CN114107302A - CRISPR-Cas9 gene editing vector for bacteria and application thereof - Google Patents

CRISPR-Cas9 gene editing vector for bacteria and application thereof Download PDF

Info

Publication number
CN114107302A
CN114107302A CN202111484187.3A CN202111484187A CN114107302A CN 114107302 A CN114107302 A CN 114107302A CN 202111484187 A CN202111484187 A CN 202111484187A CN 114107302 A CN114107302 A CN 114107302A
Authority
CN
China
Prior art keywords
plasmid
crispr
cas9
gene editing
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111484187.3A
Other languages
Chinese (zh)
Inventor
张沨
黄潮勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Kinstar Biotechnology Co ltd
Shandong Qibang Huikang Biotechnology Co ltd
Beijing Institute of Technology BIT
Original Assignee
Shandong Qibang Huikang Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Qibang Huikang Biotechnology Co ltd filed Critical Shandong Qibang Huikang Biotechnology Co ltd
Priority to CN202111484187.3A priority Critical patent/CN114107302A/en
Publication of CN114107302A publication Critical patent/CN114107302A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a CRISPR-Cas9 gene editing vector for bacteria and application thereof, and relates to the field of gene editing. The invention provides a CRISPR-Cas9 gene editing vector for bacteria, which comprises a plasmid 1 and a plasmid 2; the plasmid 1 comprises a replication initiation site, a screening marker gene, a Cas9 protein expression element, a recombinant protein expression element and a counter-screening marker gene; the plasmid 2 comprises a replication initiation site, a selection marker gene, a sgRNA expression element and a homologous recombination element. The CRISPR-Cas9 gene editing vector constructed by the invention can edit bacteria such as escherichia coli, specifically comprises operations such as DNA sequence knockout, insertion and replacement, and has the advantages of short test period, high efficiency, low cost and the like.

Description

CRISPR-Cas9 gene editing vector for bacteria and application thereof
Technical Field
The invention relates to the field of gene editing, in particular to a CRISPR-Cas9 gene editing vector for bacteria and application thereof.
Background
Bacteria, as a class of multifunctional living systems, have important applications in many areas of synthetic biology. In bacteria, the genetic information carried on a single copy of the genome determines the characteristics of a strain. In order to better study the characteristics of bacteria and to utilize bacteria to explore the world and serve humans, researchers often need to reprogram the genetic information of bacteria through genomic engineering. By DNA editing, researchers can add specific exogenous genetic information to the genome of a bacterium or delete specific genetic information from the genome of a bacterium. The long fragment editing technology can greatly accelerate the genome engineering of bacteria and obtain strains with stable genetic information. For example, long fragment deletion techniques can be used to streamline the bacterial genome, facilitating the study of the minimal genome of a particular strain; the long fragment insertion technology can be used for expanding the genetic information of bacteria and provides an important tool for the research of storing human information by utilizing the bacteria. In the field of metabolic engineering, the maintenance of plasmid DNA is not independent of the use of antibiotics, which not only raises biosafety issues, but also leads to increased industrial costs. These problems are well solved by the use of long fragment editing techniques to construct plasmid DNA independent high producing strains.
To accelerate the progress of bacterial genome engineering, researchers have developed many gene editing methods for DNA insertion and deletion in bacteria. Recombineering is a classical bacterial gene editing method that is very convenient in the insertion and deletion of short sequences, but is significantly less efficient when editing long fragments. This is because the transformation efficiency of linear DNA templates decreases dramatically with increasing length; on the other hand, because the recombination process relies on the formation of replication forks, the linear DNA template will anneal to the replication forks before recombination can occur, and the range of the replication forks is limited.
Introduction of double-strand breaks into target DNA is an effective strategy to improve gene editing efficiency, because double-strand breaks can maximally activate DNA repair pathways and promote homologous recombination. The enzyme tools for cutting double-stranded DNA are mainly homing endonucleases represented by I-SceI and Cas nucleases represented by Cas 9. When the I-SceI is used for cutting double-stranded DNA, an 18bp recognition site needs to be introduced on a genome firstly, and when the Cas9 is used, the operation is not needed. The Cas9 nuclease can specifically cut the target DNA under the guidance of a single-stranded guide RNA, generating a double-strand break. Meanwhile, a double-strand break introduced by the Cas9 nuclease can kill wild cells which are not subjected to homologous recombination, so that the Cas9 nuclease can be used as a screening tool, and the use of a screening marker gene or a counter-screening system is avoided. In addition, the sequence specificity of reprogramming Cas9 nuclease is simple, only the spacer sequence of single stranded guide RNA needs to be changed.
At present, a plurality of gene editing methods based on the CRISPR-Cas9 technology are reported, the methods are convenient to use and save time, but the problem of low efficiency of large fragment editing is still not fundamentally solved. In many methods, the CRISPR-Cas9 system is only used as a screening tool, and its advantages are not fully utilized. The CRISPR-Cas9 mediated non-homologous end connection method well utilizes the potential of the system, and is very suitable for genome large fragment deletion. However, this approach inevitably introduces random sequence deletions and insertions, and even genomic rearrangements. In addition, this method cannot be used for long segment insertion.
Among all CRISPR-Cas 9-mediated gene editing methods, the CRISPR-Cas 9-mediated recombineering method is more advantageous. The CRISPR-Cas 9-mediated recombination engineering method can utilize circular double-stranded DNA (plasmid DNA) as an editing template, and can also utilize linear DNA (double-stranded DNA obtained by PCR or chemically synthesized single-stranded DNA) as an editing template, and the two strategies have advantages respectively. The circular editing template can not only avoid being degraded by DNA exonuclease in cells, but also increase the copy number of the circular editing template along with the replication of plasmids, thereby greatly improving the recombination efficiency and the editing efficiency. However, during homologous recombination, the circular editing template is easily integrated into the genome, and these recombination events are difficult to distinguish from the recombination events we want by conventional PCR methods, thereby increasing the false positive rate. Linear editing of the template avoids the problem of plasmid integration into the genome and thus increases the positive rate. However, the linear editing template is easily degraded by DNA exonuclease in the cell, resulting in a decrease in homologous recombination efficiency and editing efficiency.
Therefore, how to solve the problem that high recombination efficiency and high positive rate cannot be achieved simultaneously is a technical problem to be solved in the technical field of bacterial gene editing at present.
Disclosure of Invention
In order to solve the problems in the prior art, the invention provides a CRISPR-Cas9 gene editing vector for bacteria and application thereof.
The concept principle of the invention is as follows: integrating a linear editing template on a CRISPR-Cas9 gene editing vector, wherein a target sequence of a single-stranded guide RNA (sgRNA) is added at one end or two ends of the editing template; before induction of Cas9 protein and sgRNA expression, the editing template replicates as the gene editing vector replicates; after induction, the Cas9-sgRNA complex cleaves a target sequence on a host genome to generate a DNA double strand break, and meanwhile, the Cas9-sgRNA complex cleaves the target sequences at two ends of an editing template to release a linear editing template; and then, under the action of a recombinase, homologous recombination occurs between the linear editing template and the broken genome, so that genome editing is realized.
It should be noted that, this strategy integrates the advantages of the circular editing template and the linear editing template, and at the same time, it avoids the disadvantages of the circular editing template and the linear editing template. The linear editing template is integrated on the gene editing carrier to be changed into a circular editing template, so that the editing template can be copied along with the copying of the gene editing carrier, and the editing template can be prevented from being degraded by exonuclease of a host. Because the target sequences of the sgrnas are added at one end or both ends of the editing template, the circular editing template is cut by Cas9 to become a linear editing template during gene editing, and the linear editing template and the broken genome undergo homologous recombination, thereby avoiding the occurrence of an event that plasmid DNA is integrated into the genome.
Specifically, the technical scheme adopted by the invention is as follows:
a CRISPR-Cas9 gene editing vector for bacteria, comprising plasmid 1 and plasmid 2;
the plasmid 1 comprises a replication initiation site, a screening marker gene, a Cas9 protein expression element, a recombinant protein expression element and a counter-screening marker gene;
the plasmid 2 comprises a replication initiation site, a selection marker gene, a sgRNA expression element and a homologous recombination element.
Preferably, the replication initiation site of the plasmid 1 is a medium copy replication initiation site, and the replication initiation site of the plasmid 2 is a temperature-sensitive replication initiation site.
The copy replication starting site selected in the plasmid 1 not only can ensure that the expression quantity of the Cas9 is most suitable, but also is convenient for eliminating the plasmid 1 after gene editing. The temperature sensitive replication initiation site is selected for the plasmid 2, so that the plasmid 2 is eliminated after gene editing.
Specifically, in this example, the replication start site of the plasmid 1 is the replication start site of p15A, and the replication start site of the plasmid 2 is the replication start site of pSC 101.
Preferably, the selection marker genes of the plasmid 1 and the plasmid 2 are different antibiotic resistance genes;
specifically, the selectable marker gene of the plasmid 1 and the plasmid 2 may be any one of ampicillin resistance gene, chloramphenicol resistance gene, kanamycin resistance gene, tetracycline resistance gene, spectinomycin resistance gene, and apramycin resistance gene, and the selectable marker gene of the plasmid 1 and the plasmid 2 is different antibiotic resistance genes.
In this example, the selectable marker gene of plasmid 1 is a kanamycin resistance gene, and the selectable marker gene of plasmid 2 is an ampicillin resistance gene.
Preferably, the Cas9 protein expression element consists of a highly stringent inducible promoter, a Cas9 encoding gene, a terminator and a regulatory protein gene; the inducible promoter with strong stringency is PBADPromoter, rhaPBADOne of a promoter and a tetA promoter.
Specifically, in this embodiment, the inducible promoter with high stringency is PBADA promoter.
Preferably, the recombinant protein expression element consists of an inducible promoter, a recombinant protein expression gene, a terminator and a regulatory protein; the inducible promoter may be a promoter with high stringency or a promoter with low stringency.
Specifically, in this embodiment, the inducible promoter in the recombinant protein expression element is the T5 promoter.
Preferably, the sgRNA expression element consists of a highly stringent inducible promoter, a sgRNA coding sequence, and a terminator; the sgRNA expression element comprises the same inducible promoter as the Cas9 protein expression element.
Preferably, the sgRNA recognizes a target DNA of a recipient bacterium, and the target DNA of the recipient bacterium contains 5' - (N)X-NGG-3' structure, (N)XDenotes X N, N is A, G, C or T, X is a natural number greater than or equal to 12.
Preferably, the homologous recombination element consists of two sequences homologous to the genome or two sequences homologous to the genome and an insertion sequence located between the two homologous sequences, and one or both ends of the homologous recombination element contain 5' - (N) which can be recognized by the sgRNAX-NGG-3' structure.
Specifically, in this embodiment, the nucleotide sequence of the plasmid 1 is SEQ ID No. 1; the nucleotide sequence of the plasmid 2 is SEQ ID NO.2 or SEQ ID NO.10 or SEQ ID NO. 21.
The invention provides a gene editing kit for bacteria, which comprises the CRISPR-Cas9 gene editing vector for bacteria.
The invention provides application of a CRISPR-Cas9 gene editing vector for bacteria, which is characterized in that the CRISPR-Cas9 gene editing vector for bacteria is used for gene editing in bacteria.
The invention provides a CRISPR-Cas 9-based gene editing method, which comprises the following brief steps: transferring the plasmid 1 and the plasmid 2 into a bacterial strain to be subjected to gene editing, then selecting a transformant for inoculation and culture, then sequentially inducing a recombinase system and a CRISPR-Cas9 system to express, finally coating the culture on a flat plate and selecting a single colony to verify an editing result.
The invention has the beneficial effects that:
1. the editing efficiency is high: the invention can realize gene editing of any type in bacteria, and can simultaneously edit two genome targets;
2. the positive rate is high: the positive rate of the gene editing can be close to 100 percent by applying the invention;
3. and (4) traceless editing: by applying the invention, accurate sequence editing can be realized, and no irrelevant sequence is left;
4. the period is short: by applying the invention, quick iterative editing can be realized, and each round of editing can be finished in 3 days.
Drawings
FIG. 1 is a schematic diagram of the working principle of the present invention in Escherichia coli;
FIG. 2 is a map of plasmid 1 used for E.coli gene editing;
FIG. 3 is a map of plasmid 2 for E.coli sequence insertion;
FIG. 4 is a map of plasmid 2 for E.coli sequence deletion;
FIG. 5 is a map of plasmid 2 for E.coli sequence replacement;
FIG. 6 shows the results of PCR verification in the E.coli sequence insertion experiment;
FIG. 7 shows the results of PCR verification in E.coli sequence deletion experiments.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
Unless otherwise specified, the reagents, consumables and apparatus used in the present invention are conventional in the art. Unless otherwise specified, reagents and consumables used in the following examples are commercially available.
The primer synthesis and sequencing services used in the invention are provided by Suzhou Jinzhi Biotechnology GmbH.
Unless otherwise indicated, all techniques used in the present invention that relate to the disciplines of chemistry, microbiology, and the like are conventional in the art.
Example 1: a3 kb foreign sequence was inserted into the lacZ gene of E.coli MG1655 strain.
The plasmid 1 used in this example is shown in FIG. 2 (SEQ ID NO.1) and the plasmid 2 used is shown in FIG. 3 (SEQ ID NO. 2).
Plasmid 1 includes a middle copy replication initiation site p15A, a kanamycin resistance gene, a Cas9 protein expression element, a recombinant protein expression element, and a sucrose-sensitive sacB gene. Cas9 protein expression element L-arabinose-induced and glucose-inhibited PBADThe promoter, the gene encoding SpCas9, the rrnB T1 terminator and the regulatory protein gene araC. The recombinant protein expression element consists of IPTG induced T5 promoter, recombinant protein expression gene (gam, beta, exo), lambda tL3 terminator and regulatory protein gene lacI.
The plasmid 2 comprises a low-copy temperature-sensitive replication initiation site pSC101, an ampicillin resistance gene, a group of sgRNA expression elements and a homologous recombination element. P induced by L-arabinose and glucose inhibited by sgRNA expression elementBADPromoter, sgRNA coding sequence (spacer, gRNA scaffold), and rrnB T1 terminator. The homologous recombination element consists of two sequences (HA1 and HA2) which are homologous with both sides of a target site on the lacZ gene and are about 500bp and an exogenous sequence to be inserted, wherein the exogenous sequence to be inserted is positioned between the two homologous sequences, and two ends of the homologous recombination element are respectively provided with a target site which is the same as the target site on the lacZ gene. The sequence of HA1 is shown in SEQ ID NO.3, the sequence of HA2 is shown in SEQ ID NO.4, the inserted exogenous sequence is shown in SEQ ID NO.5, the sequence of spacer is shown in SEQ ID NO.6, and the sequence of target site is shown in SEQ ID NO. 7.
Preparation work before gene editing:
(1) compounding antibiotics and inducer
a) Ampicillin (1000X): 100g/L
b) Kanamycin (1000 ×): 50g/L
c)IPTG(100X):100mM
d) L-arabinose (50X): 1M
e) Glucose (50X): 500g/L
f) Sucrose (50X): 500g/L
(2) Preparation of culture Medium
a) LB culture medium: 10g/L peptone, 5g/L yeast extract, 10g/L sodium chloride
b) SOC culture medium: 20g/L peptone, 5g/L yeast extract, 0.5g/L sodium chloride, 2.5mM potassium chloride, 10mM magnesium sulfate, 20mM glucose
(3) Preparation of the plate
a) Plate a: final kanamycin concentration 1X
b) Plate B: ampicillin 1X final concentration, kanamycin 1X final concentration, glucose 1X
c) Plate C: ampicillin final concentration 1X, kanamycin final concentration 1X, L-arabinose 0.25X
d) Plate D: final concentration of sucrose of 1X
Gene editing process:
(1) transformation editing plasmid
a) Preparing a strain of Escherichia coli MG1655 into chemically competent cells;
b) plasmid 1 was transferred into MG1655 competent cells and plated on plate A;
c) MG 1655/plasmid 1 was prepared as chemically competent cells;
d) plasmid 2 was transferred into MG 1655/plasmid 1 competent cells and plated on plate B.
(2) Editing of official genes
a) Picking single colony from the plate B, inoculating the single colony into 2ml LB culture medium, and culturing for 2 hours at 30 ℃;
b) mu.l ampicillin, 2. mu.l kanamycin and 20. mu.l IPTG were added to the culture, and the culture was continued at 30 ℃ for 1 hour;
c) adding 40 mu l L-arabinose into the culture, and continuing to culture for 3 hours at 30 ℃;
e) 0.1. mu.l and 1. mu.l of the culture were diluted into 100. mu.l of sterile water, respectively, and all coated on plate C;
f) single colonies were picked from plate C for PCR validation. The verification primer is F1/R1, and the sequences are respectively shown as SEQ ID NO.8 and SEQ ID NO. 9.
The PCR verification result is shown in FIG. 6, the band of the negative control group is 1226bp, and the band of the positive result is 4237 bp.
(3) Erasure editing plasmid
a) If the next round of editing is to be performed, only plasmid 2 needs to be eliminated. The method comprises the following steps: the positive clone is inoculated to 2ml LB culture medium, 2 mul kanamycin is added, the culture is carried out for 12 hours at 40 ℃, then 1 mul bacterial liquid is taken to streak on a plate A, and the single colony obtained on the plate is the colony with the plasmid 2 eliminated.
b) If no further rounds of editing are required, plasmid 1 and plasmid 2 can be eliminated simultaneously. The method comprises the following steps: and inoculating the positive clone into 2ml LB culture medium, culturing at 40 ℃ for 12 hours, then taking 1 mu l of bacterial liquid to streak on a plate D, wherein a single colony obtained on the plate is a colony with the plasmid 1 and the plasmid 2 eliminated.
Example 2: a100 kb sequence (1,449,596-plus 1,549,490) was deleted from the genome of the E.coli MG1655 strain.
The plasmid 1 used in this example is shown in FIG. 2 (SEQ ID NO.1) and the plasmid 2 used is shown in FIG. 4 (SEQ ID NO. 10).
Plasmid 1 is as in example 1.
Plasmid 2 comprises a low-copy temperature-sensitive replication initiation site pSC101, an ampicillin resistance gene, two groups of sgRNA expression elements and a homologous recombination element. P induced by L-arabinose and glucose inhibited by sgRNA expression elementBADPromoter, sgRNA coding sequence (spacer1 or spacer2, gRNA scaffold), and rrnB T1 terminator. The two sgrnas target two target sites at both ends of the 100kb sequence, respectively. The homologous recombination element consists of two sequences (HA1 and HA2) which are homologous with sequences of about 500bp on both sides of a 100kb sequence, and both ends of the homologous recombination element are respectively provided with a target site which is the same as the target sites on both sides of the 100kb sequence. HA1 is shown in SEQ ID NO.11, HA2 is shown in SEQ ID NO.12, spacer1 is shown in SEQ ID NO.13, spacer2 is shown in SEQ ID NO.14, and target site 1 is shown in SEQ ID NO.1415, the sequence of the target site 2 is shown as SEQ ID NO. 16.
The preparation and gene editing procedures before gene editing were the same as in example 1.
The verification primers are F2/R2 and F3/R3, and the sequences are respectively shown as SEQ ID NO.17, SEQ ID NO.18, SEQ ID NO.19 and SEQ ID NO. 20. Primers F2/R2 flank the two homologous sequences, respectively, and primers F3/R3 flank the 100kb sequence.
The PCR verification result is shown in FIG. 7, the negative control group F2/R2 has no band in amplification, the F3/R3 has an amplification band of 469bp, the positive result F2/R2 has an amplification band of 1181bp, and the F3/R3 has no band in amplification.
Example 3: a100 kb sequence (1,449,596-plus 1,549,490) was deleted from the genome of the E.coli MG1655 strain, and a 7925bp sequence was inserted.
The plasmid 1 used in this example is shown in FIG. 2 (SEQ ID NO.1) and the plasmid 2 used is shown in FIG. 5 (SEQ ID NO. 21).
Plasmid 1 is as in example 1.
Plasmid 2 comprises a low-copy temperature-sensitive replication initiation site pSC101, an ampicillin resistance gene, two groups of sgRNA expression elements and a homologous recombination element. P induced by L-arabinose and glucose inhibited by sgRNA expression elementBADPromoter, sgRNA coding sequence (spacer1 or spacer2, gRNA scaffold), and rrnB T1 terminator. The two sgrnas target two target sites at both ends of the 100kb sequence, respectively. The homologous recombination element consists of two sequences (HA1 and HA2) which are homologous with 100kb sequences at both sides and have the length of about 500bp and an insertion sequence with the length of 7925bp, wherein the insertion sequence is positioned between the two homologous sequences and contains an isobutanol biosynthetic pathway, and the component elements comprise a T7 promoter, an alsS gene, an ilvC gene, an ilvD gene, a kivD gene, an adhA gene and a T7 terminator. The homologous recombination element has a target site at each end, which is identical to the target site on both sides of the 100kb sequence. HA1 is shown in SEQ ID NO.11, HA2 is shown in SEQ ID NO.12, spacer1 is shown in SEQ ID NO.13, spacer2 is shown in SEQ ID NO.14, target site 1 is shown in SEQ ID NO.15, target site 2 is shown in SEQ ID NO.16, and insertion sequence is shown in SEQ ID NO.22Shown in the figure.
The preparation and gene editing procedures before gene editing were the same as in example 1.
The verification primers are F1/R1, F2/R2 and F3/R3, and the sequences are respectively shown as SEQ ID NO.17, SEQ ID NO.23, SEQ ID NO.24, SEQ ID NO.18, SEQ ID NO.19 and SEQ ID NO. 20. Primers F1/R1 flank the two homologous sequences, respectively, and primers F2/R2 flank the 100kb sequence.
The PCR verification result is that the negative control group has no band in F1/R1 amplification, no band in F2/R2 amplification, 469bp in F3/R3 amplification band, 1410bp in positive result F1/R1 amplification band, 1422bp in F2/R2 amplification band and no band in F3/R3 amplification band.
Sequence listing
<110> Shandong Kinghui Biotech Co., Ltd
<120> CRISPR-Cas9 gene editing vector for bacteria and application thereof
<160> 24
<170> SIPOSequenceListing 1.0
<210> 1
<211> 12867
<212> DNA
<213> Artificial sequence (Manual sequence)
<400> 1
aacgaatgag tactgcactc gcaacgctgg ctgggaagct ggctgaacgt gtcggcatgg 60
attctgtcga cccacaggaa ctgatcacca ctcttcgcca gacggcattt aaaggtgatg 120
ccagcgatgc gcagttcatc gcattactga tcgttgccaa ccagtacggc cttaatccgt 180
ggacgaaaga aatttacgcc tttcctgata agcagaatgg catcgttccg gtggtgggcg 240
ttgatggctg gtcccgcatc atcaatgaaa accagcagtt tgatggcatg gactttgagc 300
aggacaatga atcctgtaca tgccggattt accgcaagga ccgtaatcat ccgatctgcg 360
ttaccgaatg gatggatgaa tgccgccgcg aaccattcaa aactcgcgaa ggcagagaaa 420
tcacggggcc gtggcagtcg catcccaaac ggatgttacg tcataaagcc atgattcagt 480
gtgcccgtct ggccttcgga tttgctggta tctatgacaa ggatgaagcc gagcgcattg 540
tcgaaaatac tgcatacact gcagaacgtc agccggaacg cgacatcact ccggttaacg 600
atgaaaccat gcaggagatt aacactctgc tgatcgccct ggataaaaca tgggatgacg 660
acttattgcc gctctgttcc cagatatttc gccgcgacat tcgtgcatcg tcagaactga 720
cacaggccga agcagtaaaa gctcttggat tcctgaaaca gaaagccgca gagcagaagg 780
tggcagcatg acaccggaca ttatcctgca gcgtaccggg atcgatgtga gagctgtcga 840
acagggggat gatgcgtggc acaaattacg gctcggcgtc atcaccgctt cagaagttca 900
caacgtgata gcaaaacccc gctccggaaa gaagtggcct gacatgaaaa tgtcctactt 960
ccacaccctg cttgctgagg tttgcaccgg tgtggctccg gaagttaacg ctaaagcact 1020
ggcctgggga aaacagtacg agaacgacgc cagaaccctg tttgaattca cttccggcgt 1080
gaatgttact gaatccccga tcatctatcg cgacgaaagt atgcgtaccg cctgctctcc 1140
cgatggttta tgcagtgacg gcaacggcct tgaactgaaa tgcccgttta cctcccggga 1200
tttcatgaag ttccggctcg gtggtttcga ggccataaag tcagcttaca tggcccaggt 1260
gcagtacagc atgtgggtga cgcgaaaaaa tgcctggtac tttgccaact atgacccgcg 1320
tatgaagcgt gaaggcctgc attatgtcgt gattgagcgg gatgaaaagt acatggcgag 1380
ttttgacgag atcgtgccgg agttcatcga aaaaatggac gaggcactgg ctgaaattgg 1440
ttttgtattt ggggagcaat ggcgatgacg catcctcacg ataatatccg ggtaggcgca 1500
atcactttcg tctactccgt tacaaagcga ggctgggtat ttcccggcct ttctgttatc 1560
cgaaatccac tgaaagcaca gcggctggct gaggagataa ataataaacg aggggctgta 1620
tgcacaaagc atcttctgtt gagttaagaa cgagtatcga gatggcacat agccttgctc 1680
aaattggaat caggtttgtg ccaataccag tagaaacaga cgaagaatcc atgggtatgg 1740
acagcgcgga acccctattt gtttattttt ctaaatacat tcaaatatgt atccgctcat 1800
gagacaataa ccctgataaa tgcttcaata atattgaaaa aggaagagta tgattgaaca 1860
agatggattg cacgcaggtt ctccggccgc ttgggtggag aggctattcg gctatgactg 1920
ggcacaacag acaatcggct gctctgatgc cgccgtgttc cggctgtcag cgcaggggcg 1980
cccggttctt tttgtcaaga ccgacctgtc cggtgccctg aatgaactgc aggacgaggc 2040
agcgcggcta tcgtggctgg ccacgacggg cgttccttgc gcagctgtgc tcgacgttgt 2100
cactgaagcg ggaagggact ggctgctatt gggcgaagtg ccggggcagg atctcctgtc 2160
atctcacctt gctcctgccg agaaagtatc catcatggct gatgcaatgc ggcggctgca 2220
tacgcttgat ccggctacct gcccattcga ccaccaagcg aaacatcgca tcgagcgagc 2280
acgtactcgg atggaagccg gtcttgtcga tcaggatgat ctggacgaag agcatcaggg 2340
gctcgcgcca gccgaactgt tcgccaggct caaggcgcgc atgcccgacg gcgaggatct 2400
cgtcgtgacc catggcgatg cctgcttgcc gaatatcatg gtggaaaatg gccgcttttc 2460
tggattcatc gactgtggcc ggctgggtgt ggcggaccgc tatcaggaca tagcgttggc 2520
tacccgtgat attgctgaag agcttggcgg cgaatgggct gaccgcttcc tcgtgcttta 2580
cggtatcgcc gctcccgatt cgcagcgcat cgccttctat cgccttcttg acgagttctt 2640
ctgaaaggag gttataaaaa atgaaaccag taacgttata cgatgtcgca gagtatgccg 2700
gtgtctctta tcagaccgtt tcccgcgtgg tgaaccaggc cagccacgtt tctgcgaaaa 2760
cgcgggaaaa agtggaagcg gcgatggcgg agctgaatta cattcccaac cgcgtggcac 2820
aacaactggc gggcaaacag tcgttgctga ttggcgttgc cacctccagt ctggccctgc 2880
acgcgccgtc gcaaattgtc gcggcgatta aatctcgcgc cgatcaactg ggtgccagcg 2940
tggtggtgtc gatggtagaa cgaagcggcg tcgaagcctg taaagcggcg gtgcacaatc 3000
ttctcgcgca acgcgtcagt gggctgatca ttaactatcc gctggatgac caggatgcca 3060
ttgctgtgga agctgcctgc actaatgttc cggcgttatt tcttgatgtc tctgaccaga 3120
cacccatcaa cagtattatt ttctcccatg aagacggtac gcgactgggc gtggagcatc 3180
tggtcgcatt gggtcaccag caaatcgcgc tgttagcggg cccattaagt tctgtctcgg 3240
cgcgtctgcg tctggctggc tggcataaat atctcactcg caatcaaatt cagccgatag 3300
cggaacggga aggcgactgg agtgccatgt ccggttttca acaaaccatg caaatgctga 3360
atgagggcat cgttcccact gcgatgctgg ttgccaacga tcagatggcg ctgggcgcaa 3420
tgcgcgccat taccgagtcc gggctgcgcg ttggtgcgga tatctcggta gtgggatacg 3480
acgataccga agacagctca tgttatatcc cgccgttaac caccatcaaa caggattttc 3540
gcctgctggg gcaaaccagc gtggaccgct tgctgcaact ctctcagggc caggcggtga 3600
agggcaatca gctgttgccc gtctcactgg tgaaaagaaa aaccaccctg gcgcccaata 3660
cgcaaaccgc ctctccccgc gcgttggccg attcattaat gcagctggca cgacaggttt 3720
cccgactgga aagcgggcag tgataactgt cagaccaagt ttacgagctc acatatacct 3780
gccgttcact attatttagt gaaatgagat attatgatat tttctgaatt gtgattaaaa 3840
aggcaacttt atgcccatgc aacagaaact ataaaaaata cagagaatga aaagaaacag 3900
atagattttt tagttcttta ggcccgtagt ctgcaaatcc ttttatgatt ttctatcaaa 3960
caaaagagga aaatagacca gttgcaatcc aaacgagagt ctaatagaat gaggtcgaaa 4020
agtaaatcgc gcgggtttgt tactgataaa gcaggcaaga cctaaaatgt gtaaagggca 4080
aagtgtatac tttggcgtca ccccttacat attttaggtc tttttttatt gtgcgtaact 4140
aacttgccat cttcaaacag gagggctgga agaagcagac cgctaacaca gtacataaaa 4200
aaggagacat gaacgatgaa catcaaaaag tttgcaaaac aagcaacagt attaaccttt 4260
actaccgcac tgctggcagg aggcgcaact caagcgtttg cgaaagaaac gaaccaaaag 4320
ccatataagg aaacatacgg catttcccat attacacgcc atgatatgct gcaaatccct 4380
gaacagcaaa aaaatgaaaa atatcaagtt cctgaattcg attcgtccac aattaaaaat 4440
atctcttctg caaaaggcct ggacgtttgg gacagctggc cattacaaaa cgctgacggc 4500
actgtcgcaa actatcacgg ctaccacatc gtctttgcat tagccggaga tcctaaaaat 4560
gcggatgaca catcgattta catgttctat caaaaagtcg gcgaaacttc tattgacagc 4620
tggaaaaacg ctggccgcgt ctttaaagac agcgacaaat tcgatgcaaa tgattctatc 4680
ctaaaagacc aaacacaaga atggtcaggt tcagccacat ttacatctga cggaaaaatc 4740
cgtttattct acactgattt ctccggtaaa cattacggca aacaaacact gacaactgca 4800
caagttaacg tatcagcatc agacagctct ttgaacatca acggtgtaga ggattataaa 4860
tcaatctttg acggtgacgg aaaaacgtat caaaatgtac agcagttcat cgatgaaggc 4920
aactacagct caggcgacaa ccatacgctg agagatcctc actacgtaga agataaaggc 4980
cacaaatact tagtatttga agcaaacact ggaactgaag atggctacca aggcgaagaa 5040
tctttattta acaaagcata ctatggcaaa agcacatcat tcttccgtca agaaagtcaa 5100
aaacttctgc aaagcgataa aaaacgcacg gctgagttag caaacggcgc tctcggtatg 5160
attgagctaa acgatgatta cacactgaaa aaagtgatga aaccgctgat tgcatctaac 5220
acagtaacag atgaaattga acgcgcgaac gtctttaaaa tgaacggcaa atggtacctg 5280
ttcactgact cccgcggatc aaaaatgacg attgacggca ttacgtctaa cgatatttac 5340
atgcttggtt atgtttctaa ttctttaact ggcccataca agccgctgaa caaaactggc 5400
cttgtgttaa aaatggatct tgatcctaac gatgtaacct ttacttactc acacttcgct 5460
gtacctcaag cgaaaggaaa caatgtcgtg attacaagct atatgacaaa cagaggattc 5520
tacgcagaca aacaatcaac gtttgcgcca agcttcctgc tgaacatcaa aggcaagaaa 5580
acatctgttg tcaaagacag catccttgaa caaggacaat taacagttaa caaataaaaa 5640
cgcaaaagaa aatgccgata ttgactaccg gaagcagtgc ttcagtcacc tcctagctga 5700
ctcaaatcaa tgcgtgtttc ataaagacca gtgatggatt gatggataag agtggcatct 5760
aaaacttctt ttgtagacgt atatcgttta cgatcaattg ttgtatcaaa atatttaaaa 5820
gcagcgggag ctccaagatt cgtcaacgta aataaatgaa taatattttc tgcttgttca 5880
cgtattggtt tgtctctatg tttgttatat gcactaagaa ctttatctaa attggcatct 5940
gctaaaataa cacgcttaga aaattcactg atttgctcaa taatctcatc taaataatgc 6000
ttatgctgct ccacaaacaa ttgtttttgt tcgttatctt ctggactacc cttcaacttt 6060
tcataatgac tagctaaata taaaaaattc acatatttgc ttggcagagc cagctcattt 6120
cctttttgta attctccggc actagccagc atccgtttac gaccgttttc taactcaaaa 6180
agactatatt taggtagttt aatgattaag tcttttttaa cttccttata tcctttagct 6240
tctaaaaagt caatcggatt tttttcaaag gaacttcttt ccataattgt gatccctagt 6300
aactctttaa cggattttaa cttcttcgat ttcccttttt ccaccttagc aaccactagg 6360
actgaataag ctaccgttgg actatcaaaa ccaccatatt tttttggatc ccagtctttt 6420
ttacgagcaa taagcttgtc cgaatttctt tttggtaaaa ttgactcctt ggagaatccg 6480
cctgtctgta cttctgtttt cttgacaata ttgacttggg gcatggacaa tactttgcgc 6540
actgtggcaa aatctcgccc tttatcccag acaatttctc cagtttcccc attagtttcg 6600
attagagggc gtttgcgaat ctctccattt gcaagtgtaa tttctgtttt gaagaagttc 6660
atgatattag agtaaaagaa atattttgcg gttgctttgc ctatttcttg ctcagactta 6720
gcaatcattt tacgaacatc ataaacttta taatcaccat agacaaactc cgattcaagt 6780
tttggatatt tcttaatcaa agcagttcca acgacggcat ttagatacgc atcatgggca 6840
tgatggtaat tgttaatctc acgtacttta tagaattgga aatcttttcg gaagtcagaa 6900
actaatttag attttaaggt aatcacttta acctctcgaa taagtttatc attttcatcg 6960
tatttagtat tcatgcgact atccaaaatt tgtgccacat gcttagtgat ttggcgagtt 7020
tcaaccaatt ggcgtttgat aaaaccagct ttatcaagtt cactcaaacc tccacgttca 7080
gctttcgtta aattatcaaa cttacgttga gtgattaact tggcgtttag aagttgtctc 7140
caatagtttt tcatcttttt gactacttct tcacttggaa cgttatccga tttaccacga 7200
tttttatcag aacgcgttaa gaccttattg tctattgaat cgtctttaag gaaactttgt 7260
ggaacaatgt gatcgacatc ataatcactt aaacgattaa tatctaattc ttggtccaca 7320
tacatgtctc ttccattttg gagataatag agatagagct tttcattttg caattgagta 7380
ttttcaacag gatgctcttt aagaatctga cttcctaatt ctttgatacc ttcttcgatt 7440
cgtttcatac gctctcgcga atttttctgg cccttttgag ttgtctgatt ttcacgtgcc 7500
atttcaataa cgatattttc tggcttatgc cgccccatta ctttgaccaa ttcatcaaca 7560
acttttacag tctgtaaaat acctttttta atagcagggc taccagctaa atttgcaata 7620
tgttcatgta aactatcgcc ttgtccagac acttgtgctt tttgaatgtc ttctttaaat 7680
gtcaaactat catcatggat cagctgcata aaattgcgat tggcaaaacc atctgatttc 7740
aaaaaatcta atattgtttt gccagattgc ttatccctaa taccattaat caattttcga 7800
gacaaacgtc cccaaccagt ataacggcga cgtttaagct gtttcatcac cttatcatca 7860
aagaggtgag catatgtttt aagtctttcc tcaatcatct ccctatcttc aaataaggtc 7920
aatgttaaaa caatatcctc taagatatct tcattttctt cattatccaa aaaatcttta 7980
tctttaataa tttttagcaa atcatggtag gtacctaatg aagcattaaa tctatcttca 8040
actcctgaaa tttcaacact atcaaaacat tctatttttt tgaaataatc ttcttttaat 8100
tgcttaacgg ttacttttcg atttgttttg aagagtaaat caacaatggc tttcttctgt 8160
tcacctgaaa gaaatgctgg ttttcgcatt ccttcagtaa catatttgac ctttgtcaat 8220
tcgttataaa ccgtaaaata ctcataaagc aaactatgtt ttggtagtac tttttcattt 8280
ggaagatttt tatcaaagtt tgtcatgcgt tcaataaatg attgagctga agcaccttta 8340
tcgacaactt cttcaaaatt ccatggggta attgtttctt cagacttccg agtcatccat 8400
gcaaaacgac tattgccacg cgccaatgga ccaacataat aaggaattcg aaaagtcaag 8460
attttttcaa tcttctcacg attgtctttt aaaaatggat aaaagtcttc ttgtcttctc 8520
aaaatagcat gcagctcacc caagtgaatt tgatggggaa tagagccgtt gtcaaaggtc 8580
cgttgcttgc gcagcaaatc ttcacgattt agtttcacca ataattcctc agtaccatcc 8640
attttttcta aaattggttt gataaattta taaaattctt cttggctagc tcccccatca 8700
atataacctg catatccgtt ttttgattga tcaaaaaaga tttctttata cttttctgga 8760
agttgttgtc gaactaaagc ttttaaaaga gtcaagtctt gatgatgttc atcgtagcgt 8820
ttaatcattg aagctgatag gggagcctta gttatttcag tatttactct taggatatct 8880
gaaagtaaaa tagcatctga taaattctta gctgccaaaa acaaatcagc atattgatct 8940
ccaatttgcg ccaataaatt atctaaatca tcatcgtaag tatcttttga aagctgtaat 9000
ttagcatctt ctgccaaatc aaaatttgat ttaaaattag gggtcaaacc caatgacaaa 9060
gcaatgagat tcccaaataa gccatttttc ttctcaccgg ggagctgagc aatgagattt 9120
tctaatcgtc ttgatttact caatcgtgca gaaagaatcg ctttagcatc tactccactt 9180
gcgttaatag ggttttcttc aaataattga ttgtaggttt gtaccaactg gataaatagt 9240
ttgtccacat cactattatc aggatttaaa tctccctcaa tcaaaaaatg accacgaaac 9300
ttaatcatat gcgctaaggc caaatagatt aagcgcaaat ccgctttatc agtagaatct 9360
accaattttt ttcgcagatg atagatagtt ggatatttct catgataagc aacttcatct 9420
actatatttc caaaaatagg atgacgttca tgcttcttgt cttcttccac caaaaaagac 9480
tcttcaagtc gatgaaagaa actatcatct actttcgcca tctcatttga aaaaatctcc 9540
tgtagataac aaatacgatt cttccgacgt gtataccttc tacgagctgt ccgtttgaga 9600
cgagtcgctt ccgctgtctc tccactgtca aataaaagag cccctataag attttttttg 9660
atactgtggc ggtctgtatt tcccagaacc ttgaactttt tagacggaac cttatattca 9720
tcagtgatca ccgcccatcc gacgctattt gtgccgatat ctaagcctat tgagtatttc 9780
ttatccattt tttataacct ccttagagct cgaattccca aaaaaacggg tatggagaaa 9840
cagtagagag ttgcgataaa aagcgtcagg taggatccgc taatcttatg gataaaaatg 9900
ctatggcata gcaaagtgtg acgccgtgca aataatcaat gtggactttt ctgccgtgat 9960
tatagacact tttgttacgc gtttttgtca tggctttggt cccgctttgt tacagaatgc 10020
ttttaataag cggggttacc ggtttggtta gcgagaagag ccagtaaaag acgcagtgac 10080
ggcaatgtct gatgcaatat ggacaattgg tttcttctct gaatggcggg agtatgaaaa 10140
gtatggctga agcgcaaaat gatcccctgc tgccgggata ctcgtttaat gcccatctgg 10200
tggcgggttt aacgccgatt gaggccaacg gttatctcga tttttttatc gaccgaccgc 10260
tgggaatgaa aggttatatt ctcaatctca ccattcgcgg tcagggggtg gtgaaaaatc 10320
agggacgaga atttgtttgc cgaccgggtg atattttgct gttcccgcca ggagagattc 10380
atcactacgg tcgtcatccg gaggctcgcg aatggtatca ccagtgggtt tactttcgtc 10440
cgcgcgccta ctggcatgaa tggcttaact ggccgtcaat atttgccaat acggggttct 10500
ttcgcccgga tgaagcgcac cagccgcatt tcagcgacct gtttgggcaa atcattaacg 10560
ccgggcaagg ggaagggcgc tattcggagc tgctggcgat aaatctgctt gagcaattgt 10620
tactgcggcg catggaagcg attaacgagt cgctccatcc accgatggat aatcgggtac 10680
gcgaggcttg tcagtacatc agcgatcacc tggcagacag caattttgat atcgccagcg 10740
tcgcacagca tgtttgcttg tcgccgtcgc gtctgtcaca tcttttccgc cagcagttag 10800
ggattagcgt cttaagctgg cgcgaggacc aacgtatcag ccaggcgaag ctgcttttga 10860
gcaccacccg gatgcctatc gccaccgtcg gtcgcaatgt tggttttgac gatcaactct 10920
atttctcgcg ggtatttaaa aaatgcaccg gggccagccc gagcgagttc cgtgccggtt 10980
gtgaagaaaa agtgaatgat gtagccgtca agttgtcata ataaatcgat gcaggtggca 11040
cttttcgggg aaatgtggag gcatcaaata aaacgaaagg ctcagtcgaa agactgggcc 11100
tttcgtttta tctgttgttt gtcggtgaac gctctcctga gtaggacaaa tccgccgccc 11160
tagacctagg gcgttcggct gcggcgagcg gtatcagctc actcaaaggc ggtaatacgg 11220
ttatccacag aatcagggga taacgcagga aagagcatgt gagcaaaagg ccagcaaaag 11280
gccaggaacc gtggatatat tccgcttcct cgctcactga ctcgctacgc tcggtcgttc 11340
gactgcggcg agcggaaatg gcttacgaac ggggcggaga tttcctggaa gatgccagga 11400
agatacttaa cagggaagtg agagggccgc ggcaaagccg tttttccata ggctccgccc 11460
ccctgacaag catcacgaaa tctgacgctc aaatcagtgg tggcgaaacc cgacaggact 11520
ataaagatac caggcgtttc cccctggcgg ctccctcgtg cgctctcctg ttcctgcctt 11580
tcggtttacc ggtgtcattc cgctgttatg gccgcgtttg tctcattcca cgcctgacac 11640
tcagttccgg gtaggcagtt cgctccaagc tggactgtat gcacgaaccc cccgttcagt 11700
ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc caacccggaa agacatgcaa 11760
aagcaccact ggcagcagcc actggtaatt gatttagagg agttagtctt gaagtcatgc 11820
gccggttaag gctaaactga aaggacaagt tttggtgact gcgctcctcc aagccagtta 11880
cctcggttca aagagttggt agctcagaga accttcgaaa aaccgccctg caaggcggtt 11940
ttttcgtttt cagagcaaga gattacgcgc agaccaaaac gatctcaaga agatcatctt 12000
attaataagg atctcaagaa gatcctttga tcttttctac ggggtctgac gctcagtgga 12060
acgaaaactc acgttaaggg attttggtca tgactagtgc ttggattctc accaataaaa 12120
aacgcccggc ggcaaccgat ttcaagttga taacggacta gccttatttt aacttgctat 12180
gctgttttga atggttccaa caagattatt ttataacttt tataacaaat aatcaaggag 12240
aaattcaaag aaatttatca gccgtgtcgc ccttaattgt gagcggataa caattacgag 12300
cttcatgcac agtgaaatca tgaaaaattt atttgctttg tgagcggata acaattataa 12360
tatgtggaat tgtgagcgct cacaattcca caacggtttc cctctagaaa taattttgtt 12420
taacttttcg agaccttagg aggtaaacat atggatatta atactgaaac tgagatcaag 12480
caaaagcatt cactaacccc ctttcctgtt ttcctaatca gcccggcatt tcgcgggcga 12540
tattttcaca gctatttcag gagttcagcc atgaacgctt attacattca ggatcgtctt 12600
gaggctcaga gctgggcgcg tcactaccag cagctcgccc gtgaagagaa agaggcagaa 12660
ctggcagacg acatggaaaa aggcctgccc cagcacctgt ttgaatcgct atgcatcgat 12720
catttgcaac gccacggggc cagcaaaaaa tccattaccc gtgcgtttga tgacgatgtt 12780
gagtttcagg agcgcatggc agaacacatc cggtacatgg ttgaaaccat tgctcaccac 12840
caggttgata ttgattcaga ggtataa 12867
<210> 2
<211> 7998
<212> DNA
<213> Artificial sequence (Manual sequence)
<400> 2
tcagatcctt ccgtatttag ccagtatgtt ctctagtgtg gttcgttgtt tttgcgtgag 60
ccatgagaac gaaccattga gatcatactt actttgcatg tcactcaaaa attttgcctc 120
aaaactggtg agctgaattt ttgcagttaa agcatcgtgt agtgtttttc ttagtccgtt 180
acgtaggtag gaatctgatg taatggttgt tggtattttg tcaccattca tttttatctg 240
gttgttctca agttcggtta cgagatccat ttgtctatct agttcaactt ggaaaatcaa 300
cgtatcagtc gggcggcctc gcttatcaac caccaatttc atattgctgt aagtgtttaa 360
atctttactt attggtttca aaacccattg gttaagcctt ttaaactcat ggtagttatt 420
ttcaagcatt aacatgaact taaattcatc aaggctaatc tctatatttg ccttgtgagt 480
tttcttttgt gttagttctt ttaataacca ctcataaatc ctcatagagt atttgttttc 540
aaaagactta acatgttcca gattatattt tatgaatttt tttaactgga aaagataagg 600
caatatctct tcactaaaaa ctaattctaa tttttcgctt gagaacttgg catagtttgt 660
ccactggaaa atctcaaagc ctttaaccaa aggattcctg atttccacag ttctcgtcat 720
cagctctctg gttgctttag ctaatacacc ataagcattt tccctactga tgttcatcat 780
ctgagcgtat tggttataag tgaacgatac cgtccgttct ttccttgtag ggttttcaat 840
cgtggggttg agtagtgcca cacagcataa aattagcttg gtttcatgct ccgttaagtc 900
atagcgacta atcgctagtt catttgcttt gaaaacaact aattcagaca tacatctcaa 960
ttggtctagg tgattttaat cactatacca attgagatgg gctagtcaat gataattact 1020
agtccttttc ctttgagttg tgggtatctg taaattctgc tagacctttg ctggaaaact 1080
tgtaaattct gctagaccct ctgtaaattc cgctagacct ttgtgtgttt tttttgttta 1140
tattcaagtg gttataattt atagaataaa gaaagaataa aaaaagataa aaagaataga 1200
tcccagccct gtgtataact cactacttta gtcagttccg cagtattaca aaaggatgtc 1260
gcaaacgctg tttgctcctc tacaaaacag accttaaaac cctaaaggct taagtagcac 1320
cctcgcaagc tcggttgcgg ccgcaatcgg gcaaatcgct gaatattcct tttgtctccg 1380
accatcaggc acctgagtcg ctgtcttttt cgtgacattc agttcgctgc gctcacggct 1440
ctggcagtga atgggggtaa atggcactac aggcgccttt tatggattca tgcaaggaaa 1500
ctacccataa tacaagaaaa gcccgtcacg ggcttctcag ggcgttttat ggcgggtctg 1560
ctatgtggtg ctatctgact ttttgctgtt cagcagttcc tgccctctga ttttccagtc 1620
tgaccacttc ggattatccc gtgacaggtc attcagactg gctaatgcac ccagtaaggc 1680
agcggtatca tcaacggggt ctgacgctca gtggaacgaa aactcacgtt aagggatttt 1740
ggtcatgaga ttatcaaaaa ggatcttcac ctagatcctt ttaaattaaa aatgaagttt 1800
taaatcaatc taaagtatat atgagtaaac ttggtctgac agttaccaat gcttaatcag 1860
tgaggcacct atctcagcga tctgtctatt tcgttcatcc atagttgcct gactccccgt 1920
cgtgtagata actacgatac gggagggctt accatctggc cccagtgctg caatgatacc 1980
gcgagaccca cgctcaccgg ctccagattt atcagcaata aaccagccag ccggaagggc 2040
cgagcgcaga agtggtcctg caactttatc cgcctccatc cagtctatta attgttgccg 2100
ggaagctaga gtaagtagtt cgccagttaa tagtttgcgc aacgttgttg ccattgctac 2160
aggcatcgtg gtgtcacgct cgtcgtttgg tatggcttca ttcagctccg gttcccaacg 2220
atcaaggcga gttacatgat cccccatgtt gtgcaaaaaa gcggttagct ccttcggtcc 2280
tccgatcgtt gtcagaagta agttggccgc agtgttatca ctcatggtta tggcagcact 2340
gcataattct cttactgtca tgccatccgt aagatgcttt tctgtgactg gtgagtactc 2400
aaccaagtca ttctgagaat agtgtatgcg gcgaccgagt tgctcttgcc cggcgtcaat 2460
acgggataat accgcgccac atagcagaac tttaaaagtg ctcatcattg gaaaacgttc 2520
ttcggggcga aaactctcaa ggatcttacc gctgttgaga tccagttcga tgtaacccac 2580
tcgtgcaccc aactgatctt cagcatcttt tactttcacc agcgtttctg ggtgagcaaa 2640
aacaggaagg caaaatgccg caaaaaaggg aataagggcg acacggaaat gttgaatact 2700
catactcttc ctttttcaat attattgaag catttatcag ggttattgtc tcatgagcgg 2760
atacatattt gaatgtattt agaaaaataa acaaataggg gttccgcgca gtatccccgt 2820
ttacagggcg gagcgtcaca ctgaggtttt ccgccagacg ccactgctgc caggcgctga 2880
tgtgcccggc ttctgaccat gcggtcgcgt tcggttgcac tacgcgtact gtgagccaga 2940
gttgcccggc gctctccggc tgcggtagtt caggcagttc aatcaactgt ttaccttgtg 3000
gagcgacatc cagaggcact tcaccgcttg ccagcggctt accatccagc gccaccatcc 3060
agtgcaggag ctcgttatcg ctatgacgga acaggtattc gctggtcact tcgatggttt 3120
gcccggataa acggaactgg aaaaactgct gctggtgttt tgcttccgtc agcgctggat 3180
gcggcgtgcg gtcggcaaag accagaccgt tcatacagaa ctggcgatcg ttcggcgtat 3240
cgccaaaatc accgccgtaa gccgaccacg ggttgccgtt ttcatcatat ttaatcagcg 3300
actgatccac ccagtcccag acgaagccgc cctttacgct ccatctgagc ctcatgtaca 3360
cgaagcccca gttcaagaag cattgaagct gttgctgaaa aactgacatc tttttccctt 3420
gccccttcct gtcgacgctt ctcaataatc gcatttattt tttcataggc atcattgctg 3480
atatacaggt tcaccttagc cattagagat tacctttttt gaacataaaa taaagttaat 3540
ttcgaaacac taaaattcat aatgcaaaca gggacgcacc gctagcagcg cccctagcgg 3600
tatcctataa aaaaacacac cgcgccgcta gcagcacccc taatataaaa taatgttttt 3660
tataaaaata gtcagtacca cccctacaaa acggtgtcgg cgcgttgttg tagccgcgcc 3720
gacaccgctt ttttaaatat cataaagaga gtaagagaaa ctaatttttc ataacactct 3780
atttataaag aaaaatcagc aaaaacttgt ttttgcgtgg ggtgtggtgc ttttggtggt 3840
gagaaccacc aacctgttga gcctttttgt ggagtgggtt aaattattta cgaataaagt 3900
caccagaggt ggaaaaatga aaaaatggat gttagccatc tgcctgatgt ttataaatga 3960
gatctgccat gccactgatt gctttgatct tgcaggccgg gattacaaaa tagatcctga 4020
tttactgaga gcaatatcat ggaaagaatc ccgttaccgg gttaatgcca tcggtattaa 4080
tccggtaacg ggatatggca gcggactgat gcaggtagat tcccagcatt ttaacgaact 4140
ggcccgctat ggaattaagc cggaacatct gacaacagat ccctgcatga acatttatac 4200
cggtgcttat tatctggcaa tagcctttaa aaaatggggc gtctcctggg aggccgttgg 4260
tgcatacaat gctggattca ggaagaccga acgccagaac cagagacgtc ttgcctacgc 4320
atcagatgtt taccggattt ataccgggat aaaaagcagt aaaagtatcc ggattccggc 4380
cacgaagaaa tcacttccgg aaattaacag cgtgcagaac aattaatctt acaggcattg 4440
tcagataccg gttatgccgc aaaagcggca tggaaggcca cacacaaaaa tatcatatga 4500
gtgacaatac tgactggccg aagccccgcg aagcagtaac ccatcttata tatacccggt 4560
aactgcgcag cctcctgcca gaccattttt cgcgggcaca atatttacag acaaccgaaa 4620
agccagttga tgaaattgag gtatatcaga cgacacagcg atgccgaaga atgataatat 4680
aagtaaagcc ccgaaatttt ttcggggctt tacttatatt atcatgactt ccactttctg 4740
aactgttcgg caatcaccca caacgccttg ttgattctta tatcaccatc aatacctgta 4800
atggctcttg tcctggtatt tttcccggag gcacttcgcc ccgataatcc accttttatc 4860
atattctcct gaacccgctg ccaggttgtc cagagatcgt tctgtttatc ctcccaacga 4920
cggggagtaa ttatttgttc aggcgtcact ggcgttttat tttcatcttc atacctgacc 4980
atcagtgcag ctctgccaaa taaatgttgc tcgtcactgt taagatgaat ttctttcatc 5040
gcctccatat tatcagtgac cttatcaaag acaccgagca cttcatacgc gccctctata 5100
acctgcccga caatatcacc tttatgtgga acgcggattt cgccaaaatt atttccgcac 5160
accaggccat ttgtgcagac aaaacgaaaa attccgggga tcatctgata actggatgaa 5220
ccatcatgtg aattaagcag gataatttca ggaacttcct gcccgttaat atgcccttcc 5280
ctgcgaagac gtaacatatg tttactgtat tcgcgacgtc ccaaatcacg aacccgactc 5340
tgacaggcaa agaatggctg gaaaccttca tcacgtaact tattgatgat attgattgtt 5400
ggaatatacg tataacgttc actccgggac tcatgtttat caccggaaaa taccgaaggc 5460
acgaactgca ttaattcatc atccgttaaa ggacgttcac ggtggatgga attataccga 5520
ccaaaacggg aagctaatcg cataacagct actcctttat gaaagaataa atttaataaa 5580
aaatttttcc gcttaatatc atcccccctg gtcacaatta acaagattgc aacaatcagg 5640
agggatattc atcacatccg gtcagcagat cgcccggata tcgaggccgg cacgcttaat 5700
ctgacgcagg aactgtttga agtgatcggc ttccgcaatg ttgatatggc ggaactgcgt 5760
atccacaccc cggctgagcg cgtagctata gctgaaggcc atcttttccg ggtggctttt 5820
gcgatatttt ttcagctcag tcaggctgct gaattccagg acgtcccact cttccccggt 5880
gttttttttc ttcccggcaa caagaagcgt gtacgacgcg gtgttaacgt ggatatttcg 5940
ggtactcatc ctgctttctc ctctctctgg ttttcagccc ccatcatctt ttgagtttcg 6000
ggagccgcgg ttttgacgtt ttgcggggac ctgccttttg ttccctccgg tattcaccat 6060
cacctttttg agaaccttcg ccgcaagggg catcactgcc acggccggaa acgactgtcc 6120
gggggcagac cgcaaaactt tttgcctgct tttgggcaaa aagttttgcg ggatgtgcat 6180
ttcacccctg gactggcgga gacggttgtg gctgtctttg cccccggtga caggggctta 6240
aacaggtgaa tggcaccgga cacaacaacg ggcaggcacc cgccgcaacg acgtgaagcg 6300
cggtttgcga aacggcgttg ccccttacat cccggtggcc ttttgtaaac ggggatactg 6360
acgaaacgcc tgccagtatt tagcgaaacc gccaagactg ttacccatcg cgtgggcgta 6420
ttcgcaaagg atcagcgggc gcgtctctcc aggtagcgaa agccattttt tgatggacca 6480
tttcggcaca gccgggaagg gctggtcttc atccacgcgc gcgtacatcg ggcaaataat 6540
atcggtggcc gtggtgtcgg ctccgccgcc ttcatactgc accgggcggg aaggatcgac 6600
agatttgatc cagcgataca gcgcgtcgtg attagcgccg tggcctgatt cattccccag 6660
cgaccagatg atcacactcg ggtgattacg atcgcgctgc accattcgcg ttacgcgttc 6720
gctcatcgcc ggtagccagc gcggatcatc ggtcagacga ttcattggca ccatgccgtg 6780
ggtttcaata ttggcttcat ccaccacata caggccgtag cggtcgcaca gcgtgtacca 6840
cagcggatgg ttcggataat gcgaacagcg ccgccctgta aacggggata ctggcacaga 6900
tgcgtaagga gaaaataccg catcaggcgc cattcgccat tcaggctgcg caactgttgg 6960
gaagggcgat cggtgcgggc ctcttcgcta ttacgccagc tggcgaaagg gggatgtgct 7020
gcaaggcgat taagttgggt aacgccaggg ttttcccagt cacgacgttg taaaacgacg 7080
gccagtgcca agcttgcatg cctgcaggtc gactctagag gatccccggg taccgagctc 7140
gaattcgtaa tcatgtcata gctgtttcct gtgtgaaatt gttatccgct cacaattcca 7200
cacaacatac gagccggaag cataaagtgt aaagcctggg gtgcctaatg agtgagctaa 7260
ctcacattaa ttgcgttgcg ctcactgccc gctttccagt cgggaaacct gtcataggga 7320
taacagggta atacttttca tactcccgcc attcagagaa gaaaccaatt gtccatattg 7380
catcagacat tgccgtcact gcgtctttta ctggctcttc tcgctaacca aaccggtaac 7440
cccgcttatt aaaagcattc tgtaacaaag cgggaccaaa gccatgacaa aaacgcgtaa 7500
caaaagtgtc tataatcacg gcagaaaagt ccacattgat tatttgcacg gcgtcacact 7560
ttgctatgcc atagcatttt tatccataag attagcggat cctacctgac gctttttatc 7620
gcaactctct actgtttctc catcagtatc cccgtttaca ggggttttag agctagaaat 7680
agcaagttaa aataaggcta gtccgttatc aacttgaaaa agtggcaccg agtcggtgct 7740
tagcatccaa actcgagtaa ggatcattaa ggatcccatg gtacgcgtgc tagaggcatc 7800
aaataaaacg aaaggctcag tcgaaagact gggcctttcg ttttatctgt tgtttgtcgg 7860
tgaacgctct cctgagtagg acaaatccgc cccatgggta tggacagttt tccctttgat 7920
atgtaacggt gaacagttgt tctacttttg tttgttagtc ttgatgcttc actgatagat 7980
acaagagcca taagaacc 7998
<210> 3
<211> 501
<212> DNA
<213> Escherichia coli MG1655(Escherichia coli MG1655)
<400> 3
agcgtcacac tgaggttttc cgccagacgc cactgctgcc aggcgctgat gtgcccggct 60
tctgaccatg cggtcgcgtt cggttgcact acgcgtactg tgagccagag ttgcccggcg 120
ctctccggct gcggtagttc aggcagttca atcaactgtt taccttgtgg agcgacatcc 180
agaggcactt caccgcttgc cagcggctta ccatccagcg ccaccatcca gtgcaggagc 240
tcgttatcgc tatgacggaa caggtattcg ctggtcactt cgatggtttg cccggataaa 300
cggaactgga aaaactgctg ctggtgtttt gcttccgtca gcgctggatg cggcgtgcgg 360
tcggcaaaga ccagaccgtt catacagaac tggcgatcgt tcggcgtatc gccaaaatca 420
ccgccgtaag ccgaccacgg gttgccgttt tcatcatatt taatcagcga ctgatccacc 480
cagtcccaga cgaagccgcc c 501
<210> 4
<211> 527
<212> DNA
<213> Escherichia coli MG1655(Escherichia coli MG1655)
<400> 4
tgtaaacggg gatactgacg aaacgcctgc cagtatttag cgaaaccgcc aagactgtta 60
cccatcgcgt gggcgtattc gcaaaggatc agcgggcgcg tctctccagg tagcgaaagc 120
cattttttga tggaccattt cggcacagcc gggaagggct ggtcttcatc cacgcgcgcg 180
tacatcgggc aaataatatc ggtggccgtg gtgtcggctc cgccgccttc atactgcacc 240
gggcgggaag gatcgacaga tttgatccag cgatacagcg cgtcgtgatt agcgccgtgg 300
cctgattcat tccccagcga ccagatgatc acactcgggt gattacgatc gcgctgcacc 360
attcgcgtta cgcgttcgct catcgccggt agccagcgcg gatcatcggt cagacgattc 420
attggcacca tgccgtgggt ttcaatattg gcttcatcca ccacatacag gccgtagcgg 480
tcgcacagcg tgtaccacag cggatggttc ggataatgcg aacagcg 527
<210> 5
<211> 3011
<212> DNA
<213> Escherichia coli XL1-blue (Escherichia coli XL1-blue)
<400> 5
tttacgctcc atctgagcct catgtacacg aagccccagt tcaagaagca ttgaagctgt 60
tgctgaaaaa ctgacatctt tttcccttgc cccttcctgt cgacgcttct caataatcgc 120
atttattttt tcataggcat cattgctgat atacaggttc accttagcca ttagagatta 180
ccttttttga acataaaata aagttaattt cgaaacacta aaattcataa tgcaaacagg 240
gacgcaccgc tagcagcgcc cctagcggta tcctataaaa aaacacaccg cgccgctagc 300
agcaccccta atataaaata atgtttttta taaaaatagt cagtaccacc cctacaaaac 360
ggtgtcggcg cgttgttgta gccgcgccga caccgctttt ttaaatatca taaagagagt 420
aagagaaact aatttttcat aacactctat ttataaagaa aaatcagcaa aaacttgttt 480
ttgcgtgggg tgtggtgctt ttggtggtga gaaccaccaa cctgttgagc ctttttgtgg 540
agtgggttaa attatttacg aataaagtca ccagaggtgg aaaaatgaaa aaatggatgt 600
tagccatctg cctgatgttt ataaatgaga tctgccatgc cactgattgc tttgatcttg 660
caggccggga ttacaaaata gatcctgatt tactgagagc aatatcatgg aaagaatccc 720
gttaccgggt taatgccatc ggtattaatc cggtaacggg atatggcagc ggactgatgc 780
aggtagattc ccagcatttt aacgaactgg cccgctatgg aattaagccg gaacatctga 840
caacagatcc ctgcatgaac atttataccg gtgcttatta tctggcaata gcctttaaaa 900
aatggggcgt ctcctgggag gccgttggtg catacaatgc tggattcagg aagaccgaac 960
gccagaacca gagacgtctt gcctacgcat cagatgttta ccggatttat accgggataa 1020
aaagcagtaa aagtatccgg attccggcca cgaagaaatc acttccggaa attaacagcg 1080
tgcagaacaa ttaatcttac aggcattgtc agataccggt tatgccgcaa aagcggcatg 1140
gaaggccaca cacaaaaata tcatatgagt gacaatactg actggccgaa gccccgcgaa 1200
gcagtaaccc atcttatata tacccggtaa ctgcgcagcc tcctgccaga ccatttttcg 1260
cgggcacaat atttacagac aaccgaaaag ccagttgatg aaattgaggt atatcagacg 1320
acacagcgat gccgaagaat gataatataa gtaaagcccc gaaatttttt cggggcttta 1380
cttatattat catgacttcc actttctgaa ctgttcggca atcacccaca acgccttgtt 1440
gattcttata tcaccatcaa tacctgtaat ggctcttgtc ctggtatttt tcccggaggc 1500
acttcgcccc gataatccac cttttatcat attctcctga acccgctgcc aggttgtcca 1560
gagatcgttc tgtttatcct cccaacgacg gggagtaatt atttgttcag gcgtcactgg 1620
cgttttattt tcatcttcat acctgaccat cagtgcagct ctgccaaata aatgttgctc 1680
gtcactgtta agatgaattt ctttcatcgc ctccatatta tcagtgacct tatcaaagac 1740
accgagcact tcatacgcgc cctctataac ctgcccgaca atatcacctt tatgtggaac 1800
gcggatttcg ccaaaattat ttccgcacac caggccattt gtgcagacaa aacgaaaaat 1860
tccggggatc atctgataac tggatgaacc atcatgtgaa ttaagcagga taatttcagg 1920
aacttcctgc ccgttaatat gcccttccct gcgaagacgt aacatatgtt tactgtattc 1980
gcgacgtccc aaatcacgaa cccgactctg acaggcaaag aatggctgga aaccttcatc 2040
acgtaactta ttgatgatat tgattgttgg aatatacgta taacgttcac tccgggactc 2100
atgtttatca ccggaaaata ccgaaggcac gaactgcatt aattcatcat ccgttaaagg 2160
acgttcacgg tggatggaat tataccgacc aaaacgggaa gctaatcgca taacagctac 2220
tcctttatga aagaataaat ttaataaaaa atttttccgc ttaatatcat cccccctggt 2280
cacaattaac aagattgcaa caatcaggag ggatattcat cacatccggt cagcagatcg 2340
cccggatatc gaggccggca cgcttaatct gacgcaggaa ctgtttgaag tgatcggctt 2400
ccgcaatgtt gatatggcgg aactgcgtat ccacaccccg gctgagcgcg tagctatagc 2460
tgaaggccat cttttccggg tggcttttgc gatatttttt cagctcagtc aggctgctga 2520
attccaggac gtcccactct tccccggtgt tttttttctt cccggcaaca agaagcgtgt 2580
acgacgcggt gttaacgtgg atatttcggg tactcatcct gctttctcct ctctctggtt 2640
ttcagccccc atcatctttt gagtttcggg agccgcggtt ttgacgtttt gcggggacct 2700
gccttttgtt ccctccggta ttcaccatca cctttttgag aaccttcgcc gcaaggggca 2760
tcactgccac ggccggaaac gactgtccgg gggcagaccg caaaactttt tgcctgcttt 2820
tgggcaaaaa gttttgcggg atgtgcattt cacccctgga ctggcggaga cggttgtggc 2880
tgtctttgcc cccggtgaca ggggcttaaa caggtgaatg gcaccggaca caacaacggg 2940
caggcacccg ccgcaacgac gtgaagcgcg gtttgcgaaa cggcgttgcc ccttacatcc 3000
cggtggcctt t 3011
<210> 6
<211> 17
<212> DNA
<213> Escherichia coli MG1655(Escherichia coli MG1655)
<400> 6
cagtatcccc gtttaca 17
<210> 7
<211> 20
<212> DNA
<213> Escherichia coli MG1655(Escherichia coli MG1655)
<400> 7
cagtatcccc gtttacaggg 20
<210> 8
<211> 20
<212> DNA
<213> Escherichia coli MG1655(Escherichia coli MG1655)
<400> 8
ctgactggcg gttaaattgc 20
<210> 9
<211> 20
<212> DNA
<213> Escherichia coli MG1655(Escherichia coli MG1655)
<400> 9
taaccgtcac gagcatcatc 20
<210> 10
<211> 5285
<212> DNA
<213> Artificial sequence (Manual sequence)
<400> 10
acttttcata ctcccgccat tcagagaaga aaccaattgt ccatattgca tcagacattg 60
ccgtcactgc gtcttttact ggctcttctc gctaaccaaa ccggtaaccc cgcttattaa 120
aagcattctg taacaaagcg ggaccaaagc catgacaaaa acgcgtaaca aaagtgtcta 180
taatcacggc agaaaagtcc acattgatta tttgcacggc gtcacacttt gctatgccat 240
agcattttta tccataagat tagcggatcc tacctgacgc tttttatcgc aactctctac 300
tgtttctcca tgaagtggct aaagagaaca agttttagag ctagaaatag caagttaaaa 360
taaggctagt ccgttatcaa cttgaaaaag tggcaccgag tcggtgctta gcatccaaac 420
tcgagtaagg atcattaagg atcccatggt acgcgtgcta gaggcatcaa ataaaacgaa 480
aggctcagtc gaaagactgg gcctttcgtt ttatctgttg tttgtcggtg aacgctctcc 540
tgagtaggac aaatccgccc catgggtatg gacagttttc cctttgatat gtaacggtga 600
acagttgttc tacttttgtt tgttagtctt gatgcttcac tgatagatac aagagccata 660
agaacctcag atccttccgt atttagccag tatgttctct agtgtggttc gttgtttttg 720
cgtgagccat gagaacgaac cattgagatc atacttactt tgcatgtcac tcaaaaattt 780
tgcctcaaaa ctggtgagct gaatttttgc agttaaagca tcgtgtagtg tttttcttag 840
tccgttatgt aggtaggaat ctgatgtaat ggttgttggt attttgtcac cattcatttt 900
tatctggttg ttctcaagtt cggttacgag atccatttgt ctatctagtt caacttggaa 960
aatcaacgta tcagtcgggc ggcctcgctt atcaaccacc aatttcatat tgctgtaagt 1020
gtttaaatct ttacttattg gtttcaaaac ccattggtta agccttttaa actcatggta 1080
gttattttca agcattaaca tgaacttaaa ttcatcaagg ctaatctcta tatttgcctt 1140
gtgagttttc ttttgtgtta gttcttttaa taaccactca taaatcctca tagagtattt 1200
gttttcaaaa gacttaacat gttccagatt atattttatg aattttttta actggaaaag 1260
ataaggcaat atctcttcac taaaaactaa ttctaatttt tcgcttgaga acttggcata 1320
gtttgtccac tggaaaatct caaagccttt aaccaaagga ttcctgattt ccacagttct 1380
cgtcatcagc tctctggttg ctttagctaa tacaccataa gcattttccc tactgatgtt 1440
catcatctga gcgtattggt tataagtgaa cgataccgtc cgttctttcc ttgtagggtt 1500
ttcaatcgtg gggttgagta gtgccacaca gcataaaatt agcttggttt catgctccgt 1560
taagtcatag cgactaatcg ctagttcatt tgctttgaaa acaactaatt cagacataca 1620
tctcaattgg tctaggtgat tttaatcact ataccaattg agatgggcta gtcaatgata 1680
attactagtc cttttccttt gagttgtggg tatctgtaaa ttctgctaga cctttgctgg 1740
aaaacttgta aattctgcta gaccctctgt aaattccgct agacctttgt gtgttttttt 1800
tgtttatatt caagtggtta taatttatag aataaagaaa gaataaaaaa agataaaaag 1860
aatagatccc agccctgtgt ataactcact actttagtca gttccgcagt attacaaaag 1920
gatgtcgcaa acgctgtttg ctcctctaca aaacagacct taaaacccta aaggcttaag 1980
tagcaccctc gcaagctcgg ttgcggccgc aatcgggcaa atcgctgaat attccttttg 2040
tctccgacca tcaggcacct gagtcgctgt ctttttcgtg acattcagtt cgctgcgctc 2100
acggctctgg cagtgaatgg gggtaaatgg cactacaggc gccttttatg gattcatgca 2160
aggaaactac ccataataca agaaaagccc gtcacgggct tctcagggcg ttttatggcg 2220
ggtctgctat gtggtgctat ctgacttttt gctgttcagc agttcctgcc ctctgatttt 2280
ccagtctgac cacttcggat tatcccgtga caggtcattc agactggcta atgcacccag 2340
taaggcagcg gtatcatcaa cggggtctga cgctcagtgg aacgaaaact cacgttaagg 2400
gattttggtc atgagattat caaaaaggat cttcacctag atccttttaa attaaaaatg 2460
aagttttaaa tcaatctaaa gtatatatga gtaaacttgg tctgacagta gggataacag 2520
ggtaatactt ttcatactcc cgccattcag agaagaaacc aattgtccat attgcatcag 2580
acattgccgt cactgcgtct tttactggct cttctcgcta accaaaccgg taaccccgct 2640
tattaaaagc attctgtaac aaagcgggac caaagccatg acaaaaacgc gtaacaaaag 2700
tgtctataat cacggcagaa aagtccacat tgattatttg cacggcgtca cactttgcta 2760
tgccatagca tttttatcca taagattagc ggatcctacc tgacgctttt tatcgcaact 2820
ctctactgtt tctccatgta aaaccgaata ctgccgggtt ttagagctag aaatagcaag 2880
ttaaaataag gctagtccgt tatcaacttg aaaaagtggc accgagtcgg tgcttagcat 2940
ccaaactcga gtaaggatca ttaaggatcc catggtacgc gtgctagagg catcaaataa 3000
aacgaaaggc tcagtcgaaa gactgggcct ttcgttttat ctgttgtttg tcggtgaacg 3060
ctctcctgag taggacaaat ccgccctgca tgtgtcagag gttttcaccg tcatcaccga 3120
aacgcgcgag acgaaagggc ctcgtgatac gcctattttt ataggttaat gtcatgataa 3180
taatggtttc ttagacgtca ggtggcactt ttcggggaaa tgtgttggcg tttcgtcaaa 3240
gaagttccat ggtttcagca gagtatgtac ccattcggtc ggcataatcg gccactcttc 3300
ggcgcgggcc acatgtgtgg tgccggtggt catccagaca acggcgtcgg tgttgtccag 3360
cgactcgtta tccttactgt attgtccaag accggtgtca tgagtagaac ggttcggata 3420
tttgccttcc gggaaacgct cgccaggatg ataacgcgtt acccagagct gcttgtccat 3480
aaagcttaaa cgatgataga tccactcgtc cggcgcgaac tgggcacctt ttgctaccgg 3540
gtgagtacca cctgcataag gaataatttg ataggaaacc ggattgccca tgcggttctc 3600
tttgttcggg ttactcaaca gacgaatcgt gcccggatca aatttctgtg cggcatcctg 3660
ttcattgccg atgttgtact gattaacttg catggtactg gtgcgtgggc caccgcaacg 3720
gctacgcgct ggaagatctc tatgacgcta atggcgtgct tattgcgaag aaaggtcagt 3780
tgctgagtag ctttgcgcat ctgcgtgatg acggtacaac cgcatcttct tgctggatct 3840
acaccggtag ctggacagag cagggcaacc agatggctaa ccgcgataac tccgacccgt 3900
ccggtctggg gaatacgctg ggatgggcct gggcgtggcc gctcaaccgt cgcgtgctgt 3960
acaaccgtgc ttcggcggat atcaacggta aaccgtggga tccgaaacgg atgctgatcc 4020
agtggaacgg cagcaagtgg acgggtaacg atattcctga cttcggcaat gccgcaccgg 4080
gtacgccaac cgggccgttt atcatgcagc cggaagggat gggacgcctg tttgccatca 4140
acaaaatggc ggaaggtccg ttcccggaac actacgagcc gattgaacgc ggaaccccta 4200
tttgtttatt tttctaaata cattcaaata tgtatccgct catgagacaa taaccctgat 4260
aaatgcttca ataatattga aaaaggaaga gtatgagtat tcaacatttc cgtgtcgccc 4320
ttattccctt ttttgcggca ttttgccttc ctgtttttgc tcacccagaa acgctggtga 4380
aagtaaaaga tgctgaagat cagttgggtg cacgagtggg ttacatcgaa ctggatctca 4440
acagcggtaa gatccttgag agttttcgcc ccgaagaacg ttttccaatg atgagcactt 4500
ttaaagttct gctatgtggc gcggtattat cccgtattga cgccgggcaa gagcaactcg 4560
gtcgccgcat acactattct cagaatgact tggttgagta ctcaccagtc acagaaaagc 4620
atcttacgga tggcatgaca gtaagagaat tatgcagtgc tgccataacc atgagtgata 4680
acactgcggc caacttactt ctgacaacga tcggaggacc gaaggagcta accgcttttt 4740
tgcacaacat gggggatcat gtaactcgcc ttgatcgttg ggaaccggag ctgaatgaag 4800
ccataccaaa cgacgagcgt gacaccacga tgcctgtagc aatggcaaca acgttgcgca 4860
aactattaac tggcgaacta cttactctag cttcccggca acaattaata gactggatgg 4920
aggcggataa agttgcagga ccacttctgc gctcggccct tccggctggc tggtttattg 4980
ctgataaatc tggagccggt gagcgtgggt ctcgcggtat cattgcagca ctggggccag 5040
atggtaagcc ctcccgtatc gtagttatct acacgacggg gagtcaggca actatggatg 5100
aacgaaatag acagatcgct gagataggtg cctcactgat taagcattgg taactgtcag 5160
accaagttta ctcatatata ctttagattg atttaaaact tcatttttaa tttaaaagga 5220
tctaggtgaa gatccttttt gataatctca tgaccaaaat cccttaacgt gagttttcgt 5280
tccac 5285
<210> 11
<211> 491
<212> DNA
<213> Escherichia coli MG1655(Escherichia coli MG1655)
<400> 11
ttggcgtttc gtcaaagaag ttccatggtt tcagcagagt atgtacccat tcggtcggca 60
taatcggcca ctcttcggcg cgggccacat gtgtggtgcc ggtggtcatc cagacaacgg 120
cgtcggtgtt gtccagcgac tcgttatcct tactgtattg tccaagaccg gtgtcatgag 180
tagaacggtt cggatatttg ccttccggga aacgctcgcc aggatgataa cgcgttaccc 240
agagctgctt gtccataaag cttaaacgat gatagatcca ctcgtccggc gcgaactggg 300
caccttttgc taccgggtga gtaccacctg cataaggaat aatttgatag gaaaccggat 360
tgcccatgcg gttctctttg ttcgggttac tcaacagacg aatcgtgccc ggatcaaatt 420
tctgtgcggc atcctgttca ttgccgatgt tgtactgatt aacttgcatg gtactggtgc 480
gtgggccacc g 491
<210> 12
<211> 472
<212> DNA
<213> Escherichia coli MG1655(Escherichia coli MG1655)
<400> 12
caacggctac gcgctggaag atctctatga cgctaatggc gtgcttattg cgaagaaagg 60
tcagttgctg agtagctttg cgcatctgcg tgatgacggt acaaccgcat cttcttgctg 120
gatctacacc ggtagctgga cagagcaggg caaccagatg gctaaccgcg ataactccga 180
cccgtccggt ctggggaata cgctgggatg ggcctgggcg tggccgctca accgtcgcgt 240
gctgtacaac cgtgcttcgg cggatatcaa cggtaaaccg tgggatccga aacggatgct 300
gatccagtgg aacggcagca agtggacggg taacgatatt cctgacttcg gcaatgccgc 360
accgggtacg ccaaccgggc cgtttatcat gcagccggaa gggatgggac gcctgtttgc 420
catcaacaaa atggcggaag gtccgttccc ggaacactac gagccgattg aa 472
<210> 13
<211> 20
<212> DNA
<213> Escherichia coli MG1655(Escherichia coli MG1655)
<400> 13
gaagtggcta aagagaacaa 20
<210> 14
<211> 20
<212> DNA
<213> Escherichia coli MG1655(Escherichia coli MG1655)
<400> 14
gtaaaaccga atactgccgg 20
<210> 15
<211> 23
<212> DNA
<213> Escherichia coli MG1655(Escherichia coli MG1655)
<400> 15
gtaaaaccga atactgccgg tgg 23
<210> 16
<211> 23
<212> DNA
<213> Escherichia coli MG1655(Escherichia coli MG1655)
<400> 16
gaagtggcta aagagaacaa cgg 23
<210> 17
<211> 20
<212> DNA
<213> Escherichia coli MG1655(Escherichia coli MG1655)
<400> 17
gtcggtgtgt gtacggtatt 20
<210> 18
<211> 20
<212> DNA
<213> Escherichia coli MG1655(Escherichia coli MG1655)
<400> 18
acatacggga actgctcttt 20
<210> 19
<211> 20
<212> DNA
<213> Escherichia coli MG1655(Escherichia coli MG1655)
<400> 19
cggtcgatat gcggatgtat 20
<210> 20
<211> 20
<212> DNA
<213> Escherichia coli MG1655(Escherichia coli MG1655)
<400> 20
tctcctgctg caggattttg 20
<210> 21
<211> 13256
<212> DNA
<213> Artificial sequence (Manual sequence)
<400> 21
acttttcata ctcccgccat tcagagaaga aaccaattgt ccatattgca tcagacattg 60
ccgtcactgc gtcttttact ggctcttctc gctaaccaaa ccggtaaccc cgcttattaa 120
aagcattctg taacaaagcg ggaccaaagc catgacaaaa acgcgtaaca aaagtgtcta 180
taatcacggc agaaaagtcc acattgatta tttgcacggc gtcacacttt gctatgccat 240
agcattttta tccataagat tagcggatcc tacctgacgc tttttatcgc aactctctac 300
tgtttctcca tgtaaaaccg aatactgccg ggttttagag ctagaaatag caagttaaaa 360
taaggctagt ccgttatcaa cttgaaaaag tggcaccgag tcggtgctta gcatccaaac 420
tcgagtaagg atcattaagg atcccatggt acgcgtgcta gaggcatcaa ataaaacgaa 480
aggctcagtc gaaagactgg gcctttcgtt ttatctgttg tttgtcggtg aacgctctcc 540
tgagtaggac aaatccgccc catgggtatg gacagttttc cctttgatat gtaacggtga 600
acagttgttc tacttttgtt tgttagtctt gatgcttcac tgatagatac aagagccata 660
agaacctcag atccttccgt atttagccag tatgttctct agtgtggttc gttgtttttg 720
cgtgagccat gagaacgaac cattgagatc atacttactt tgcatgtcac tcaaaaattt 780
tgcctcaaaa ctggtgagct gaatttttgc agttaaagca tcgtgtagtg tttttcttag 840
tccgttatgt aggtaggaat ctgatgtaat ggttgttggt attttgtcac cattcatttt 900
tatctggttg ttctcaagtt cggttacgag atccatttgt ctatctagtt caacttggaa 960
aatcaacgta tcagtcgggc ggcctcgctt atcaaccacc aatttcatat tgctgtaagt 1020
gtttaaatct ttacttattg gtttcaaaac ccattggtta agccttttaa actcatggta 1080
gttattttca agcattaaca tgaacttaaa ttcatcaagg ctaatctcta tatttgcctt 1140
gtgagttttc ttttgtgtta gttcttttaa taaccactca taaatcctca tagagtattt 1200
gttttcaaaa gacttaacat gttccagatt atattttatg aattttttta actggaaaag 1260
ataaggcaat atctcttcac taaaaactaa ttctaatttt tcgcttgaga acttggcata 1320
gtttgtccac tggaaaatct caaagccttt aaccaaagga ttcctgattt ccacagttct 1380
cgtcatcagc tctctggttg ctttagctaa tacaccataa gcattttccc tactgatgtt 1440
catcatctga gcgtattggt tataagtgaa cgataccgtc cgttctttcc ttgtagggtt 1500
ttcaatcgtg gggttgagta gtgccacaca gcataaaatt agcttggttt catgctccgt 1560
taagtcatag cgactaatcg ctagttcatt tgctttgaaa acaactaatt cagacataca 1620
tctcaattgg tctaggtgat tttaatcact ataccaattg agatgggcta gtcaatgata 1680
attactagtc cttttccttt gagttgtggg tatctgtaaa ttctgctaga cctttgctgg 1740
aaaacttgta aattctgcta gaccctctgt aaattccgct agacctttgt gtgttttttt 1800
tgtttatatt caagtggtta taatttatag aataaagaaa gaataaaaaa agataaaaag 1860
aatagatccc agccctgtgt ataactcact actttagtca gttccgcagt attacaaaag 1920
gatgtcgcaa acgctgtttg ctcctctaca aaacagacct taaaacccta aaggcttaag 1980
tagcaccctc gcaagctcgg ttgcggccgc aatcgggcaa atcgctgaat attccttttg 2040
tctccgacca tcaggcacct gagtcgctgt ctttttcgtg acattcagtt cgctgcgctc 2100
acggctctgg cagtgaatgg gggtaaatgg cactacaggc gccttttatg gattcatgca 2160
aggaaactac ccataataca agaaaagccc gtcacgggct tctcagggcg ttttatggcg 2220
ggtctgctat gtggtgctat ctgacttttt gctgttcagc agttcctgcc ctctgatttt 2280
ccagtctgac cacttcggat tatcccgtga caggtcattc agactggcta atgcacccag 2340
taaggcagcg gtatcatcaa cggggtctga cgctcagtgg aacgaaaact cacgttaagg 2400
gattttggtc atgagattat caaaaaggat cttcacctag atccttttaa attaaaaatg 2460
aagttttaaa tcaatctaaa gtatatatga gtaaacttgg tctgacagta gggataacag 2520
ggtaatactt ttcatactcc cgccattcag agaagaaacc aattgtccat attgcatcag 2580
acattgccgt cactgcgtct tttactggct cttctcgcta accaaaccgg taaccccgct 2640
tattaaaagc attctgtaac aaagcgggac caaagccatg acaaaaacgc gtaacaaaag 2700
tgtctataat cacggcagaa aagtccacat tgattatttg cacggcgtca cactttgcta 2760
tgccatagca tttttatcca taagattagc ggatcctacc tgacgctttt tatcgcaact 2820
ctctactgtt tctccatgaa gtggctaaag agaacaagtt ttagagctag aaatagcaag 2880
ttaaaataag gctagtccgt tatcaacttg aaaaagtggc accgagtcgg tgcttagcat 2940
ccaaactcga gtaaggatca ttaaggatcc catggtacgc gtgctagagg catcaaataa 3000
aacgaaaggc tcagtcgaaa gactgggcct ttcgttttat ctgttgtttg tcggtgaacg 3060
ctctcctgag taggacaaat ccgccctgca tgtgtcagag gttttcaccg tcatcaccga 3120
aacgcgcgag acgaaagggc ctcgtgatac gcctattttt ataggttaat gtcatgataa 3180
taatggtttc ttagacgtca ggtggcactt ttcggggaaa tgtggtaaaa ccgaatactg 3240
ccggtggttg gcgtttcgtc aaagaagttc catggtttca gcagagtatg tacccattcg 3300
gtcggcataa tcggccactc ttcggcgcgg gccacatgtg tggtgccggt ggtcatccag 3360
acaacggcgt cggtgttgtc cagcgactcg ttatccttac tgtattgtcc aagaccggtg 3420
tcatgagtag aacggttcgg atatttgcct tccgggaaac gctcgccagg atgataacgc 3480
gttacccaga gctgcttgtc cataaagctt aaacgatgat agatccactc gtccggcgcg 3540
aactgggcac cttttgctac cgggtgagta ccacctgcat aaggaataat ttgataggaa 3600
accggattgc ccatgcggtt ctctttgttc gggttactca acagacgaat cgtgcccgga 3660
tcaaatttct gtgcggcatc ctgttcattg ccgatgttgt actgattaac ttgcatggta 3720
ctggtgcgtg ggccaccgga ttcatgcagc tgattaatac gactcactat agggaattca 3780
ttaaagagga gaaaggtaca atgttgacaa aagcaacaaa agaacaaaaa tcccttgtga 3840
aaaacagagg ggcggagctt gttgttgatt gcttagtgga gcaaggtgtc acacatgtat 3900
ttggcattcc aggtgcaaaa attgatgcgg tatttgacgc tttacaagat aaaggacctg 3960
aaattatcgt tgcccggcac gaacaaaacg cagcattcat ggcccaagca gtcggccgtt 4020
taactggaaa accgggagtc gtgttagtca catcaggacc gggtgcctct aacttggcaa 4080
caggcctgct gacagcgaac actgaaggag accctgtcgt tgcgcttgct ggaaacgtga 4140
tccgtgcaga tcgtttaaaa cggacacatc aatctttgga taatgcggcg ctattccagc 4200
cgattacaaa atacagtgta gaagttcaag atgtaaaaaa tataccggaa gctgttacaa 4260
atgcatttag gatagcgtca gcagggcagg ctggggccgc ttttgtgagc tttccgcaag 4320
atgttgtgaa tgaagtcaca aatacgaaaa acgtgcgtgc tgttgcagcg ccaaaactcg 4380
gtcctgcagc agatgatgca atcagtgcgg ccatagcaaa aatccaaaca gcaaaacttc 4440
ctgtcgtttt ggtcggcatg aaaggcggaa gaccggaagc aattaaagcg gttcgcaagc 4500
ttttgaaaaa ggttcagctt ccatttgttg aaacatatca agctgccggt accctttcta 4560
gagatttaga ggatcaatat tttggccgta tcggtttgtt ccgcaaccag cctggcgatt 4620
tactgctaga gcaggcagat gttgttctga cgatcggcta tgacccgatt gaatatgatc 4680
cgaaattctg gaatatcaat ggagaccgga caattatcca tttagacgag attatcgctg 4740
acattgatca tgcttaccag cctgatcttg aattgatcgg tgacattccg tccacgatca 4800
atcatatcga acacgatgct gtgaaagtgg aatttgcaga gcgtgagcag aaaatccttt 4860
ctgatttaaa acaatatatg catgaaggtg agcaggtgcc tgcagattgg aaatcagaca 4920
gagcgcaccc tcttgaaatc gttaaagagt tgcgtaatgc agtcgatgat catgttacag 4980
taacttgcga tatcggttcg cacgccattt ggatgtcacg ttatttccgc agctacgagc 5040
cgttaacatt aatgatcagt aacggtatgc aaacactcgg cgttgcgctt ccttgggcaa 5100
tcggcgcttc attggtgaaa ccgggagaaa aagtggtttc tgtctctggt gacggcggtt 5160
tcttattctc agcaatggaa ttagagacag cagttcgact aaaagcacca attgtacaca 5220
ttgtatggaa cgacagcaca tatgacatgg ttgcattcca gcaattgaaa aaatataacc 5280
gtacatctgc ggtcgatttc ggaaatatcg atatcgtgaa atatgcggaa agcttcggag 5340
caactggctt gcgcgtagaa tcaccagacc agctggcaga tgttctgcgt caaggcatga 5400
acgctgaagg tcctgtcatc atcgatgtcc cggttgacta cagtgataac attaatttag 5460
caagtgacaa gcttccgaaa gaattcgggg aactcatgaa aacgaaagct ctctaggtcg 5520
acgaggaatc accatggcta actacttcaa tacactgaat ctgcgccagc agctggcaca 5580
gctgggcaaa tgtcgcttta tgggccgcga tgaattcgcc gatggcgcga gctaccttca 5640
gggtaaaaaa gtagtcatcg tcggctgtgg cgcacagggt ctgaaccagg gcctgaacat 5700
gcgtgattct ggtctcgata tctcctacgc tctgcgtaaa gaagcgattg ccgagaagcg 5760
cgcgtcctgg cgtaaagcga ccgaaaatgg ttttaaagtg ggtacttacg aagaactgat 5820
cccacaggcg gatctggtga ttaacctgac gccggacaag cagcactctg atgtagtgcg 5880
caccgtacag ccactgatga aagacggcgc ggcgctgggc tactcgcacg gtttcaacat 5940
cgtcgaagtg ggcgagcaga tccgtaaaga tatcaccgta gtgatggttg cgccgaaatg 6000
cccaggcacc gaagtgcgtg aagagtacaa acgtgggttc ggcgtaccga cgctgattgc 6060
cgttcacccg gaaaacgatc cgaaaggcga aggcatggcg attgccaaag cctgggcggc 6120
tgcaaccggt ggtcaccgtg cgggtgtgct ggaatcgtcc ttcgttgcgg aagtgaaatc 6180
tgacctgatg ggcgagcaaa ccatcctgtg cggtatgttg caggctggct ctctgctgtg 6240
cttcgacaag ctggtggaag aaggtaccga tccagcatac gcagaaaaac tgattcagtt 6300
cggttgggaa accatcaccg aagcactgaa acagggcggc atcaccctga tgatggaccg 6360
tctctctaac ccggcgaaac tgcgtgctta tgcgctttct gaacagctga aagagatcat 6420
ggcacccctg ttccagaaac atatggacga catcatctcc ggcgaattct cttccggtat 6480
gatggcggac tgggccaacg atgataagaa actgctgacc tggcgtgaag agaccggcaa 6540
aaccgcgttt gaaaccgcgc cgcagtatga aggcaaaatc ggcgagcagg agtacttcga 6600
taaaggcgta ctgatgattg cgatggtgaa agcgggcgtt gaactggcgt tcgaaaccat 6660
ggtcgattcc ggcatcattg aagagtctgc atattatgaa tcactgcacg agctgccgct 6720
gattgccaac accatcgccc gtaagcgtct gtacgaaatg aacgtggtta tctctgatac 6780
cgctgagtac ggtaactatc tgttctctta cgcttgtgtg ccgttgctga aaccgtttat 6840
ggcagagctg caaccgggcg acctgggtaa agctattccg gaaggcgcgg tagataacgg 6900
gcaactgcgt gatgtgaacg aagcgattcg cagccatgcg attgagcagg taggtaagaa 6960
actgcgcggc tatatgacag atatgaaacg tattgctgtt gcgggttaac ccggaaggag 7020
atataccatg cctaagtacc gttccgccac caccactcat ggtcgtaata tggcgggtgc 7080
tcgtgcgctg tggcgcgcca ccggaatgac cgacgccgat ttcggtaagc cgattatcgc 7140
ggttgtgaac tcgttcaccc aatttgtacc gggtcacgtc catctgcgcg atctcggtaa 7200
actggtcgcc gaacaaattg aagcggctgg cggcgttgcc aaagagttca acaccattgc 7260
ggtggatgat gggattgcca tgggccacgg ggggatgctt tattcactgc catctcgcga 7320
actgatcgct gattccgttg agtatatggt caacgcccac tgcgccgacg ccatggtctg 7380
catctctaac tgcgacaaaa tcaccccggg gatgctgatg gcttccctgc gcctgaatat 7440
tccggtgatc tttgtttccg gcggcccgat ggaggccggg aaaaccaaac tttccgatca 7500
gatcatcaag ctcgatctgg ttgatgcgat gatccagggc gcagacccga aagtatctga 7560
ctcccagagc gatcaggttg aacgttccgc gtgtccgacc tgcggttcct gctccgggat 7620
gtttaccgct aactcaatga actgcctgac cgaagcgctg ggcctgtcgc agccgggcaa 7680
cggctcgctg ctggcaaccc acgccgaccg taagcagctg ttccttaatg ctggtaaacg 7740
cattgttgaa ttgaccaaac gttattacga gcaaaacgac gaaagtgcac tgccgcgtaa 7800
tatcgccagt aaggcggcgt ttgaaaacgc catgacgctg gatatcgcga tgggtggatc 7860
gactaacacc gtacttcacc tgctggcggc ggcgcaggaa gcggaaatcg acttcaccat 7920
gagtgatatc gataagcttt cccgcaaggt tccacagctg tgtaaagttg cgccgagcac 7980
ccagaaatac catatggaag atgttcaccg tgctggtggt gttatcggta ttctcggcga 8040
actggatcgc gcggggttac tgaaccgtga tgtgaaaaac gtacttggcc tgacgttgcc 8100
gcaaacgctg gaacaatacg acgttatgct gacccaggat gacgcggtaa aaaatatgtt 8160
ccgcgcaggt cctgcaggca ttcgtaccac acaggcattc tcgcaagatt gccgttggga 8220
tacgctggac gacgatcgcg ccaatggctg tatccgctcg ctggaacacg cctacagcaa 8280
agacggcggc ctggcggtgc tctacggtaa ctttgcggaa aacggctgca tcgtgaaaac 8340
ggcaggcgtc gatgacagca tcctcaaatt caccggcccg gcgaaagtgt acgaaagcca 8400
ggacgatgcg gtagaagcga ttctcggcgg taaagttgtc gccggagatg tggtagtaat 8460
tcgctatgaa ggcccgaaag gcggtccggg gatgcaggaa atgctctacc caaccagctt 8520
cctgaaatca atgggtctcg gcaaagcctg tgcgctgatc accgacggtc gtttctctgg 8580
tggcacctct ggtctttcca tcggccacgt ctcaccggaa gcggcaagcg gcggcagcat 8640
tggcctgatt gaagatggtg acctgatcgc tatcgacatc ccgaaccgtg gcattcagtt 8700
acaggtaagc gatgccgaac tggcggcgcg tcgtgaagcg caggacgctc gaggtgacaa 8760
agcctggacg ccgaaaaatc gtgaacgtca ggtctccttt gccctgcgtg cttatgccag 8820
cctggcaacc agcgccgaca aaggcgcggt gcgcgataaa tcgaaactgg ggggttaaac 8880
gcgtgctagg aattcattaa agaggagaaa ggtaccatgt atacagtagg agattaccta 8940
ttagaccgat tacacgagtt aggaattgaa gaaatttttg gagtccctgg agactataac 9000
ttacaatttt tagatcaaat tatttcccgc aaggatatga aatgggtcgg aaatgctaat 9060
gaattaaatg cttcatatat ggctgatggc tatgctcgta ctaaaaaagc tgccgcattt 9120
cttacaacct ttggagtagg tgaattgagt gcagttaatg gattagcagg aagttacgcc 9180
gaaaatttac cagtagtaga aatagtggga tcacctacat caaaagttca aaatgaagga 9240
aaatttgttc atcatacgct ggctgacggt gattttaaac actttatgaa aatgcacgaa 9300
cctgttacag cagctcgaac tttactgaca gcagaaaatg caaccgttga aattgaccga 9360
gtactttctg cactattaaa agaaagaaaa cctgtctata tcaacttacc agttgatgtt 9420
gctgctgcaa aagcagagaa accctcactc cctttgaaaa aagaaaactc aacttcaaat 9480
acaagtgacc aagagatctt gaacaaaatt caagaaagct tgaaaaatgc caaaaaacca 9540
atcgtgatta caggacatga aataattagt tttggcttag aaaaaacagt ctctcaattt 9600
atttcaaaga caaaactacc tattacgaca ttaaactttg gaaaaagttc agttgatgaa 9660
gctctccctt catttttagg aatctataat ggtaaactct cagagcctaa tcttaaagaa 9720
ttcgtggaat cagccgactt catcctgatg cttggagtta aactcacaga ctcttcaaca 9780
ggagccttca ctcatcattt aaatgaaaat aaaatgattt cactgaatat agatgaagga 9840
aaaatattta acgaaagcat ccaaaatttt gattttgaat ccctcatctc ctctctctta 9900
gacctaagcg aaatagaata caaaggaaaa tatatcgata aaaagcaaga agactttgtt 9960
ccatcaaatg cgcttttatc acaagaccgc ctatggcaag cagttgaaaa cctaactcaa 10020
agcaatgaaa caatcgttgc tgaacaaggg acatcattct ttggcgcttc atcaattttc 10080
ttaaaaccaa agagtcattt tattggtcaa cccttatggg gatcaattgg atatacattc 10140
ccagcagcat taggaagcca aattgcagat aaagaaagca gacacctttt atttattggt 10200
gatggttcac ttcaacttac ggtgcaagaa ttaggattag caatcagaga aaaaattaat 10260
ccaatttgct ttattatcaa taatgatggt tatacagtcg aaagagaaat tcatggacca 10320
aatcaaagct acaatgatat tccaatgtgg aattactcaa aattaccaga atcatttgga 10380
gcaacagaag aacgagtagt ctcgaaaatc gttagaactg aaaatgaatt tgtgtctgtc 10440
atgaaagaag ctcaagcaga tccaaataga atgtactgga ttgagttaat tttggcaaaa 10500
gaagatgcac caaaagtact gaaaaaaatg ggcaaactat ttgctgaaca aaataaatca 10560
taagcatgca ggagatatac catgaaagca gcagtagtaa gacacaatcc agatggttat 10620
gcggaccttg ttgaaaagga acttcgagca atcaaaccta atgaagcttt gcttgacatg 10680
gagtattgtg gagtctgtca taccgatttg cacgttgcag caggtgatta tggcaacaaa 10740
gcagggactg ttcttggtca tgaaggaatt ggaattgtca aagaaattgg agctgatgta 10800
agctcgcttc aagttggtga tcgggtttca gtggcttggt tctttgaagg atgtggtcac 10860
tgtgaatact gtgtatctgg taatgaaact ttttgtcgag aagttaaaaa tgcaggatat 10920
tcagttgatg gcggaatggc tgaagaagca attgttgttg ccgattatgc tgtcaaagtt 10980
cctgacggac ttgacccaat tgaagctagc tcaattactt gtgctggagt aacaacttac 11040
aaagcaatca aagtatcagg agtaaaacct ggtgattggc aagtaatttt tggtgctgga 11100
ggacttggaa atttagcaat tcaatatgct aaaaatgttt ttggagcaaa agtaattgct 11160
gttgatatta atcaagataa attaaattta gctaaaaaaa ttggagctga tgtgattatc 11220
aattctggtg atgtaaatcc agttgatgaa attaaaaaaa taactggcgg cttaggggtg 11280
caaagtgcaa tagtttgtgc tgttgcaagg attgcttttg aacaagcggt tgcttctttg 11340
aaacctatgg gcaaaatggt tgctgtggca cttcccaata ctgagatgac tttatcagtt 11400
ccaacagttg tttttgacgg agtggaggtt gcaggttcac ttgtcggaac aagacttgac 11460
ttggcagaag cttttcaatt tggagcagaa ggtaaggtaa aaccaattgt tgcgacacgc 11520
aaactggaag aaatcaatga tattattgat gaaatgaagg caggaaaaat tgaaggccga 11580
atggtcattg attttactaa ataatctaga ggcatcaaaa aacccctcaa gacccgttta 11640
gaggccccaa ggggttatgc tagcaacggc tacgcgctgg aagatctcta tgacgctaat 11700
ggcgtgctta ttgcgaagaa aggtcagttg ctgagtagct ttgcgcatct gcgtgatgac 11760
ggtacaaccg catcttcttg ctggatctac accggtagct ggacagagca gggcaaccag 11820
atggctaacc gcgataactc cgacccgtcc ggtctgggga atacgctggg atgggcctgg 11880
gcgtggccgc tcaaccgtcg cgtgctgtac aaccgtgctt cggcggatat caacggtaaa 11940
ccgtgggatc cgaaacggat gctgatccag tggaacggca gcaagtggac gggtaacgat 12000
attcctgact tcggcaatgc cgcaccgggt acgccaaccg ggccgtttat catgcagccg 12060
gaagggatgg gacgcctgtt tgccatcaac aaaatggcgg aaggtccgtt cccggaacac 12120
tacgagccga ttgaaccgtt gttctcttta gccacttccg cggaacccct atttgtttat 12180
ttttctaaat acattcaaat atgtatccgc tcatgagaca ataaccctga taaatgcttc 12240
aataatattg aaaaaggaag agtatgagta ttcaacattt ccgtgtcgcc cttattccct 12300
tttttgcggc attttgcctt cctgtttttg ctcacccaga aacgctggtg aaagtaaaag 12360
atgctgaaga tcagttgggt gcacgagtgg gttacatcga actggatctc aacagcggta 12420
agatccttga gagttttcgc cccgaagaac gttttccaat gatgagcact tttaaagttc 12480
tgctatgtgg cgcggtatta tcccgtattg acgccgggca agagcaactc ggtcgccgca 12540
tacactattc tcagaatgac ttggttgagt actcaccagt cacagaaaag catcttacgg 12600
atggcatgac agtaagagaa ttatgcagtg ctgccataac catgagtgat aacactgcgg 12660
ccaacttact tctgacaacg atcggaggac cgaaggagct aaccgctttt ttgcacaaca 12720
tgggggatca tgtaactcgc cttgatcgtt gggaaccgga gctgaatgaa gccataccaa 12780
acgacgagcg tgacaccacg atgcctgtag caatggcaac aacgttgcgc aaactattaa 12840
ctggcgaact acttactcta gcttcccggc aacaattaat agactggatg gaggcggata 12900
aagttgcagg accacttctg cgctcggccc ttccggctgg ctggtttatt gctgataaat 12960
ctggagccgg tgagcgtggg tctcgcggta tcattgcagc actggggcca gatggtaagc 13020
cctcccgtat cgtagttatc tacacgacgg ggagtcaggc aactatggat gaacgaaata 13080
gacagatcgc tgagataggt gcctcactga ttaagcattg gtaactgtca gaccaagttt 13140
actcatatat actttagatt gatttaaaac ttcattttta atttaaaagg atctaggtga 13200
agatcctttt tgataatctc atgaccaaaa tcccttaacg tgagttttcg ttccac 13256
<210> 22
<211> 7925
<212> DNA
<213> Artificial sequence (Manual sequence)
<400> 22
gattcatgca gctgattaat acgactcact atagggaatt cattaaagag gagaaaggta 60
caatgttgac aaaagcaaca aaagaacaaa aatcccttgt gaaaaacaga ggggcggagc 120
ttgttgttga ttgcttagtg gagcaaggtg tcacacatgt atttggcatt ccaggtgcaa 180
aaattgatgc ggtatttgac gctttacaag ataaaggacc tgaaattatc gttgcccggc 240
acgaacaaaa cgcagcattc atggcccaag cagtcggccg tttaactgga aaaccgggag 300
tcgtgttagt cacatcagga ccgggtgcct ctaacttggc aacaggcctg ctgacagcga 360
acactgaagg agaccctgtc gttgcgcttg ctggaaacgt gatccgtgca gatcgtttaa 420
aacggacaca tcaatctttg gataatgcgg cgctattcca gccgattaca aaatacagtg 480
tagaagttca agatgtaaaa aatataccgg aagctgttac aaatgcattt aggatagcgt 540
cagcagggca ggctggggcc gcttttgtga gctttccgca agatgttgtg aatgaagtca 600
caaatacgaa aaacgtgcgt gctgttgcag cgccaaaact cggtcctgca gcagatgatg 660
caatcagtgc ggccatagca aaaatccaaa cagcaaaact tcctgtcgtt ttggtcggca 720
tgaaaggcgg aagaccggaa gcaattaaag cggttcgcaa gcttttgaaa aaggttcagc 780
ttccatttgt tgaaacatat caagctgccg gtaccctttc tagagattta gaggatcaat 840
attttggccg tatcggtttg ttccgcaacc agcctggcga tttactgcta gagcaggcag 900
atgttgttct gacgatcggc tatgacccga ttgaatatga tccgaaattc tggaatatca 960
atggagaccg gacaattatc catttagacg agattatcgc tgacattgat catgcttacc 1020
agcctgatct tgaattgatc ggtgacattc cgtccacgat caatcatatc gaacacgatg 1080
ctgtgaaagt ggaatttgca gagcgtgagc agaaaatcct ttctgattta aaacaatata 1140
tgcatgaagg tgagcaggtg cctgcagatt ggaaatcaga cagagcgcac cctcttgaaa 1200
tcgttaaaga gttgcgtaat gcagtcgatg atcatgttac agtaacttgc gatatcggtt 1260
cgcacgccat ttggatgtca cgttatttcc gcagctacga gccgttaaca ttaatgatca 1320
gtaacggtat gcaaacactc ggcgttgcgc ttccttgggc aatcggcgct tcattggtga 1380
aaccgggaga aaaagtggtt tctgtctctg gtgacggcgg tttcttattc tcagcaatgg 1440
aattagagac agcagttcga ctaaaagcac caattgtaca cattgtatgg aacgacagca 1500
catatgacat ggttgcattc cagcaattga aaaaatataa ccgtacatct gcggtcgatt 1560
tcggaaatat cgatatcgtg aaatatgcgg aaagcttcgg agcaactggc ttgcgcgtag 1620
aatcaccaga ccagctggca gatgttctgc gtcaaggcat gaacgctgaa ggtcctgtca 1680
tcatcgatgt cccggttgac tacagtgata acattaattt agcaagtgac aagcttccga 1740
aagaattcgg ggaactcatg aaaacgaaag ctctctaggt cgacgaggaa tcaccatggc 1800
taactacttc aatacactga atctgcgcca gcagctggca cagctgggca aatgtcgctt 1860
tatgggccgc gatgaattcg ccgatggcgc gagctacctt cagggtaaaa aagtagtcat 1920
cgtcggctgt ggcgcacagg gtctgaacca gggcctgaac atgcgtgatt ctggtctcga 1980
tatctcctac gctctgcgta aagaagcgat tgccgagaag cgcgcgtcct ggcgtaaagc 2040
gaccgaaaat ggttttaaag tgggtactta cgaagaactg atcccacagg cggatctggt 2100
gattaacctg acgccggaca agcagcactc tgatgtagtg cgcaccgtac agccactgat 2160
gaaagacggc gcggcgctgg gctactcgca cggtttcaac atcgtcgaag tgggcgagca 2220
gatccgtaaa gatatcaccg tagtgatggt tgcgccgaaa tgcccaggca ccgaagtgcg 2280
tgaagagtac aaacgtgggt tcggcgtacc gacgctgatt gccgttcacc cggaaaacga 2340
tccgaaaggc gaaggcatgg cgattgccaa agcctgggcg gctgcaaccg gtggtcaccg 2400
tgcgggtgtg ctggaatcgt ccttcgttgc ggaagtgaaa tctgacctga tgggcgagca 2460
aaccatcctg tgcggtatgt tgcaggctgg ctctctgctg tgcttcgaca agctggtgga 2520
agaaggtacc gatccagcat acgcagaaaa actgattcag ttcggttggg aaaccatcac 2580
cgaagcactg aaacagggcg gcatcaccct gatgatggac cgtctctcta acccggcgaa 2640
actgcgtgct tatgcgcttt ctgaacagct gaaagagatc atggcacccc tgttccagaa 2700
acatatggac gacatcatct ccggcgaatt ctcttccggt atgatggcgg actgggccaa 2760
cgatgataag aaactgctga cctggcgtga agagaccggc aaaaccgcgt ttgaaaccgc 2820
gccgcagtat gaaggcaaaa tcggcgagca ggagtacttc gataaaggcg tactgatgat 2880
tgcgatggtg aaagcgggcg ttgaactggc gttcgaaacc atggtcgatt ccggcatcat 2940
tgaagagtct gcatattatg aatcactgca cgagctgccg ctgattgcca acaccatcgc 3000
ccgtaagcgt ctgtacgaaa tgaacgtggt tatctctgat accgctgagt acggtaacta 3060
tctgttctct tacgcttgtg tgccgttgct gaaaccgttt atggcagagc tgcaaccggg 3120
cgacctgggt aaagctattc cggaaggcgc ggtagataac gggcaactgc gtgatgtgaa 3180
cgaagcgatt cgcagccatg cgattgagca ggtaggtaag aaactgcgcg gctatatgac 3240
agatatgaaa cgtattgctg ttgcgggtta acccggaagg agatatacca tgcctaagta 3300
ccgttccgcc accaccactc atggtcgtaa tatggcgggt gctcgtgcgc tgtggcgcgc 3360
caccggaatg accgacgccg atttcggtaa gccgattatc gcggttgtga actcgttcac 3420
ccaatttgta ccgggtcacg tccatctgcg cgatctcggt aaactggtcg ccgaacaaat 3480
tgaagcggct ggcggcgttg ccaaagagtt caacaccatt gcggtggatg atgggattgc 3540
catgggccac ggggggatgc tttattcact gccatctcgc gaactgatcg ctgattccgt 3600
tgagtatatg gtcaacgccc actgcgccga cgccatggtc tgcatctcta actgcgacaa 3660
aatcaccccg gggatgctga tggcttccct gcgcctgaat attccggtga tctttgtttc 3720
cggcggcccg atggaggccg ggaaaaccaa actttccgat cagatcatca agctcgatct 3780
ggttgatgcg atgatccagg gcgcagaccc gaaagtatct gactcccaga gcgatcaggt 3840
tgaacgttcc gcgtgtccga cctgcggttc ctgctccggg atgtttaccg ctaactcaat 3900
gaactgcctg accgaagcgc tgggcctgtc gcagccgggc aacggctcgc tgctggcaac 3960
ccacgccgac cgtaagcagc tgttccttaa tgctggtaaa cgcattgttg aattgaccaa 4020
acgttattac gagcaaaacg acgaaagtgc actgccgcgt aatatcgcca gtaaggcggc 4080
gtttgaaaac gccatgacgc tggatatcgc gatgggtgga tcgactaaca ccgtacttca 4140
cctgctggcg gcggcgcagg aagcggaaat cgacttcacc atgagtgata tcgataagct 4200
ttcccgcaag gttccacagc tgtgtaaagt tgcgccgagc acccagaaat accatatgga 4260
agatgttcac cgtgctggtg gtgttatcgg tattctcggc gaactggatc gcgcggggtt 4320
actgaaccgt gatgtgaaaa acgtacttgg cctgacgttg ccgcaaacgc tggaacaata 4380
cgacgttatg ctgacccagg atgacgcggt aaaaaatatg ttccgcgcag gtcctgcagg 4440
cattcgtacc acacaggcat tctcgcaaga ttgccgttgg gatacgctgg acgacgatcg 4500
cgccaatggc tgtatccgct cgctggaaca cgcctacagc aaagacggcg gcctggcggt 4560
gctctacggt aactttgcgg aaaacggctg catcgtgaaa acggcaggcg tcgatgacag 4620
catcctcaaa ttcaccggcc cggcgaaagt gtacgaaagc caggacgatg cggtagaagc 4680
gattctcggc ggtaaagttg tcgccggaga tgtggtagta attcgctatg aaggcccgaa 4740
aggcggtccg gggatgcagg aaatgctcta cccaaccagc ttcctgaaat caatgggtct 4800
cggcaaagcc tgtgcgctga tcaccgacgg tcgtttctct ggtggcacct ctggtctttc 4860
catcggccac gtctcaccgg aagcggcaag cggcggcagc attggcctga ttgaagatgg 4920
tgacctgatc gctatcgaca tcccgaaccg tggcattcag ttacaggtaa gcgatgccga 4980
actggcggcg cgtcgtgaag cgcaggacgc tcgaggtgac aaagcctgga cgccgaaaaa 5040
tcgtgaacgt caggtctcct ttgccctgcg tgcttatgcc agcctggcaa ccagcgccga 5100
caaaggcgcg gtgcgcgata aatcgaaact ggggggttaa acgcgtgcta ggaattcatt 5160
aaagaggaga aaggtaccat gtatacagta ggagattacc tattagaccg attacacgag 5220
ttaggaattg aagaaatttt tggagtccct ggagactata acttacaatt tttagatcaa 5280
attatttccc gcaaggatat gaaatgggtc ggaaatgcta atgaattaaa tgcttcatat 5340
atggctgatg gctatgctcg tactaaaaaa gctgccgcat ttcttacaac ctttggagta 5400
ggtgaattga gtgcagttaa tggattagca ggaagttacg ccgaaaattt accagtagta 5460
gaaatagtgg gatcacctac atcaaaagtt caaaatgaag gaaaatttgt tcatcatacg 5520
ctggctgacg gtgattttaa acactttatg aaaatgcacg aacctgttac agcagctcga 5580
actttactga cagcagaaaa tgcaaccgtt gaaattgacc gagtactttc tgcactatta 5640
aaagaaagaa aacctgtcta tatcaactta ccagttgatg ttgctgctgc aaaagcagag 5700
aaaccctcac tccctttgaa aaaagaaaac tcaacttcaa atacaagtga ccaagagatc 5760
ttgaacaaaa ttcaagaaag cttgaaaaat gccaaaaaac caatcgtgat tacaggacat 5820
gaaataatta gttttggctt agaaaaaaca gtctctcaat ttatttcaaa gacaaaacta 5880
cctattacga cattaaactt tggaaaaagt tcagttgatg aagctctccc ttcattttta 5940
ggaatctata atggtaaact ctcagagcct aatcttaaag aattcgtgga atcagccgac 6000
ttcatcctga tgcttggagt taaactcaca gactcttcaa caggagcctt cactcatcat 6060
ttaaatgaaa ataaaatgat ttcactgaat atagatgaag gaaaaatatt taacgaaagc 6120
atccaaaatt ttgattttga atccctcatc tcctctctct tagacctaag cgaaatagaa 6180
tacaaaggaa aatatatcga taaaaagcaa gaagactttg ttccatcaaa tgcgctttta 6240
tcacaagacc gcctatggca agcagttgaa aacctaactc aaagcaatga aacaatcgtt 6300
gctgaacaag ggacatcatt ctttggcgct tcatcaattt tcttaaaacc aaagagtcat 6360
tttattggtc aacccttatg gggatcaatt ggatatacat tcccagcagc attaggaagc 6420
caaattgcag ataaagaaag cagacacctt ttatttattg gtgatggttc acttcaactt 6480
acggtgcaag aattaggatt agcaatcaga gaaaaaatta atccaatttg ctttattatc 6540
aataatgatg gttatacagt cgaaagagaa attcatggac caaatcaaag ctacaatgat 6600
attccaatgt ggaattactc aaaattacca gaatcatttg gagcaacaga agaacgagta 6660
gtctcgaaaa tcgttagaac tgaaaatgaa tttgtgtctg tcatgaaaga agctcaagca 6720
gatccaaata gaatgtactg gattgagtta attttggcaa aagaagatgc accaaaagta 6780
ctgaaaaaaa tgggcaaact atttgctgaa caaaataaat cataagcatg caggagatat 6840
accatgaaag cagcagtagt aagacacaat ccagatggtt atgcggacct tgttgaaaag 6900
gaacttcgag caatcaaacc taatgaagct ttgcttgaca tggagtattg tggagtctgt 6960
cataccgatt tgcacgttgc agcaggtgat tatggcaaca aagcagggac tgttcttggt 7020
catgaaggaa ttggaattgt caaagaaatt ggagctgatg taagctcgct tcaagttggt 7080
gatcgggttt cagtggcttg gttctttgaa ggatgtggtc actgtgaata ctgtgtatct 7140
ggtaatgaaa ctttttgtcg agaagttaaa aatgcaggat attcagttga tggcggaatg 7200
gctgaagaag caattgttgt tgccgattat gctgtcaaag ttcctgacgg acttgaccca 7260
attgaagcta gctcaattac ttgtgctgga gtaacaactt acaaagcaat caaagtatca 7320
ggagtaaaac ctggtgattg gcaagtaatt tttggtgctg gaggacttgg aaatttagca 7380
attcaatatg ctaaaaatgt ttttggagca aaagtaattg ctgttgatat taatcaagat 7440
aaattaaatt tagctaaaaa aattggagct gatgtgatta tcaattctgg tgatgtaaat 7500
ccagttgatg aaattaaaaa aataactggc ggcttagggg tgcaaagtgc aatagtttgt 7560
gctgttgcaa ggattgcttt tgaacaagcg gttgcttctt tgaaacctat gggcaaaatg 7620
gttgctgtgg cacttcccaa tactgagatg actttatcag ttccaacagt tgtttttgac 7680
ggagtggagg ttgcaggttc acttgtcgga acaagacttg acttggcaga agcttttcaa 7740
tttggagcag aaggtaaggt aaaaccaatt gttgcgacac gcaaactgga agaaatcaat 7800
gatattattg atgaaatgaa ggcaggaaaa attgaaggcc gaatggtcat tgattttact 7860
aaataatcta gaggcatcaa aaaacccctc aagacccgtt tagaggcccc aaggggttat 7920
gctag 7925
<210> 23
<211> 20
<212> DNA
<213> Escherichia coli MG1655(Escherichia coli MG1655)
<400> 23
ccggcagctt gatatgtttc 20
<210> 24
<211> 20
<212> DNA
<213> Escherichia coli MG1655(Escherichia coli MG1655)
<400> 24
ggtttcagtg gcttggttct 20

Claims (10)

1. A CRISPR-Cas9 gene editing vector for bacteria, comprising plasmid 1 and plasmid 2;
the plasmid 1 comprises a replication initiation site, a screening marker gene, a Cas9 protein expression element, a recombinant protein expression element and a counter-screening marker gene;
the plasmid 2 comprises a replication initiation site, a selection marker gene, a sgRNA expression element and a homologous recombination element.
2. The CRISPR-Cas9 gene editing vector according to claim 1, wherein the replication initiation site of plasmid 1 is a medium copy replication initiation site, and the replication initiation site of plasmid 2 is a temperature sensitive replication initiation site.
3. The CRISPR-Cas9 gene editing vector according to claim 1, which isIs characterized in that the Cas9 protein expression element consists of a high-stringency inducible promoter, a Cas9 encoding gene, a terminator and a regulatory protein gene; the high stringency inducible promoter includes but is not limited to PBADPromoter, rhaPBADPromoters and tetA promoters.
4. The CRISPR-Cas9 gene editing vector according to claim 1, wherein the recombinant protein expression element consists of inducible promoter, recombinant protein expression gene, terminator and regulatory protein; the inducible promoter may be a promoter with high stringency or a promoter with low stringency.
5. The CRISPR-Cas9 gene editing vector according to claim 1, wherein the sgRNA expression element consists of a strongly stringent inducible promoter, a sgRNA coding sequence and a terminator; the sgRNA expression element comprises the same inducible promoter as the Cas9 protein expression element.
6. The CRISPR-Cas9 gene editing vector according to claim 1, wherein the sgRNA recognizes the target DNA of recipient bacterium containing 5' - (N)X-NGG-3' structure, (N)XDenotes X N, N is A, G, C or T, X is a natural number greater than or equal to 12.
7. The CRISPR-Cas9 gene editing vector of claim 1, wherein the homologous recombination element consists of two sequences homologous to genome or two sequences homologous to genome and an insertion sequence, the insertion sequence is located between the two homologous sequences, one or both ends of the homologous recombination element contain 5' - (N) which can be recognized by sgRNAX-NGG-3' structure.
8. The CRISPR-Cas9 gene editing vector according to claim 1,
the nucleotide sequence of the plasmid 1 is SEQ ID NO. 1;
the nucleotide sequence of the plasmid 2 is SEQ ID NO.2 or SEQ ID NO.10 or SEQ ID NO. 21.
9. A gene editing kit for bacteria, comprising the CRISPR-Cas9 gene editing vector for bacteria of any one of claims 1-8.
10. Use of a CRISPR-Cas9 gene editing vector for bacteria, wherein the CRISPR-Cas9 gene editing vector for bacteria is used for gene editing in bacteria.
CN202111484187.3A 2021-12-07 2021-12-07 CRISPR-Cas9 gene editing vector for bacteria and application thereof Pending CN114107302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111484187.3A CN114107302A (en) 2021-12-07 2021-12-07 CRISPR-Cas9 gene editing vector for bacteria and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111484187.3A CN114107302A (en) 2021-12-07 2021-12-07 CRISPR-Cas9 gene editing vector for bacteria and application thereof

Publications (1)

Publication Number Publication Date
CN114107302A true CN114107302A (en) 2022-03-01

Family

ID=80367873

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111484187.3A Pending CN114107302A (en) 2021-12-07 2021-12-07 CRISPR-Cas9 gene editing vector for bacteria and application thereof

Country Status (1)

Country Link
CN (1) CN114107302A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109706109A (en) * 2019-01-30 2019-05-03 中国医学科学院病原生物学研究所 It is a kind of based on the internal plasmid editing system of CRISPR/Cas and lambda Red recombination system and its application
CN110628761A (en) * 2019-09-27 2019-12-31 北京理工大学 Genome editing method based on bacterial endogenous terminal connection system
CN110669779A (en) * 2019-09-27 2020-01-10 北京理工大学 Genome editing method based on bacterial endogenous homologous recombination system
CN110878322A (en) * 2018-09-06 2020-03-13 上海科技大学 Double-plasmid system for Klebsiella pneumoniae gene editing
CN111621512A (en) * 2020-06-10 2020-09-04 苏州泓迅生物科技股份有限公司 Double sgRNA traceless gene editing plasmid and preparation method and application thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110878322A (en) * 2018-09-06 2020-03-13 上海科技大学 Double-plasmid system for Klebsiella pneumoniae gene editing
CN109706109A (en) * 2019-01-30 2019-05-03 中国医学科学院病原生物学研究所 It is a kind of based on the internal plasmid editing system of CRISPR/Cas and lambda Red recombination system and its application
CN110628761A (en) * 2019-09-27 2019-12-31 北京理工大学 Genome editing method based on bacterial endogenous terminal connection system
CN110669779A (en) * 2019-09-27 2020-01-10 北京理工大学 Genome editing method based on bacterial endogenous homologous recombination system
CN111621512A (en) * 2020-06-10 2020-09-04 苏州泓迅生物科技股份有限公司 Double sgRNA traceless gene editing plasmid and preparation method and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHAOYONG HUANG等: "CRISPR-Cas9-assisted native end-joining editing offers a simple strategy for efficient genetic engineering in Escherichia coli", 《APPLIED MICROBIOLOGY AND BIOTECHNOLOGY 》, vol. 103, 31 December 2019 (2019-12-31), pages 8497 - 8509 *
邵梦瑶等: "优化大肠杆菌 CRISPR /Cas9 基因编辑系统及应用", 《生物学杂志》, vol. 37, no. 4, 31 August 2020 (2020-08-31), pages 106 - 114 *

Similar Documents

Publication Publication Date Title
CN111344395B (en) Methods of producing modified natural killer cells and methods of use
CN108102940B (en) Industrial saccharomyces cerevisiae strain with XKS1 gene knocked out by CRISPR/Cas9 system and construction method
CN113684141B (en) Construction and application of saccharomyces cerevisiae strain for extracellular transport of vitamin D3 precursor squalene
CN101835901B (en) High throughput screening of genetically modified photosynthetic organisms
KR102646320B1 (en) Recombinant bacteria for producing 3-hydroxypropionic acid, method for producing the same, and application thereof
CN108300671A (en) One plant of common fermentation xylose and glucose is with an industrial strain of S.cerevisiae strain of high yield xylitol and ethyl alcohol and construction method
CA3073292A1 (en) Improved transposase polypeptide and uses thereof
CN108220176A (en) A kind of method for improving saccharomyces cerevisiae engineered yeast strain fermenting and producing glucaric acid
CN111718420B (en) Fusion protein for gene therapy and application thereof
KR102409420B1 (en) Marker composition for transformed organism, transformed organism and method for transformation
CN108992665B (en) Cervical cancer therapeutic vaccine based on recombinant attenuated listeria monocytogenes
CN108939064B (en) Cervical cancer therapeutic vaccine based on recombinant attenuated sheep listeria
CN112063669A (en) Enzymatic reaction composition, method for increasing Adenosine Triphosphate (ATP) amount in enzymatic reaction and application thereof
CN114107302A (en) CRISPR-Cas9 gene editing vector for bacteria and application thereof
CN112410389B (en) Application of branched-chain alpha-keto acid dehydrogenase complex in preparation of malonyl-CoA
KR102194740B1 (en) Methods for preparing recombinant Acremonium chrysogenum producing deacetoxycephalosporin C with high concentration and Acremonium chrysogenum prepared thereby as bioprocess for 7-ADCA preparation
CN107988259B (en) SmartBac baculovirus expression system and application thereof
CN109010819B (en) Application of recombinant attenuated listeria in preparation of cervical cancer therapeutic vaccine
CN110484565A (en) A kind of suicide gene system and its application based on gland relevant viral vector transformation
CN113710809A (en) One-step gene therapy for duchenne muscular dystrophy by gene replacement and anti-inflammation
CN114250227A (en) Expression vector for high-level expression of foreign gene
CN102250951B (en) Method for cultivating zebrafish with fluorescence conversion function in cardiovascular system by using artificial chromosome recombinant technology
CN108949756B (en) Construction method of zebra fish heart specific expression model and related vector
KR20220111294A (en) Chimeric Opsin GPCR Protein
CN113621652B (en) Method for obtaining high-temperature resistant cells based on CDC20 and obtained high-temperature resistant cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20230206

Address after: 1403-164, Block B, Phase I, Innovation Park, No. 1, Keyuan Weiyi Road, Laoshan District, Qingdao, Shandong 266100

Applicant after: Qingdao Kinstar Biotechnology Co.,Ltd.

Applicant after: Shandong Qibang Huikang Biotechnology Co.,Ltd.

Applicant after: BEIJING INSTITUTE OF TECHNOLOGY

Address before: 266000 room 205, Block E, No. 67 and 69, Yinchuan West Road, Shinan District, Qingdao, Shandong

Applicant before: Shandong Qibang Huikang Biotechnology Co.,Ltd.

TA01 Transfer of patent application right