CN114133616B - 一种可回收纤维素基导电自修复共晶凝胶及其制备方法与应用 - Google Patents

一种可回收纤维素基导电自修复共晶凝胶及其制备方法与应用 Download PDF

Info

Publication number
CN114133616B
CN114133616B CN202111328193.XA CN202111328193A CN114133616B CN 114133616 B CN114133616 B CN 114133616B CN 202111328193 A CN202111328193 A CN 202111328193A CN 114133616 B CN114133616 B CN 114133616B
Authority
CN
China
Prior art keywords
repairing
based conductive
conductive self
cellulose
eutectic gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111328193.XA
Other languages
English (en)
Other versions
CN114133616A (zh
Inventor
付时雨
汪颖
张晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202111328193.XA priority Critical patent/CN114133616B/zh
Publication of CN114133616A publication Critical patent/CN114133616A/zh
Application granted granted Critical
Publication of CN114133616B publication Critical patent/CN114133616B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0482Elimination of a frozen liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/08Cellulose derivatives
    • C08J2401/26Cellulose ethers
    • C08J2401/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2489/00Characterised by the use of proteins; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明公开了一种可回收纤维素基导电自修复共晶凝胶及其制备方法与应用。本发明采用聚乙烯醇(PVA),双醛羧甲基纤维素(DCMC),明胶为原料与低共熔溶剂(DES)混合反应,利用冷冻干燥或定向冷冻‑解冻结和冷冻干燥的方法,构建了基于亚胺键和氢键可逆网络的纤维素基导电自修复共晶凝胶。与现有导电凝胶相比,本发明中的共晶凝胶具有良好的机械性能、各向异性结构、自修复性能、抗冻性、粘附性及原料可再生、生产成本低、可循环利用、绿色环保等特点。用于传感器时,可以直观地观察到对应变的变化情况,且对温度和湿度的变化情况以及呼吸速度和方式的改变。

Description

一种可回收纤维素基导电自修复共晶凝胶及其制备方法与 应用
技术领域
本发明属于功能高分子柔性材料制备技术领域,具体涉及一种可回收纤维素基导电自修复共晶凝胶及其制备方法与应用。
背景技术
由于电子产品制备过程中使用大量有机试剂甚至有毒物质(一种具有高保水性的可拉伸导电水凝胶及其制备方法),以及使用后随意弃置或处理不当,会引发一系列环境、能源和健康等严重问题。开发可持续和可回收的替代品迫在眉睫,而纤维素基材料为此提供了巨大的机会。同时,传统的传感器件脆性、拉伸率低、使用寿命短等一系列缺点促进柔性传感器件以其独特的柔性、高度可拉伸、高灵敏等特点,迅速发展壮大。为满足高延伸性、高柔韧性、高耐久性、高稳定性的要求,通常采用纳米复合材料如碳纳米管、炭黑、石墨烯基材料、金属纳米线等纳米颗粒用作为柔性体的导电填料。尽管此类导体的稳定性、延展性和灵敏度都得到了极大的提高,但它们的大规模应用仍然受到一些挑战性问题的限制。昂贵的纳米材料、相对复杂和耗时的制造过程也是这些可拉伸导体应用的重要限制因素。
共晶凝胶因DES高导电性、低蒸气压、高热稳定性和低成本的固有特性使共晶凝胶成为先进电子器件、能源和环境科学等应用领域中最有前景的柔性离子导体的替代品。此外,赋予传感器自修复能力和可回收性,对传感器延长寿命和增强耐用性至关重要。
如何改善水凝胶在低温不结冰,提高环境稳定性且保持凝胶独具的高拉伸性和导电性仍然是水凝胶在实际应用过程中的关键问题。此外,赋予传感器自修复能力和可回收性,对传感器延长寿命和增强耐用性至关重要。
发明内容
为了克服上述缺点与不足,本发明的目的在于提供一种可回收纤维素基导电自修复共晶凝胶及其制备方法与应用,该方法得到的导电共晶凝胶具备良好的机械性能、各向异性结构、粘附性、自修复性且原料可再生、生产成本低、可循环利用。
本发明的目的至少通过如下技术方案之一实现。
一种可回收纤维素基导电自修复共晶凝胶的制备方法,包括以下步骤:
(1)将PVA(聚乙烯醇)溶液与明胶溶液混合,搅拌均匀,得到体系1;
(2)在体系1中加入DES(低共熔溶剂),搅拌均匀,得到体系2;
(3)在体系2中加入DCMC(双醛羧甲基纤维素),搅拌均匀,得到体系 3;
(4)将体系3倒入模具中进行冷冻干燥处理得到可回收纤维素基导电自修复共晶凝胶。
优选的,步骤(1)中,所述PVA的质量分数范围为体系3的2.5-10.0wt%,所述明胶的质量分数范围为体系3的2.5-10.0wt%;
优选的,步骤(3)中,所述DCMC的质量分数范围为体系3的1.0-3.0wt%。
优选的,步骤(2)中,所述DES为甘油-氯化胆碱、乙二醇-氯化胆碱、丁二醇-氯化胆碱、甘油-甜菜碱、乙二醇-甜菜碱中的任一种。
优选的,步骤(2)中,所述DES中氢键供体与氢键受体的摩尔比为1:1-5:1;
优选的,步骤(2)中,所述DES的质量分数范围为体系3的20-40wt%。
优选的,步骤(4)所述冷冻干燥处理前先进行定向冷冻-解冻及定向冷冻处理。得到可回收定向纤维素基导电自修复共晶凝胶。
进一步优选的,所述定向冷冻方式为由液氮、杜瓦瓶、冰箱、温度梯度仪中能制造温度梯度进行定向冷冻的一种;
进一步优选的,所述定向冷冻-解冻次数范围为1-5次。
优选的,所述可回收纤维素基导电自修复共晶凝胶的回收方法为:
将使用后的可回收纤维素基导电自修复共晶凝胶加水后加热搅拌,倒入模具中进行冷冻干燥,得到回收的可回收纤维素基导电自修复共晶凝胶。
进一步优选的,所述加入水的质量与使用的可回收纤维素基导电自修复共晶凝胶的质量的比例范围为1:1-5:1;
进一步优选的,所述加热搅拌的温度范围为40-60℃,加热搅拌的时间为 30-90min。
上述的制备方法制得的可回收纤维素基导电自修复共晶凝胶。
上述的可回收纤维素基导电自修复共晶凝胶在制备柔性传感器中的应用。
本发明提供的制备方法是一种基于PVA、DCMC、明胶等具有良好生物相容性的聚合物与低成本、环境友好的DES为原料制备一种可回收定向纤维素基导电自修复共晶凝胶。本发明采用DCMC与明胶、PVA等按照一定比例进行反应,放入模具中进行循环冷冻-解冻,最后冷冻干燥形成含有亚胺键和氢键两种自修复网络的共晶凝胶。与现有导电柔性材料相比,本发明中的共晶凝胶具有各向异性结构、良好的机械性能、粘附性、自修复性,以及-20-0℃不结冰、生产成本低、可回收利用等特点。
与现有技术相比,本发明具有以下优点和有益效果:
(1)本发明可回收纤维素基导电自修复共晶凝胶的制备方法,利用DES体系有效避免了离子型水凝胶因水蒸发引起结构的损伤以及-20-0℃水凝胶因结冰性能降低的问题。
(2)本发明可回收定向纤维素基导电自修复共晶凝胶的制备方法,利用定向冷冻-解冻的方法制备了具有定向结构、力学性能可调控的、环境稳定性的共晶凝胶。
(3)本发明可回收纤维素基导电自修复共晶凝胶的制备方法,利用亚胺键与氢键双重自修复机制是共晶凝胶柔性导体具有很好的自修复性能。
(4)本发明可回收纤维素基导电自修复共晶凝胶的制备方法,明可回收纤维素基导电自修复共晶凝胶的制备方法,可通过简单的加水、加热和搅拌操作使共晶凝胶回收并通过冷冻干燥操作制备新的可回收纤维素基导电自修复共晶凝胶。
附图说明
图1为本发明中实施例的可回收纤维素基导电自修复共晶凝胶的回收流程图。
图2为本发明实施例1中可回收定向纤维素基导电自修复共晶凝胶定向结构的扫描电镜图像。
图3为本发明实施例1中可回收定向纤维素基导电自修复共晶凝胶的动态热机械分析图。
图4为本发明实施例1、实施例2、实施例3(不同PVA用量)中可回收定向纤维素基导电自修复共晶凝胶平行方向上应力-应变曲线。
图5为本发明实施例1、实施例2、实施例3(不同PVA用量)中可回收定向纤维素基导电自修复共晶凝胶垂直方向上应力-应变曲线。
图6为本发明实施例1、实施例2、实施例3(不同PVA用量)中可回收定向纤维素基导电自修复共晶凝胶平行方向和垂直方向上电阻率值。
图7为本发明实施例4可回收定向纤维素基导电自修复共晶凝胶对各种表面的粘合展示图,包括皮肤、硅胶、玻璃、塑料、木材和织物。
图8为本发明实施例4的可回收定向纤维素基导电自修复共晶凝胶自修复前和自修复后的拉伸应力-应变曲线。
图9为本发明中实施例5的可回收纤维素基导电自修复共晶凝胶5次循环内的电阻率。
图10为本发明实施例1中可回收定向纤维素基导电自修复共晶凝胶在不同应变下五次循环拉伸的相对电阻变化图。
图11为本发明中实施例1的可回收定向纤维素基导电自修复共晶凝胶在加湿-除湿过程中10~98%RH之间的响应曲线。
图12为本发明中实施例1的可回收定向纤维素基导电自修复共晶凝胶在升温-降温过程中-10~50℃之间的响应曲线。
图13为本发明中实施例1的可回收定向纤维素基导电自修复共晶凝胶作为传感器对人鼻子呼吸的慢快以及嘴呼吸的相对电阻-时间曲线图。
具体实施方式
以下结合实例对本发明的具体实施作进一步说明,但本发明的实施和保护不限于此。需指出的是,以下若有未特别详细说明之过程,均是本领域技术人员可参照现有技术实现或理解的。所用试剂或仪器未注明生产厂商者,视为可以通过市售购买得到的常规产品。
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
实施例1
一种可回收定向纤维素基导电自修复共晶凝胶的制备方法,包括以下步骤:
(1)将PVA的质量分数范围为体系3的5.0wt%的PVA溶液与和明胶的质量分数范围为体系3的5.0wt%的明胶溶液混合,搅拌均匀,得到体系1。
(2)将摩尔比为3:1的甘油-氯化胆碱配置成DES,在体系1中加入质量分数范围为体系3的30wt%的DES,搅拌均匀,得到体系2。
(3)在体系2中加入质量分数为体系3的2.0wt%DCMC,搅拌均匀,得到体系3。
(4)将体系3倒入模具中采用液氮进行定向冷冻,经过3次定向冷冻-解冻操作,得到体系4。
(5)将体系4进行冷冻干燥处理得到可回收定向纤维素基导电自修复共晶凝胶。
图2为本发明中可回收定向纤维素基导电自修复共晶凝胶定向结构的扫描电镜图像,表明共晶凝胶具有定向孔道结构。
图3为本发明中可回收定向纤维素基导电自修复共晶凝胶的动态热机械分析曲线图,表明共晶凝胶-20.9~0℃以内不结冰。
实施例2
一种可回收定向纤维素基导电自修复共晶凝胶的制备方法,包括以下步骤:
(1)将PVA的质量分数范围为体系3的2.5wt%的PVA溶液与和明胶的质量分数范围为体系3的5.0wt%的明胶溶液混合,搅拌均匀,得到体系1。
(2)将摩尔比为3:1的甘油-氯化胆碱配置成DES,在体系1中加入质量分数范围为体系3的30wt%的DES,搅拌均匀,得到体系2。
(3)在体系2中加入质量分数为体系3的2.0wt%DCMC,搅拌均匀,得到体系3。
(4)将体系3倒入模具中采用液氮进行定向冷冻,经过3次定向冷冻-解冻操作,得到体系4。
(5)将体系4进行冷冻干燥处理得到可回收定向纤维素基导电自修复共晶凝胶。
实施例3
一种可回收定向纤维素基导电自修复共晶凝胶的制备方法,包括以下步骤:
(1)将PVA的质量分数范围为体系3的10.0wt%的PVA溶液与和明胶的质量分数范围为体系3的5.0wt%的明胶溶液混合,搅拌均匀,得到体系1。
(2)将摩尔比为3:1的甘油-氯化胆碱配置成DES,在体系1中加入质量分数范围为体系3的30wt%的DES,搅拌均匀,得到体系2。
(3)在体系2中加入质量分数为体系3的2.0wt%DCMC,搅拌均匀,得到体系3。
(4)将体系3倒入模具中采用液氮进行定向冷冻,经过3次定向冷冻-解冻操作,得到体系4。
(5)将体系4进行冷冻干燥处理得到可回收定向纤维素基导电自修复共晶凝胶。
图4和图5分别为本发明实施例1、实施例2、实施例3中可回收定向纤维素基导电自修复共晶凝胶(不同PVA含量)平行方向(与冰晶生长方向平行) 上和垂直方向(与冰晶生长方向垂直)上应力-应变曲线。说明共晶凝胶的定向结构在机械性能上表现出差异,平行方向上凝胶的应力、应变分别远大于垂直方向。
图6为本发明实施例1、实施例2、实施例3中可回收定向纤维素基导电自修复共晶凝胶(不同PVA含量)平行方向上和垂直方向上的电阻率值,说明共晶凝胶的定向结构在导电性能上也表现出差异,平行方向上凝胶的电阻率值分别小于垂直方向上,说明沿平行方向凝胶导电性更好。
实施例4
一种可回收定向纤维素基导电自修复共晶凝胶的制备方法,包括以下步骤:
(1)将PVA的质量分数范围为体系3的5.0wt%的PVA溶液与和明胶的质量分数范围为体系3的10.0wt%的明胶溶液混合,搅拌均匀,得到体系1。
(2)将摩尔比为2:1的甘油-氯化胆碱配置成DES,在体系1中加入质量分数范围为体系3的30wt%的DES,搅拌均匀,得到体系2。
(3)在体系2中加入质量分数为体系3的3.0wt%DCMC,搅拌均匀,得到体系3。
(4)将体系3倒入模具中采用液氮进行定向冷冻,经过3次定向冷冻-解冻操作,得到体系4。
(5)将体系4进行进行冷冻干燥处理得到可回收定向纤维素基导电自修复共晶凝胶。
本发明中可回收纤维素基导电自修复共晶凝胶具有循环回收性,回收过程如图1所示。同时还具有良好的粘附性(图7)和自修复性(图8),表明共晶凝胶对对皮肤、硅胶、玻璃、塑料、木材和织物等表面都具有很好的粘附能力,且机械性能可以在1h后可恢复约80%。
实施例5
一种可回收纤维素基导电自修复共晶凝胶的制备方法,包括以下步骤:
(1)将PVA的质量分数范围为体系3的5.0wt%的PVA溶液与和明胶的质量分数范围为体系3的5.0wt%的明胶溶液混合,搅拌均匀,得到体系1。
(2)将摩尔比为3:1的甘油-氯化胆碱配置成DES,在体系1中加入质量分数范围为体系3的30wt%的DES,搅拌均匀,得到体系2。
(3)在体系2中加入质量分数为体系3的2.0wt%DCMC,搅拌均匀,得到体系3。
(4)将体系3进行冷冻干燥处理得到可回收定向纤维素基导电自修复共晶凝胶。
(5)将步骤(4)所得可回收纤维素基导电自修复共晶凝胶加入与共晶凝胶质量的比例范围为3:1的水,在60℃水浴加热搅拌60min,形成新的体系4,然后重复步骤(4),得到新的可回收纤维素基导电自修复共晶凝胶。
(6)重复步骤(5),得到新的可回收纤维素基导电自修复共晶凝胶。
本发明中可回收纤维素基导电自修复共晶凝胶具有循环回收性,如图9,为可回收纤维素基导电自修复共晶凝胶按照步骤(6)的5次循环内的电阻率,电阻率随循环次数的增加而增大,表明在循环过程中共晶凝胶会失去小部分离子,这可以通过简单的添加氯化胆碱来改善。说明我们的共晶凝胶经过循环回收依然能保持良好的导电性。
实施例6
一种可回收纤维素基导电自修复共晶凝胶的制备方法,包括以下步骤:
(1)将PVA的质量分数范围为体系3的5.0wt%的PVA溶液与和明胶的质量分数范围为体系3的5.0wt%的明胶溶液混合,搅拌均匀,得到体系1。
(2)将摩尔比为2:1的乙二醇-氯化胆碱配置成DES,在体系1中加入质量分数范围为体系3的30wt%的DES,搅拌均匀,得到体系2。
(3)在体系2中加入质量分数为体系3的1.0wt%DCMC,搅拌均匀,得到体系3。
(4)将体系3进行冷冻干燥处理得到可回收定向纤维素基导电自修复共晶凝胶。
本发明中可回收纤维素基导电自修复共晶凝胶均可应用于制备应变、湿度、温度传感器,图10-13为本发明中实施例1可回收纤维素基导电自修复共晶凝胶作为应变、湿度、温度以及检测人呼吸等传感器应用测试。
图10为本发明中实施例1可回收纤维素基导电自修复共晶凝胶可回收纤维素基导电自修复共晶凝胶在不同应变下五次循环拉伸的相对电阻,表明共晶凝胶对应变具有很好的响应性。图11为本发明中实施例1可回收纤维素基导电自修复共晶凝胶具有对环境湿度的响应性,在加湿-除湿过程中,10~98%RH之间可以给出相应的电流响应曲线。图12为本发明中实施例1可回收纤维素基导电自修复共晶凝胶具有对环境温度的响应性,升温-降温过程中-10~50℃之间可以给出相应的电流响应曲线。本发明中可回收纤维素基导电自修复共晶凝胶可同时对湿度和温度具有灵敏的响应性。图13为本发明中实施例1可回收纤维素基导电自修复共晶凝胶能应用于湿度-温度传感器,嘴呼吸电流信号比鼻子呼吸电流信号变化更大,同时也可区分鼻子快速呼吸和缓慢呼吸传感器的响应。
以上实施例仅为本发明较优的实施方式,仅用于解释本发明,而非限制本发明,本领域技术人员在未脱离本发明精神实质下所作的改变、替换、修饰等均应属于本发明的保护范围。

Claims (9)

1.一种可回收纤维素基导电自修复共晶凝胶的制备方法,其特征在于,包括以下步骤:
(1)将PVA溶液与明胶溶液混合,搅拌均匀,得到体系1;
(2)在体系1中加入DES,搅拌均匀,得到体系2;所述DES为甘油-氯化胆碱、乙二醇-氯化胆碱、丁二醇-氯化胆碱、甘油-甜菜碱、乙二醇-甜菜碱中的任一种;
(3)在体系2中加入DCMC,搅拌均匀,得到体系3;
(4)将体系3倒入模具中进行冷冻干燥处理得到可回收纤维素基导电自修复共晶凝胶。
2.根据权利要求1所述的可回收纤维素基导电自修复共晶凝胶的制备方法,其特征在于,步骤(1)中,所述PVA的质量分数范围为体系3的2.5-10.0 wt%,所述明胶的质量分数范围为体系3的2.5-10.0 wt%;
步骤(3)中,所述DCMC的质量分数范围为体系3的1.0-3.0 wt%。
3.根据权利要求1所述的可回收纤维素基导电自修复共晶凝胶的制备方法,其特征在于,步骤(2)中,所述DES中氢键供体与氢键受体的摩尔比为1:1-5:1;
步骤(2)中,所述DES的质量分数范围为体系3的20-40 wt%。
4.根据权利要求1所述的可回收纤维素基导电自修复共晶凝胶的制备方法,其特征在于,步骤(4)所述冷冻干燥处理前先进行定向冷冻-解冻及定向冷冻处理。
5.根据权利要求4所述的可回收纤维素基导电自修复共晶凝胶的制备方法,其特征在于,所述定向冷冻方式为由液氮、杜瓦瓶、冰箱、温度梯度仪中能制造温度梯度进行定向冷冻的一种;
所述定向冷冻-解冻次数范围为1-5次。
6.根据权利要求1所述的可回收纤维素基导电自修复共晶凝胶的制备方法,其特征在于,所述可回收纤维素基导电自修复共晶凝胶的回收方法为:
将使用后的可回收纤维素基导电自修复共晶凝胶加水后加热搅拌,倒入模具中进行冷冻干燥,得到回收的可回收纤维素基导电自修复共晶凝胶。
7.根据权利要求6所述的可回收纤维素基导电自修复共晶凝胶的制备方法,其特征在于,所述加入水的质量与使用的可回收纤维素基导电自修复共晶凝胶的质量的比例范围为1:1-5:1;
所述加热搅拌的温度范围为40-60 ℃,加热搅拌的时间为30-90 min。
8.一种由权利要求1-7任一项所述的制备方法制得的可回收纤维素基导电自修复共晶凝胶。
9.权利要求8所述的可回收纤维素基导电自修复共晶凝胶在制备柔性传感器中的应用。
CN202111328193.XA 2021-11-10 2021-11-10 一种可回收纤维素基导电自修复共晶凝胶及其制备方法与应用 Active CN114133616B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111328193.XA CN114133616B (zh) 2021-11-10 2021-11-10 一种可回收纤维素基导电自修复共晶凝胶及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111328193.XA CN114133616B (zh) 2021-11-10 2021-11-10 一种可回收纤维素基导电自修复共晶凝胶及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN114133616A CN114133616A (zh) 2022-03-04
CN114133616B true CN114133616B (zh) 2022-09-20

Family

ID=80393582

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111328193.XA Active CN114133616B (zh) 2021-11-10 2021-11-10 一种可回收纤维素基导电自修复共晶凝胶及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114133616B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115351861A (zh) * 2022-09-19 2022-11-18 中国林业科学研究院木材工业研究所 一种微波膨化木-水凝胶复合装饰材制备方法和应用
CN115501384B (zh) * 2022-09-21 2024-01-19 西北农林科技大学 一种基于天然低共熔溶剂制备用于伤口愈合和人体健康监测的多功能导电水凝胶的方法
CN115895269B (zh) * 2022-10-31 2023-09-22 长沙先进电子材料工业技术研究院有限公司 一种导热凝胶及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109265729A (zh) * 2018-09-17 2019-01-25 燕山大学 一种自修复可降解多孔导电凝胶材料及其制备方法和应用
WO2020044210A1 (en) * 2018-08-27 2020-03-05 Stora Enso Oyj Deep eutectic solvent for the modification of nanocellulose film
CN112212779A (zh) * 2020-09-04 2021-01-12 厦门大学 一种水凝胶柔性应变传感器的制备方法
CN113072719A (zh) * 2021-03-30 2021-07-06 武汉纺织大学 高强度多元交联水凝胶及其制备方法
CN113354953A (zh) * 2021-06-21 2021-09-07 深圳大学 一种柔性导电生物聚合物材料及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044210A1 (en) * 2018-08-27 2020-03-05 Stora Enso Oyj Deep eutectic solvent for the modification of nanocellulose film
CN109265729A (zh) * 2018-09-17 2019-01-25 燕山大学 一种自修复可降解多孔导电凝胶材料及其制备方法和应用
CN112212779A (zh) * 2020-09-04 2021-01-12 厦门大学 一种水凝胶柔性应变传感器的制备方法
CN113072719A (zh) * 2021-03-30 2021-07-06 武汉纺织大学 高强度多元交联水凝胶及其制备方法
CN113354953A (zh) * 2021-06-21 2021-09-07 深圳大学 一种柔性导电生物聚合物材料及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Self-healing, anti-freezing, adhesive and remoldable hydrogel sensor with ion-liquid metal dual conductivity for biomimetic skin;Zixuan Zhou et al.;《ACS Applied Materials & Interfaces》;20201209;第1-10页 *
低共熔溶剂在纳米纤维素制备中的应用和研究进展;廖可瑜等;《中国造纸》(第02期);第65-72页 *

Also Published As

Publication number Publication date
CN114133616A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
CN114133616B (zh) 一种可回收纤维素基导电自修复共晶凝胶及其制备方法与应用
Zhou et al. Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers
Kong et al. Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel
Gao et al. Transparent and conductive amino acid-tackified hydrogels as wearable strain sensors
Chen et al. High toughness multifunctional organic hydrogels for flexible strain and temperature sensor
Wang et al. Mechanically robust, degradable and conductive MXene-composited gelatin organohydrogel with environmental stability and self-adhesiveness for multifunctional sensor
Yin et al. A UV-filtering, environmentally stable, healable and recyclable ionic hydrogel towards multifunctional flexible strain sensor
Peng et al. High strength, antifreeze, and moisturizing conductive hydrogel for human‐motion detection
Zhang et al. Anti-freezing, water-retaining, conductive, and strain-sensitive hemicellulose/polypyrrole composite hydrogels for flexible sensors
Chen et al. Ultra-stretchable, adhesive, and self-healing MXene/polyampholytes hydrogel as flexible and wearable epidermal sensors
Wang et al. Cellulose nanocrystal/phytic acid reinforced conductive hydrogels for antifreezing and antibacterial wearable sensors
Liang et al. Preparation of stretchable and self-healable dual ionically cross-linked hydrogel based on chitosan/polyacrylic acid with anti-freezing property for multi-model flexible sensing and detection
Pei et al. Self-healing and toughness cellulose nanocrystals nanocomposite hydrogels for strain-sensitive wearable flexible sensor
Wu et al. High stretchable, pH-sensitive and self-adhesive rGO/CMCNa/PAA composite conductive hydrogel with good strain-sensing performance
Fan et al. Highly aligned graphene/biomass composite aerogels with anisotropic properties for strain sensing
Qin et al. Ionic conductive hydroxypropyl methyl cellulose reinforced hydrogels with extreme stretchability, self-adhesion and anti-freezing ability for highly sensitive skin-like sensors
Dai et al. A transparent, tough self-healing hydrogel based on a dual physically and chemically triple crosslinked network
He et al. A high-strength, environmentally stable, self-healable, and recyclable starch/PVA organohydrogel for strain sensor
Huang et al. MXene-based double-network organohydrogel with excellent stretchability, high toughness, anti-drying and wide sensing linearity for strain sensor
Li et al. Frost-resistant and ultrasensitive strain sensor based on a tannic acid-nanocellulose/sulfonated carbon nanotube-reinforced polyvinyl alcohol hydrogel
Fei et al. Highly sensitive large strain cellulose/multiwalled carbon nanotubes (MWCNTs)/thermoplastic polyurethane (TPU) nanocomposite foams: From design to performance evaluation
Mu et al. High strength, anti-freezing and conductive silkworm excrement cellulose-based ionic hydrogel with physical-chemical double cross-linked for pressure sensing
Lu et al. Simple preparation of carboxymethyl cellulose-based ionic conductive hydrogels for highly sensitive, stable and durable sensors
Li et al. Easy regulation of chitosan-based hydrogel microstructure with citric acid as an efficient buffer
Cao et al. MXene-enhanced deep eutectic solvent-based flexible strain sensor with high conductivity and anti-freezing using electrohydrodynamic direct-writing method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant