃,中包温度1520℃~1550℃,过热度保持20℃~30℃,拉速2m/min~2.3m/min;全过程保护浇铸,结晶器保护渣使用中碳钢保护渣;铸坯切割采用自动加人工相结合的方式。
5)加热工艺设计:加热制度根据不同产线加热炉(步进梁式加热炉或推钢式加热炉)制度不同的加热制度,已满足钢坯加热温度要求,加热工艺如下:上加热段温度:1100~1250℃,下加热段温度:1170~1280℃,均热段温度:1150~1280℃;
6)轧制工艺设计:以本钢北营公司轧钢厂为例:推钢式加热炉,加热过程采用两段式加热,具体轧制温度如下:开轧温度范围:1030~1130℃,开轧峰值温度:1050~1130℃;
7)轧后可采用微穿水冷却工艺:回火温度:900℃~1000℃,目标920℃~980℃。
本发明采用“钒氮合金(V77N16)+高碳铬铁+喂丝增氮”合金化工艺,即满足了力学性能要求,又降低了合金成本。采用添加Cr可提高抗拉强度,提高强屈比。
V主要通过析出强化提高强度,采用增氮工艺可提高V的析出强化效果,减少V的含量,降低合金成本;V提高屈服强度能力大于提高抗拉强度能力,V越高,强屈比越低,降低V含量可提高强屈比。降低V含量可以降低加热温度和开轧温度,降低能耗。
采用包芯线喂丝增氮,提高了氮的回收率,相比散装块料可避免环境污染。
添加Cr在提高抗震性能的同时提高了钢筋的耐蚀性,采用炉后氩站精炼能够保证钢质纯净度要求。
采用50t转炉+钢包合金化短流程生产高品质抗震钢筋HRB500E,保证了钢质纯净度及连浇性,提高了成材率,降低了工序成本。
与现有技术相比,本发明的有益效果是:
1)本发明化学成分设计和工艺设计满足了高强度级别抗震钢筋HRB500E力学性能和抗震性能要求,强屈比稳定。
2)本发明通过优化微合金含量提高强屈比,解决高强度钢筋强屈比偏低且不稳定问题。
3)本发明通过增氮工艺减少合金加入量,提高强屈比,节省合金资源,降低加热温度,降低加热能耗,降低成本。
4)本发明满足抗震钢筋HRB500E使用过程中力学性能要求,同时兼顾低成本运行,确保抗震钢筋HRB500E轧后态下屈服强度ReL≥500Mpa,抗拉强度≥630Mpa,最大力总伸长率≥9%,强屈比≥1.25。
具体实施方式
下面结合实施例对本发明的具体实施方式作进一步说明。
Φ12mm规格钢筋实施例1-7化学成分见表1;Φ14mm规格钢筋实施例1-7化学成分见表2;Φ16mm规格钢筋实施例1-7化学成分见表3。
表1Φ12mm规格各实施例钢的化学成分(wt%)
元素 | C | Si | Mn | Cr | P | S | V | N(ppm) |
例1 | 0.21 | 0.46 | 1.36 | 0.12 | 0.010 | 0.011 | 0.067 | 125 |
例2 | 0.22 | 0.50 | 1.38 | 0.11 | 0.008 | 0.010 | 0.080 | 123 |
例3 | 0.23 | 0.48 | 1.40 | 0.15 | 0.009 | 0.010 | 0.070 | 130 |
例4 | 0.22 | 0.51 | 1.43 | 0.14 | 0.007 | 0.012 | 0.066 | 140 |
例5 | 0.23 | 0.53 | 1.44 | 0.16 | 0.020 | 0.025 | 0.075 | 155 |
例6 | 0.21 | 0.49 | 1.37 | 0.18 | 0.021 | 0.023 | 0.073 | 156 |
例7 | 0.20 | 0.54 | 1.42 | 0.10 | 0.025 | 0.020 | 0.078 | 146 |
表2Φ14mm规格各实施例钢的化学成分(wt%)
表3Φ16mm规格各实施例钢的化学成分(wt%)
元素 | C | Si | Mn | Cr | P | S | V | N(ppm) |
例1 | 0.23 | 0.53 | 1.35 | 0.11 | 0.008 | 0.018 | 0.075 | 138 |
例2 | 0.20 | 0.48 | 1.45 | 0.15 | 0.015 | 0.012 | 0.071 | 155 |
例3 | 0.22 | 0.48 | 1.44 | 0.13 | 0.020 | 0.025 | 0.079 | 149 |
例4 | 0.21 | 0.54 | 1.38 | 0.13 | 0.025 | 0.010 | 0.080 | 136 |
例5 | 0.23 | 0.51 | 1.39 | 0.16 | 0.027 | 0.023 | 0.082 | 144 |
例6 | 0.20 | 0.50 | 1.37 | 0.18 | 0.016 | 0.022 | 0.073 | 125 |
例7 | 0.21 | 0.52 | 1.40 | 0.10 | 0.024 | 0.019 | 0.084 | 121 |
本发明一种经济型高强度抗震钢筋用钢,工艺步骤如下:“高炉铁水→(铁水预处理)→转炉冶炼→氩站精炼(出钢过程脱氧、合金化、喂丝增氮、吹氩精炼)→方坯连铸→加热炉加热→轧制→微穿水→冷床冷却→定尺剪切→收集打捆→检验→入库”,具体包括如下步骤:
1)转炉冶炼:废钢占5%,铁水占95%;氧气顶底复吹,出钢温度1700~1720℃,出钢终点C为0.10%~0.15%,P≤0.025%,严禁下渣;
2)钢包合金化:出钢1/4~1/3时加入石灰、预脱氧剂及铁合金进行脱氧合金化;
3)静吹氩:静吹氩时间≥10min,处理前温度1640℃~1650℃,处理后温度1610℃~1620℃,静吹氩后喂复氮合金包芯线,喂线速度3m/s;
4)连铸:平台温度1615℃~1625℃,中包温度1520℃~1550℃,过热度保持20℃~30℃,拉速2m/min~2.3m/min;全过程保护浇铸,结晶器保护渣使用中碳钢保护渣;铸坯切割采用自动加人工相结合的方式。
5)加热工艺设计:加热制度根据不同产线加热炉(步进梁式加热炉或推钢式加热炉)制度不同的加热制度,已满足钢坯加热温度要求,加热工艺如表4所示:
表4实施例加热工艺参数(℃)
6)轧制工艺设计:以本钢北营公司轧钢厂为例:推钢式加热炉,加热过程采用两段式加热,具体轧制温度如表5所示:
表5实施例轧制工艺温度参数(℃)
7)轧后可采用微穿水冷却工艺:回火温度:900℃~1000℃,目标920℃~980℃。
实施例力学性能实测结果见表6、表7、表8;
表6Φ12mm实施例力学性能实测
表7Φ14mm实施例力学性能实测
表8Φ16mm力学性能实测
本发明与现有技术相比:
1)其它方法生产的HRB500E合金化过程,合金加入较多,成本较高。本发明的生产工艺与钒氮微合金化相比可降低吨钢合金成本约22元/吨。本发明的生产工艺与铌钒复合微合金化相比可降低合金成本约34元/吨。
2)其它方法生产的HRB500E强屈比偏低且不稳定,采用钒氮微合金化强屈比偏低且不稳定,影响企业生产及HRB500E的推广和应用。
3)与其它方法生产的HRB500E相比可降低工序成本:由于本发明的合金含量降低,可降低开轧温度,比其他方法可降低30~50℃。而现有技术多数企业开轧温度≥1100℃。开轧温度越高,所需的钢坯加热温度越高,能耗越大。
Claims (3)
1.一种经济型高强度抗震钢筋用钢,其特征在于,钢中化学成分按重量百分比计为:
C 0.20%~0.23%、Si 0.45%~0.55%、Mn 1.35%~1.45%、Cr 0.10%~0.18%、P≤0.030%、S≤0.030%、V 0.065%~0.090%、N 120ppm~160ppm;采用复氮合金包芯线喂丝方式增氮;
不同钢筋规格V含量不同:Φ10mm~Φ14mm:V 0.065%~0.080%;
Φ16mm~Φ25mm:V 0.070%~0.085%;
Φ28mm~Φ40mm:V 0.075%~0.090%;
所述的经济型高强度抗震钢筋用钢的生产工艺,转炉冶炼出钢,进行钢水合金化操作,静吹氩后采用喂复氮合金包芯线的方式增氮;
具体包括如下步骤:
1)转炉冶炼:出钢温度1700~1720℃,出钢终点C为0.10%~0.15%,P≤0.025%;
2)钢包合金化:出钢1/4~1/3时加入石灰、预脱氧剂及铁合金进行脱氧合金化;
3)静吹氩:静吹氩时间≥10min,处理前温度1640℃~1650℃,处理后温度1610℃~1620℃,静吹氩后喂复氮合金包芯线1kg~1.2kg/t·钢,喂线速度3m/s;
4)连铸:平台温度1615℃~1625℃,中包温度1520℃~1550℃,过热度保持20℃~30℃,拉速2m/min~2.3m/min;
5)加热工艺设计:加热工艺如下:上加热段温度:1100~1250℃,下加热段温度:1170~1280℃,均热段温度:1180~1280℃;
6)轧制工艺设计:采用两段式加热,具体加热工艺如下:通长开轧温度:1030~1130℃,高点开轧温度:1120~1130℃;
7)轧后冷却工艺:回火温度:900℃~1000℃,目标920℃~980℃。
2.根据权利要求1所述的一种经济型高强度抗震钢筋用钢,其特征在于,所述的复氮合金包芯线中芯粉成份包括:N 22wt%~32wt%,Si≥32wt%,其它为少量杂质。
3.根据权利要求1所述的一种经济型高强度抗震钢筋用钢的生产工艺,其特征在于,上述步骤1)的转炉冶炼:废钢占5%~10%,铁水占90%~95%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111391435.XA CN114134418B (zh) | 2021-11-23 | 2021-11-23 | 一种经济型高强度抗震钢筋用钢及其生产工艺 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111391435.XA CN114134418B (zh) | 2021-11-23 | 2021-11-23 | 一种经济型高强度抗震钢筋用钢及其生产工艺 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114134418A CN114134418A (zh) | 2022-03-04 |
CN114134418B true CN114134418B (zh) | 2023-03-10 |
Family
ID=80390779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111391435.XA Active CN114134418B (zh) | 2021-11-23 | 2021-11-23 | 一种经济型高强度抗震钢筋用钢及其生产工艺 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114134418B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116657052A (zh) * | 2023-05-26 | 2023-08-29 | 本钢板材股份有限公司 | 一种低成本螺纹钢筋用钢及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109355560A (zh) * | 2018-11-07 | 2019-02-19 | 钢铁研究总院 | 热轧微合金化钢筋hrb500e的复合强化冷却工艺 |
CN111187969A (zh) * | 2020-02-17 | 2020-05-22 | 本钢板材股份有限公司 | 400MPa级别铌氮微合金化螺纹钢筋的生产方法 |
-
2021
- 2021-11-23 CN CN202111391435.XA patent/CN114134418B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109355560A (zh) * | 2018-11-07 | 2019-02-19 | 钢铁研究总院 | 热轧微合金化钢筋hrb500e的复合强化冷却工艺 |
CN111187969A (zh) * | 2020-02-17 | 2020-05-22 | 本钢板材股份有限公司 | 400MPa级别铌氮微合金化螺纹钢筋的生产方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114134418A (zh) | 2022-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111101079B (zh) | 一种水电站工程用大规格Φ28-36mm HRB600高强控轧钢筋及其制备方法 | |
CN109972035B (zh) | 一种800MPa级热轧螺纹钢筋及生产方法 | |
CN102517521B (zh) | 一种MnCr渗碳齿轮钢及其制造方法 | |
CN111455281B (zh) | Hrb400e盘条螺纹钢筋同圈屈服强度波动的控制方法及hrb400e盘条螺纹钢筋 | |
CN112359275B (zh) | 一种高强度紧固件用非调质冷镦钢盘条及其制备方法 | |
CN113930686A (zh) | 一种抗震钢筋HRB400E-Cr及生产方法 | |
CN114182157A (zh) | 一种弹性挡圈用钢热轧钢带的制备方法 | |
CN114134418B (zh) | 一种经济型高强度抗震钢筋用钢及其生产工艺 | |
CN112226682A (zh) | 一种螺纹钢钛微合金化生产工艺 | |
CN115491576A (zh) | 一种稀土微合金化355MPa级低成本热轧H型钢的冶炼连铸方法 | |
CN116065089A (zh) | 一种免退火高强度低碳含硼冷镦钢及其制备方法 | |
CN114657313A (zh) | 一种高铬高强度矿用钢绞线盘条的生产方法 | |
CN111004975A (zh) | 一种建筑用螺纹钢及其生产方法 | |
CN114107781A (zh) | 一种利用方坯余热短流程轧制635MPa级高强钢筋的方法 | |
CN117230358A (zh) | 一种提升螺纹钢性能稳定性的方法 | |
CN117127115A (zh) | 一种稀土碳氮化物析出强化高强度热轧抗震hrb640e钢筋及其制备方法 | |
CN104789871A (zh) | 一种厚壁冷拔液压缸筒用27SiMn无缝钢管及制备方法 | |
CN113832391B (zh) | 一种大规格Φ28-40mmHRB400E直条钢筋的冶炼方法 | |
CN115354229A (zh) | 一种曲轴用非调质钢及其加工工艺 | |
CN114015939A (zh) | 一种抗震钢筋及其制备方法 | |
CN111155027B (zh) | 一种含稀土q390结构用低合金高强度无缝钢管及其制备方法 | |
CN113957348A (zh) | 一种长寿命液压破碎锤钎杆用钢及其制备方法 | |
CN114250419A (zh) | 一种400MPa级低碳胎圈拉丝钢BT400BK及其制备方法 | |
CN107557531B (zh) | 一种钡合金处理的非调质钢硫化物夹杂控制方法 | |
CN112281071A (zh) | 一种经济型的500MPa级别钢筋及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |