CN114129728A - 一种用于消炎和光热治疗的铑铼合金及其制备方法和应用 - Google Patents

一种用于消炎和光热治疗的铑铼合金及其制备方法和应用 Download PDF

Info

Publication number
CN114129728A
CN114129728A CN202111483979.9A CN202111483979A CN114129728A CN 114129728 A CN114129728 A CN 114129728A CN 202111483979 A CN202111483979 A CN 202111483979A CN 114129728 A CN114129728 A CN 114129728A
Authority
CN
China
Prior art keywords
rhodium
rhenium alloy
photothermal therapy
rhenium
inflammation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111483979.9A
Other languages
English (en)
Other versions
CN114129728B (zh
Inventor
查正宝
马鸿娜
缪昭华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202111483979.9A priority Critical patent/CN114129728B/zh
Publication of CN114129728A publication Critical patent/CN114129728A/zh
Application granted granted Critical
Publication of CN114129728B publication Critical patent/CN114129728B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nanotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种用于消炎和光热治疗的铑铼合金及其制备方法和应用,其组分为稳定剂修饰的铑铼纳米粒子,大小为25‑30nm。本发明的铑铼合金具有清除体内活性氧的特性,可将体内的过氧化氢(H2O2)、超氧根阴离子(O2‑)、羟基自由基(·OH)等活性氧分子催化转化为水分子(H2O)和氧气(O2),降低体内活性氧水平从而降低体内肿瘤坏死因子(TNF‑α)等炎症因子的表达,用于消炎;且由于同时具有强近红外吸收,该铑铼合金可用于光热治疗,实现非炎症性光热治疗癌症。

Description

一种用于消炎和光热治疗的铑铼合金及其制备方法和应用
技术领域
本发明属于纳米材料技术领域,具体涉及一种用于消炎和光热治疗的铑铼合金及其制备方法。
背景技术
癌症是严重威胁人类健康的主要疾病之一。目前临床治疗癌症主要有三种手段:手术切除、放射治疗和化疗。但这三种治疗技术目前在临床上都有一定局限性,降低了最终癌症的治疗效果。因此,发展新型的癌症治疗技术可以弥补当前临床治疗技术的不足,有望提高癌症患者的生存期和生存质量。作为一种新兴的肿瘤热消融技术,近红外光介导的光热疗法由于其非侵袭性和激光定位性能带来的优势在最近引起了巨大的关注。
与临床上的其它肿瘤消融热技术相似,光热治疗的加热温度通常被升高到50℃以实现癌症凝固性坏死。但该手段实现肿瘤短时间内消融的同时又会引起细胞内成分释放从而引发不利的炎症反应,阻碍光热治疗的治疗效果。具体表现在一些促炎细胞因子和蛋白质以及O2-、H2O2和·OH等活性氧分子的积累,这些胞内成分会造成炎症环境的产生,刺激肿瘤复发并损伤外周正常细胞,最终导致肿瘤无法被根治。因此非炎症性光热治疗方法被认为是一种更为有效的治疗癌症的方法。
铑(Rhodium,Rh)是一种银白色、坚硬的稀有贵金属,铑纳米粒子具有较好的光热转化性能,然而据报道,与铂或钯基催化剂相比,铑基催化剂的活性较低,所以通过形成合金的方式,利用金属间电子效应来提高铑的催化效果具有探究意义。铼(Rhenium,Re)在周期表的过渡金属族中是具有高原子序数(Z=75)的罕见和强大的贵金属,铼纳米材料也可以作为光热转换剂和纳米催化剂。
探究铑铼合金纳米材料的生物医学应用具有重要的研究和应用价值。
发明内容
为解决传统的金属光热转换剂在光热治疗中伴随的炎症问题,本发明构建了一种用于消炎和光热治疗的铑铼合金及其制备方法,并将其用于消炎和光热治疗,实现有效治疗肿瘤的目的。
本发明为解决技术问题,采取如下技术方案:
本发明首先公开了一种用于消炎和光热治疗的铑铼合金,其组分为稳定剂修饰的铑铼合金纳米粒子,是以铑铼合金纳米粒子为内部核心,表面修饰有稳定剂,直径为25~30nm。
进一步地,所述稳定剂为巯基聚乙二醇。
本发明的所述铑铼合金同时具有消炎和光热治疗的功能,其实现机理是:铑铼合金纳米粒子中由于铼原子整合到铑原子晶格中使其产生轻微晶格收缩,使铑铼合金具备较高的催化活性,可以有效将活性氧催化转变为H2O和O2,从而降低炎症因子的表达,减轻炎症;铑铼合金具有很强的近红外吸收,可有效将光能转化为热量,使局部组织快速升温,从而杀死病变组织。
本发明还公开了用于消炎和光热治疗的铑铼合金的制备方法,是采用一步水相还原法制得,包括如下步骤:
(1)称取40-45mg高铼酸铵和5-10mg三水氯化铑以及10-20mg的稳定剂分别溶于2mL去离子水中,然后混合并搅拌均匀,获得溶液A;
(2)称取60-80mg硼氢化钠溶于2.5mL去离子水中,0-4℃预冷,获得溶液B;
(3)将溶液B加入到溶液A中,常温下搅拌反应2-4h;
(4)对所得产物进行离心分离,离心转速为9500rpm、离心时间为30min,即获得铑铼合金。
本发明的铑铼合金可用于制备同时用于消炎和光热治疗的药剂,包括但不局限于肿瘤、炎症和组织修复等一些病变组织。
本发明的有益效果体现在:
1、本发明的铑铼合金具备较强的催化活性,具有清除体内活性氧的特性,可将体内的过氧化氢(H2O2)、超氧根阴离子(O2-)、羟基自由基(·OH)等活性氧分子催化转化为水分子(H2O)和氧气(O2),降低体内活性氧水平从而降低体内肿瘤坏死因子(TNF-α)等炎症因子的表达,用于消炎;且由于同时具有强近红外吸收,本发明的铑铼合金可用于光热治疗,实现了非炎症性光热治疗癌症。
2、本发明铑铼合金的制备过程简单、条件温和,具有大规模生产的可能,具有工业和实际应用的潜力。
3、本发明所使用的材料具有很好的生物相容性,对人体无直接或间接毒害作用,无潜在毒性。
4、本发明的纳米粒子具有良好的分散性和稳定性,有利于临床使用。
附图说明
图1为实施例1制备的铑铼合金的透射电镜图。
图2为实施例1制备的铑铼合金的可见光-近红外吸收光谱图。
图3为实施例1制备的铑铼合金的X射线衍射谱图。
图4a为实施例1中不同浓度的铑铼合金与铑纳米粒子水分散液清除2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐(ABTS)自由基效果图,图4b为实施例1中不同浓度的铑铼合金与铑纳米粒子水分散液清除O2-的效果图。
图5a为实施例1中不同浓度的铑铼合金的水分散液的升温效果图,图5b为不同激光强度下的铑铼合金的水分散液的升温效果图。
图6a为实施例1中不同处理方式(加纳米粒子或H2O2)HUVEC细胞的荧光显微镜图,图6b为不同浓度的铑铼合金对H2O2刺激的HUVEC细胞的保护效果图,图6c为不同浓度的铑铼合金对RAW264.7巨噬细胞中TNF-α的清除效果图。
图7a为实施例1中不同处理方式(加纳米粒子和/或激光照射)4T1癌细胞的荧光显微镜图,图7b为不同浓度的铑铼合金对4T1细胞的光热杀死效果图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合实施例对本发明的具体实施方式做详细的说明。以下内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。
实施例1
本实施例按如下方法制备铑铼合金:
(1)称取42.9mg高铼酸铵和10.2mg三水氯化铑以及16mg的巯基聚乙二醇分别溶于2mL去离子水中,混合后搅拌20min,获得溶液A。
(2)称取75mg硼氢化钠溶于2.5mL去离子水中,4℃预冷,获得溶液B。
(3)将溶液B加入到溶液A中,常温下搅拌反应2h。
(4)对所得产物进行离心分离,离心转速为9500rpm、离心时间为30min,即获得铑铼合金。
图1为本实施例所得铑铼合金的透射电镜图,可以看到该纳米粒子粒径较小,为25-30nm。
图2为本实施例所得铑铼合金的可见光-近红外吸收光谱图,其表征方法为:将所得铑铼合金的水分散液稀释至不同浓度(33、46、65、92、150ppm),并测试其可见-近红外吸收光谱图,可以看出,其吸收是浓度依赖性的,随着浓度的升高其吸收也随之升高。
图3为本实施例所得铑铼合金的X射线衍射谱图,可以看出铑铼合金最强峰(111)峰值位于41.7°,正好位于Rh(41.0°)和Re(42.9°)之间,表示铑铼晶体因将铼原子整合到铑晶格中而产生的轻微晶格收缩。
图4a为不同浓度的铑铼合金与铑纳米粒子水分散液的清除2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐(ABTS)自由基效果图,其表征方式为:称取0.0115gABTS溶于3mL去离子水中,避光保存得到液体A;再称取0.004g过硫酸钾溶于6.06mL去离子水中,避光保存得到液体B;将1mL液体A和1mL液体B混合,避光反应24h得到液体C;取1mL待测水分散液于5mL离心管中,向其中加入2mL液体C避光反应10min后测定734nm处的吸光值。可以看出相同浓度下铑铼合金清除ABTS自由基的能力远高于铑纳米粒子,并且其催化效果是浓度依赖的,随着浓度升高,清除ABTS自由基的效果越好。图4b为不同浓度的铑铼合金与铑纳米粒子水分散液的清除O2-的效果图,其表征方式为:通过碧云天总SOD活性检测试剂盒(WST-8法)试剂盒测定。可以看出相同浓度下铑铼合金清除O2-的能力远高于铑纳米粒子,并且其催化效果是浓度依赖的,随着浓度升高,清除O2-的效果越好。其中,铑纳米粒子的制备方法参考论文:Ultrasmall Rhodium Nanozyme with RONS Scavenging andPhotothermalActivities forAnti-Inflammation andAntitumor Theranostics ofColonDiseases,缪昭华,Nano Lett.2020,20,3079-3089.
图5a为不同浓度的铑铼合金水分散液的升温效果图,其表征方式为:取2mL待测水分散液于石英池中,使用808nm激光照射器进行照射,激光强度为2W、照射时间为3min,每间隔15s记录一次温度。结果说明铑铼合金的升温效果是浓度和时间依赖的,随着浓度升高和时间的延长,分散液所能到达的温度也越高。图5b为不同的激光强度下的铑铼合金水分散液的升温效果图,其表征方式为:取2mL40 ppm的待测水分散液于石英池中,使用808nm激光照射器进行照射,激光强度为2W、1.5W、1W、0.5W,每间隔15s记录一次温度。结果说明铑铼合金的升温效果是激光强度和时间依赖的,随着激光强度提高和时间的延长,分散液所能到达的温度也越高。
图6a为在对照组、3Mm H2O2、160ppm纳米粒子和160ppm纳米粒子+3mM H2O2四种不同处理方式下,HUVEC细胞的荧光显微镜图。其表征方法为:将HUVEC细胞进行以下处理:(a)对照组;(b)3mM H2O2,(3)160ppm纳米粒子,(4)160ppm纳米粒子+3mM H2O2,之后进行钙黄绿素-AM和溴化丙啶进行死活细胞染色,通过发出的荧光判断细胞的死活。图6b为将不同浓度的铑铼合金与3mM H2O2刺激的HUVEC细胞孵育4h,利用噻唑蓝(MTT)法定量表征HUVEC细胞存活率的效果,可以看到铑铼合金对HUVEC细胞的保护效果是浓度依赖的,浓度越高,存活的HUVEC细胞越多。图6c为不同浓度的铑铼合金对RAW264.7巨噬细胞中TNF-α的清除效果图,其表征方法为:将HUVEC细胞与3mM H2O2一起孵育2h。然后,将HUVEC细胞的上清液转移到96孔板中过夜培养RAW264.7巨噬细胞。最后,收集RAW264.7巨噬细胞的上清液,用商业酶联免疫吸附测定试剂盒测量TNF-α水平。可以看到铑铼合金能降低TNF-α水平。
图7a为在对照组、激光照射5min、240ppm纳米粒子和240ppm纳米粒子+激光照射5min四种不同处理方式下,4T1癌细胞的荧光显微镜图。其表征方法为:将4T1癌细胞进行以下处理:(a)对照组;(b)激光照射5min,(3)240ppm纳米粒子,(4)240ppm纳米粒子+激光照射5min,之后进行钙黄绿素-AM和溴化丙啶进行死活细胞染色,通过发出的荧光判断细胞的死活。图7b为将不同浓度的铑铼合金与4T1细胞孵育,激光照射5min(2W,808nm),利用噻唑蓝(MTT)法定量表征杀死癌细胞的效果,可以看到癌细胞的杀死效果是浓度依赖的,浓度越高,死亡的癌细胞越多。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种用于消炎和光热治疗的铑铼合金,其特征在于:所述铑铼合金是以铑铼合金纳米粒子为内部核心,表面修饰有稳定剂。
2.根据权利要求1所述的一种用于消炎和光热治疗的铑铼合金,其特征在于:所述铑铼合金的直径为25-30nm。
3.根据权利要求1所述的一种用于消炎和光热治疗的铑铼合金,其特征在于:所述稳定剂为巯基聚乙二醇。
4.一种权利要求1~3中任意一项所述用于消炎和光热治疗的铑铼合金的制备方法,其特征在于,采用一步水相还原法制得,包括如下步骤:
(1)称取40-45mg高铼酸铵和5-10mg三水氯化铑以及10-20mg的稳定剂分别溶于2mL去离子水中,然后混合并搅拌均匀,获得溶液A;
(2)称取60-80mg硼氢化钠溶于2.5mL去离子水中,0-4℃预冷,获得溶液B;
(3)将溶液B加入到溶液A中,常温下搅拌反应2-4h;
(4)对所得产物进行离心分离,即获得铑铼合金。
5.根据权利要求4所述的制备方法,其特征在于:步骤(4)中,所述离心的转速为9000-9500rpm、离心时间为20-30min。
6.一种权利要求1~3中任意一项所述铑铼合金的应用,其特征在于:用于制备同时用于消炎和光热治疗的药剂。
CN202111483979.9A 2021-12-07 2021-12-07 一种用于消炎和光热治疗的铑铼合金及其制备方法和应用 Active CN114129728B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111483979.9A CN114129728B (zh) 2021-12-07 2021-12-07 一种用于消炎和光热治疗的铑铼合金及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111483979.9A CN114129728B (zh) 2021-12-07 2021-12-07 一种用于消炎和光热治疗的铑铼合金及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114129728A true CN114129728A (zh) 2022-03-04
CN114129728B CN114129728B (zh) 2023-07-25

Family

ID=80384779

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111483979.9A Active CN114129728B (zh) 2021-12-07 2021-12-07 一种用于消炎和光热治疗的铑铼合金及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114129728B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1473539A (en) * 1973-06-21 1977-05-11 Oxy Metal Industries Corp Electroplating rhodium-rhenium alloys
US20170042976A1 (en) * 2015-01-19 2017-02-16 Theralase Technologies, Inc. Metal-glycoprotein complexes and photodynamic therapy of immune privileged sites with same
CN109364245A (zh) * 2018-09-04 2019-02-22 中山大学 一种聚多巴胺纳米诊疗剂及其制备方法
CN109833477A (zh) * 2019-04-15 2019-06-04 合肥工业大学 一种用于ct造影和光热治疗的可降解铼纳米团簇及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1473539A (en) * 1973-06-21 1977-05-11 Oxy Metal Industries Corp Electroplating rhodium-rhenium alloys
US20170042976A1 (en) * 2015-01-19 2017-02-16 Theralase Technologies, Inc. Metal-glycoprotein complexes and photodynamic therapy of immune privileged sites with same
CN109364245A (zh) * 2018-09-04 2019-02-22 中山大学 一种聚多巴胺纳米诊疗剂及其制备方法
CN109833477A (zh) * 2019-04-15 2019-06-04 合肥工业大学 一种用于ct造影和光热治疗的可降解铼纳米团簇及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAOHUA MIAO等: "Ultrasmall Rhodium Nanozyme with RONS Scavenging and Photothermal Activities for Anti-Inflammation and Antitumor Theranostics of Colon Diseases", 《NANO LETT.》 *

Also Published As

Publication number Publication date
CN114129728B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
Ding et al. MoO 3− x quantum dots for photoacoustic imaging guided photothermal/photodynamic cancer treatment
Gao et al. Titania-coated 2D gold nanoplates as nanoagents for synergistic photothermal/sonodynamic therapy in the second near-infrared window
Tang et al. Pyroelectric nanoplatform for NIR-II-triggered photothermal therapy with simultaneous pyroelectric dynamic therapy
Wang et al. New advances on the marrying of UCNPs and photothermal agents for imaging-guided diagnosis and the therapy of tumors
Idris et al. Photoactivation of core–shell titania coated upconversion nanoparticles and their effect on cell death
Yu et al. Black hollow silicon oxide nanoparticles as highly efficient photothermal agents in the second near-infrared window for in vivo cancer therapy
Liu et al. In vivo near-infrared photothermal therapy and computed tomography imaging of cancer cells using novel tungsten-based theranostic probe
Li et al. Comparison of the killing effects between nitrogen-doped and pure TiO 2 on HeLa cells with visible light irradiation
CN110038128B (zh) 一种Au@Se@Pt-Ce6纳米复合探针及其制备方法
CN105412926A (zh) 一种聚乙二醇修饰的铋纳米光热转换材料、其制备方法及应用
Zhao et al. Amorphous Ag2-xCuxS quantum dots:“all-in-one” theranostic nanomedicines for near-infrared fluorescence/photoacoustics dual-modal-imaging-guided photothermal therapy
Xu et al. Manganese single-atom catalysts for catalytic-photothermal synergistic anti-infected therapy
Liu et al. Plasmon-activated nanozymes with enhanced catalytic activity by near-infrared light irradiation
Ding et al. Cu2+‐Anchored Carbon nano‐photocatalysts for visible water splitting to boost hydrogen cuproptosis
Guo et al. Photoacoustic imaging guided photothermal and chemodynamic combined therapy for cancer using
Higgins et al. X-ray radiation enhancement of gold-TiO2 nanocomposites
Lv et al. Absorption-dependent generation of singlet oxygen from gold bipyramids excited under low power density
Martin et al. One-pot synthesis of magnesium nanoparticles embedded in a chitosan microparticle matrix: a highly biocompatible tool for in vivo cancer treatment
Feng et al. Tumour microenvironment-responded Fe-doped carbon dots-sensitized cubic Cu2O for Z-scheme heterojunction-enhanced sono-chemodynamic synergistic tumor therapy
CN113679838A (zh) 一种钒纳米酶及其制备方法与应用
CN114129728B (zh) 一种用于消炎和光热治疗的铑铼合金及其制备方法和应用
CN113648414A (zh) 一种金属离子配位的碳点/二氧化钛异质结及其制备方法和应用
CN109833477B (zh) 一种用于ct造影和光热治疗的可降解铼纳米团簇及其制备方法和应用
CN109395078B (zh) 一种MoO2-ICG多功能纳米颗粒及其制备方法与应用
CN113697822B (zh) 一种硼量子点及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant