CN114106321B - 一种活性氧响应性材料pei-sh的制备方法与应用 - Google Patents

一种活性氧响应性材料pei-sh的制备方法与应用 Download PDF

Info

Publication number
CN114106321B
CN114106321B CN202111427247.8A CN202111427247A CN114106321B CN 114106321 B CN114106321 B CN 114106321B CN 202111427247 A CN202111427247 A CN 202111427247A CN 114106321 B CN114106321 B CN 114106321B
Authority
CN
China
Prior art keywords
pei
responsive material
simvastatin
active oxygen
reaction solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111427247.8A
Other languages
English (en)
Other versions
CN114106321A (zh
Inventor
李亚鹏
沈美丽
姚顺雨
武小东
李少静
刘顺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202111427247.8A priority Critical patent/CN114106321B/zh
Publication of CN114106321A publication Critical patent/CN114106321A/zh
Application granted granted Critical
Publication of CN114106321B publication Critical patent/CN114106321B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/366Lactones having six-membered rings, e.g. delta-lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6935Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Nanotechnology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Urology & Nephrology (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明的一种活性氧响应性材料PEI‑SH的制备方法与应用,属于纳米材料制备技术领域。步骤包括将PEI600用PBS溶解后,加入2‑亚氨基硫烷盐酸盐,室温搅拌过夜后加入DTT;待反应结束后,将反应液在去离子水中透析48h后用冻干机冻干,得到的粘稠状固体活性氧响应性材料PEI‑SH可用于制备具有特异性释放药物能力的纳米粒子。本发明制备的纳米粒子具有过氧化氢特异性响应释药的特点,既能降低辛伐他汀酸的毒性,同时辛伐他汀酸可以消耗细胞内活性氧而提高治疗效果。

Description

一种活性氧响应性材料PEI-SH的制备方法与应用
技术领域
本发明属于纳米材料制备技术领域,具体涉及一种具有活性氧(ROS)响应而特异性释放药物的纳米粒子的制备与应用。
背景技术
动脉粥样硬化(AS)是全球范围内引发人类死亡的主要原因,可引发动脉疾病、心绞痛、心肌梗死、中风、静脉血栓等致命疾病。AS发展的本质是炎症反应,虽然多余的胆固醇不再被认为是AS形成的唯一标准,但它对其发展起到不可忽视的作用,高脂血症可促使氧化应激发生,进而诱发炎症,推动AS的发展。众所周知,动脉粥样硬化部位的ROS水平显著高于正常生理条件下的水平。因此,可以利用斑块处高的ROS水平设计具有ROS响应的药物递送系统用于AS的治疗。
他汀类药物是针对AS的常规治疗药物,其中,辛伐他汀是抑制胆固醇生成最有效的药物之一,Ho-Jin Moon等人也证明了辛伐他汀具有消耗活性氧(ROS)的作用。虽然辛伐他汀是临床上十分有效的治疗药物,但由于其肝毒性的副作用降低了患者对药物的依从性,不得不寻求新的药物递送方式来降低自由给药带来的副作用。
近年来,纳米医学得到快速发展,纳米载体成为药物递送最理想的途径。阳离子聚合物PEI已经被广泛应用于基因转染和疫苗佐剂,因具有易修饰,价格低廉,易获得的优点而广受青睐。将负电性辛伐他汀酸(SA)通过静电吸附进入PEI内部,并利用在PEI末端修饰的巯基进行交联,形成稳定的阳离子型载药纳米粒子(SAPEI)。SAPEI可响应斑块处高水平的ROS而发生药物的集中释放,显著提高治疗效果,同时降低自由给药带来的毒性。
发明内容
本发明的目的在于,为解决传统响应性纳米粒子功能单一的局限,提供一种既能响应活性氧又能消耗活性氧的载药纳米粒子SA PEI,同时还提供该材料的制备方法及其在抗血栓方面的应用。
本发明的技术方案如下:
一种活性氧响应性材料PEI-SH的制备方法,具有以下步骤:将PEI600(聚乙烯亚胺,分子量600)用PBS溶解后,加入2-亚氨基硫烷盐酸盐,反应在N2和黑暗条件下进行,室温搅拌过夜后加入DTT(二硫苏糖醇),继续反应3h,其中,PEI600、PBS、2-亚氨基硫烷盐酸盐与DTT的质量比为30~70:230~300:1:1~5;待反应结束后,将反应液移入透析袋,在去离子水中透析48h后用冻干机冻干,得到粘稠状固体活性氧响应性材料PEI-SH,并保存在-20℃。
作为优选,所述的PBS是pH为8的磷酸缓冲液,含0.001M乙二胺四乙酸二钠。
一种活性氧响应性材料PEI-SH的应用,其特征在于,用于制备具有特异性释放药物能力的纳米粒子,步骤为:按1:100~1000的质量比将PEI-SH完全溶解在去离子水中,加入0.1M的NaBH4并在N2保护下室温继续搅拌3h,PEI-SH与NaBH4的质量比按溶质计为1:500~1000,用0.1M的HCl将反应液调至中性,滴加含有抗血栓药物的DMSO(二甲基亚砜)溶液至反应液中,按质量计,抗血栓药物:DMSO:PEI-SH=1:2~10:0.1~2,室温反应5h,最后,将反应液移入透析袋,并用去离子水透析2天得到具有特异性释放抗血栓药物能力的纳米粒子。
所述的抗血栓药物优选辛伐他汀酸。
所述的抗血栓药物优选按以下方法合成:首先,将辛伐他汀在乙醇中搅拌至完全溶解后加入0.1M NaOH,在50℃下反应2h,随后,将反应溶液的pH用盐酸调节至中性,利用旋转蒸发仪除去反应液中的乙醇,加入正丁醇萃取辛伐他汀酸,其中,辛伐他汀、乙醇、NaOH和正丁醇的质量比为30~90:800~1500:1:500~5000,有机相经旋转蒸发和真空干燥后得到辛伐他汀酸(SA)。
本发明在阳离子PEI600的末端引入了巯基,通过静电吸附与阴离子SA自组装,从而获得了交联型载药纳米粒子(SA PEI),既增强了纳米粒子的稳定性,又实现了在特定环境中释放药物的目的。SA的加入可以中和PEI600的部分正电荷。因此,本发明对基于动脉粥样硬化治疗提供了一种有前途的方法。
综上,本发明有以下有益效果:
1、本发明将毒副作用较大的辛伐他汀酸通过用PEI-SH吸附自组装形成纳米粒子使其具有良好的生物相容性。
2、纳米粒子具有过氧化氢特异性响应的特点。
3、本发明的载药纳米粒子不仅具有过氧化氢响应的能力,还可以通过辛伐他汀酸消耗活性氧来提高治疗的效果。
附图说明
图1是实施例1中辛伐他汀酸的合成路线图。
图2是实施例1中辛伐他汀酸和辛伐他汀的1H NMR图。
图3是实施例1中辛伐他汀酸(SA)和辛伐他汀(SV)的FTIR光谱图。
图4是实施例2中PEI-SH的合成路线。
图5是实施例2中PEI-SH的FTIR图。
图6是实施例2中PEI-SH的Ellman检测图及半胱氨酸标准曲线。
图7是实施例3中SA PEI的TEM图。
图8是实施例3中SA PEI的稳定性图。(a)为DLS图;(b)为zeta电位图。
图9是实施例4中SA PEI在含有不同浓度H2O2的PBS中的SA的体外累积释放曲线图。
图10是实施例5中PEI-SH、SA和SA PEI与RBC孵育后的溶血率。(a)为PEI-SH的溶血率;(b)为SA和SA PEI的溶血率。
图11是实施例6中PEI-SH、SA和SA PEI的MTT图。(a)为PEI-SH的MTT图;(b)为SA和SA PEI的MTT图。
图12是实施例7中SA、PEI-SH和SA PEI对RAW 264.7的细胞内ROS含量的影响图。
具体实施方式
实施例1:辛伐他汀酸的合成
首先,在100mL单口瓶中加入含有1g辛伐他汀的10mL乙醇,搅拌至完全溶解后加入45mL 0.1M NaOH,反应在50℃下进行2h。随后,将反应溶液的pH用盐酸调节至中性。利用旋转蒸发仪除去反应液中的乙醇,加入正丁醇萃取SA,有机相经旋转蒸发和真空干燥后得到SA(0.882g,85%),合成路线如图1所示。图2和图3分别是辛伐他汀酸和辛伐他汀的1H NMR和FTIR图。1H NMR中可以看到由于内酯结构的开环,连接羟基的邻位H(e)的峰已经从原来的4.62ppm变为3.64ppm,连接羧基的邻位H(s)的峰从2.71ppm变为2.34ppm。FTIR中1583cm-1处的尖峰是羧酸基团(-COOH)中的-COO-不对称伸缩特征峰,而3363cm-1处的宽峰是由于氢键存在的原因,为羟基(-OH)的伸缩振动吸收峰。
实施例2:活性氧响应性材料PEI-SH的合成
将2mL PEI600加入到装有10mL PBS(pH 8,0.001M EDTA)的25mL单口瓶中,待完全溶解后,加入含有0.04g 2-亚氨基硫烷盐酸盐的5mL PBS(pH 8,0.001M EDTA)。反应在N2和黑暗条件下进行,室温搅拌过夜后加入0.14g DTT,继续反应3h。待反应结束后,将反应液移入透析袋(MWCO 0.5kDa),在去离子水中透析48h后用冻干机冻干,得到粘稠状固体(PEI-SH,0.05g),并保存在-20℃,合成路线如图4所示。图5中578cm-1处的峰代表-S-S-而不是-SH的吸收峰,这是因为不稳定的巯基很容易在空气中交联形成二硫键。我们利用Ellman试剂进一步对PEI-SH中的巯基进行了表征,如图6所示,加入Ellman试剂后的PEI-SH为亮黄色,而PEI600的溶液依然为透明色,说明PEI-SH中成功的引入了巯基,利用L-半胱氨酸的标准曲线计算得到PEI-SH的硫醇化程度为4.7%。
实施例3:SA PEI纳米粒子的制备
以PEI-SH与SA的质量比为10:10制备了SA PEI。首先,在25mL单口瓶中称取10mgPEI-SH,加入5mL去离子水,搅拌使之完全溶解,随后加入0.1M NaBH4并在N2保护下室温继续搅拌3h。用0.1M HCl将反应液调至中性,滴加含有10mg SA的2mL DMSO溶液至反应液中,室温反应5h。最后,将反应液移入透析袋(MWCO 1.0kDa),并用去离子水透析2天得到SA PEI。图7是SA PEI的TEM和DLS图,证实了SAPEI为球形纳米结构,粒径为160nm。图8的纳米粒子稳定性结果证明纳米粒子在一个月内非常稳定,粒径和zeta电位几乎保持不变。
实施例4:SA PEI的载药量及药物释放
将冻干后的SAPEI粉末溶解在含有H2O2的去离子水中,终浓度为0.01mg/mL。高速离心后,将上清液转移到石英比色皿中,25℃条件下观察SA的紫外吸收峰,并根据已建立的标准曲线获得载药量为44.4%。使用透析袋进行了体外药物释放的研究。简而言之,将装在透析袋(MWCO 3.5kDa)中等量的SA PEI溶液浸入含不同浓度H2O2(0,2.5,5,7.5和10mM)的PBS(pH 7.4)中,每个样品的体积为68mL。将实验置于37℃黑暗环境中的摇床上轻轻晃动。在预定的时间点,取3mL透析袋外侧的溶液,同时加入等体积对应的透析液以保持体积恒定。SA的释放量用紫外分光光度计进行测定,并根据标准曲线进行分析。所有数据均以平均值表示,试验重复三次。图9是SA PEI在含有不同浓度H2O2的PBS(pH7.4)中的SA的体外累积释放曲线图,可以发现明显的H2O2依赖性药物释放曲线,说明SA PEI具有H2O2响应性释放药物的特性。
实施例5:SA PEI的血液相容性
将收集的9mL新鲜兔血装入含有1mL 3.8%柠檬酸钠的离心管中,离心(2000rpm,10min)后弃上清,收集底部红细胞,加入PBS洗涤三次,最后将红细胞重悬于10mL PBS中,4℃储存。取100μL红细胞悬液,加入不同浓度的SA PEI在37℃共孵育1h后,将混合液在2000rpm下离心10min,收集上清液,利用UV在540nm处检测上清液内血红蛋白的吸光度。分别研究了PEI-SH(0、2、4、6、8、16、24、32、38μg/mL)、SA(0、2、4、6、8、10、16、24μg/mL)和SAPEI(0、2、4、6、8、10、16、24μg/mL)在不同浓度下的溶血情况。图10说明当PEI-SH的浓度低于32μg/mL时,溶血率均低于公认的5%阈值。与游离SA相比,SA PEI的溶血率在设定的浓度范围内均低于5%,而游离SA的溶血率在浓度高于10μg/mL时就已经超过阈值,说明PEI-SH在一定范围内起到了降低SA溶血毒性的作用。
实施例6:SA PEI的细胞毒性
将RAW 264.7以5×103细胞/孔的密度接种于96孔板中,在恒温恒湿细胞培养箱中过夜培养,随后加入20μL不同浓度的SA PEI(0、0.125、0.25、0.5、1、2、4、8、16、32和64μg/mL)与细胞共培养24h。在避光条件下,向每个孔中加入20μL 1%MTT,继续在37℃培养箱中培养4h后小心吸弃DMEM培养基,每孔加入150μL DMSO溶解甲瓚。使用酶标仪检测每孔在492nm处的吸光度。图11中当PEI-SH浓度不超过16μg/mL时,细胞存活率均高于80%,表现出良好的细胞相容性。与游离SA相比,当SA PEI的浓度≤16μg/mL时,细胞的存活率表现出与PEI-SH相似的趋势,而游离SA的浓度超过4μg/mL时细胞存活率已经低于80%,表明SA PEI起到了显著降低SA细胞毒性的作用。
实施例7:细胞内ROS的水平
为了监测细胞内ROS的水平,采用了DCFH-DA检测法。DCFH-DA进入细胞后能够被细胞内ROS氧化形成具有绿色荧光的2',7'-二氯荧光素(DCF),已被广泛用作测定细胞内ROS的荧光探针。首先,将RAW 264.7(1×105细胞/孔)接种在激光共聚焦培养皿中,待细胞贴壁后加入LPS(4μg/mL),在37℃培养箱中培养36h。随后,用PBS洗去LPS,加入含有SA或SA PEI的新鲜培养基作用3h后,再次洗涤细胞3次,依次用10μM DCFH-DA和1mM Hoechst 33342分别培养30min和5min。最后,除去荧光探针溶液,用共聚焦激光扫描显微镜检测细胞内ROS水平。图12证明SA和SAPEI具有消耗ROS的作用,而PEI-SH的加入并未对细胞内ROS水平产生影响。同时,SAPEI消耗ROS的能力也再次证明SA PEI可以响应于细胞内ROS,实现药物的快速释放。

Claims (3)

1.一种活性氧响应性材料PEI-SH的制备方法,具有以下步骤:将分子量为600的聚乙烯亚胺用PBS溶解后,加入2-亚氨基硫烷盐酸盐,反应在N2和黑暗条件下进行,室温搅拌过夜后加入二硫苏糖醇,继续反应3 h,其中,分子量为600的聚乙烯亚胺、PBS、2-亚氨基硫烷盐酸盐与二硫苏糖醇的质量比为30~70:230~300:1:1~5;待反应结束后,将反应液移入透析袋,在去离子水中透析48 h后用冻干机冻干,得到粘稠状固体活性氧响应性材料PEI-SH,并保存在-20 ℃;所述的PBS是pH为8的磷酸缓冲液,含0.001M 乙二胺四乙酸二钠。
2.一种按权利要求1的方法制备的活性氧响应性材料PEI-SH的应用,其特征在于,将所述的活性氧响应性材料PEI-SH用于制备具有特异性释放药物能力的纳米粒子,步骤为:按1:100~1000的质量比将PEI-SH完全溶解在去离子水中,加入0.1 M的 NaBH4并在N2保护下室温继续搅拌3 h,PEI-SH与NaBH4的质量比按溶质计为1:500~1000,用0.1M的HCl将反应液调至中性,滴加含有抗血栓药物的DMSO溶液至反应液中,按质量计,抗血栓药物:DMSO: PEI-SH=1:2~10:0.1~2,室温反应5 h,最后,将反应液移入透析袋,并用去离子水透析2天得到具有特异性释放抗血栓药物能力的纳米粒子。
3.根据权利要求2所述的一种活性氧响应性材料PEI-SH的应用,其特征在于,所述的抗血栓药物是辛伐他汀酸,按以下方法合成:首先,将辛伐他汀在乙醇中搅拌至完全溶解后加入0.1M NaOH,在50 ℃下反应2 h,随后,将反应溶液的pH用盐酸调节至中性,利用旋转蒸发仪除去反应液中的乙醇,加入正丁醇萃取辛伐他汀酸,其中,辛伐他汀、乙醇、NaOH和正丁醇的质量比为30~90:800~1500:1:500 ~5000,有机相经旋转蒸发和真空干燥后得到辛伐他汀酸。
CN202111427247.8A 2021-11-25 2021-11-25 一种活性氧响应性材料pei-sh的制备方法与应用 Active CN114106321B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111427247.8A CN114106321B (zh) 2021-11-25 2021-11-25 一种活性氧响应性材料pei-sh的制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111427247.8A CN114106321B (zh) 2021-11-25 2021-11-25 一种活性氧响应性材料pei-sh的制备方法与应用

Publications (2)

Publication Number Publication Date
CN114106321A CN114106321A (zh) 2022-03-01
CN114106321B true CN114106321B (zh) 2023-03-14

Family

ID=80370988

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111427247.8A Active CN114106321B (zh) 2021-11-25 2021-11-25 一种活性氧响应性材料pei-sh的制备方法与应用

Country Status (1)

Country Link
CN (1) CN114106321B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110575545B (zh) * 2019-08-12 2022-10-14 湖北大学 具有电荷翻转能力的氧化应激性药物系统及其制备方法
US11974982B2 (en) * 2020-04-03 2024-05-07 The Board Of Trustees Of The University Of Illinois Stimulus-responsive antioxidant crystals and method for their preparation
CN112574415B (zh) * 2020-12-09 2021-10-12 吉林大学 一种活性氧响应性材料及其制备方法与应用
CN113201135B (zh) * 2021-04-28 2022-03-22 吉林大学 一种活性氧响应性材料pam-sh的制备方法与应用

Also Published As

Publication number Publication date
CN114106321A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
TIAN et al. Formulation and biological activity of antineoplastic proteoglycans derived from Mycobacterium vaccae in chitosan nanoparticles
Panos et al. New drug delivery systems based on chitosan
Fresta et al. Pefloxacine mesilate-and ofloxacin-loaded polyethylcyanoacrylate nanoparticles: characterization of the colloidal drug carrier formulation
EP2153826B1 (en) Nanoparticles comprising a cyclodextrin and paclitaxel and uses thereof
Bhadra et al. PEGylated peptide dendrimeric carriers for the delivery of antimalarial drug chloroquine phosphate
US20030035838A1 (en) Drug delivery system exhibiting permeability control
Zheng et al. Biodegradable and redox-responsive chitosan/poly (L-aspartic acid) submicron capsules for transmucosal delivery of proteins and peptides
KR20040037062A (ko) 지질화된 글리코스아미노글리칸 입자 및 그의 진단 및치료용 약물 및 유전자 송달 용도
JP2011524446A (ja) ポリグリコールで修飾されたキトサンオリゴ糖脂肪酸グラフト体、その調製方法およびその使用
CN104146964B (zh) 一种多用途聚赖氨酸荧光自组装纳米微球载体及其制备方法与应用
JP2019513837A (ja) フィトグリコーゲンナノ粒子を含む抗感染症組成物
CN111450258B (zh) 一种促进蛋白药物跨黏液渗透的口服给药系统及其制备
Alamdaran et al. In-vitro study of the novel nanocarrier of chitosan-based nanoparticles conjugated HIV-1 P24 protein-derived peptides
CN113201135B (zh) 一种活性氧响应性材料pam-sh的制备方法与应用
Jagdale et al. Bird's eye view on aquasome: Formulation and application
CN113041220B (zh) 一种以tpgs为载体的柚皮素纳米混悬剂及其制备方法与应用
CN112386584B (zh) 一种细菌响应性兽用恩诺沙星复合纳米系统及其制备方法
CN114106321B (zh) 一种活性氧响应性材料pei-sh的制备方法与应用
CN112370530A (zh) 一种乳铁蛋白修饰的聚乙二醇化氧化石墨烯负载葛根素纳米平台及其制备方法与应用
Song et al. Preparation and evaluation of insulin-loaded nanoparticles based on hydroxypropyl-β-cyclodextrin modified carboxymethyl chitosan for oral delivery
Paul et al. Fatty acid conjugated calcium phosphate nanoparticles for protein delivery
CN114246861B (zh) 一种具有剪切应力响应的载药纳米粒子的制备方法
CN111939256B (zh) 一种具有细菌调理特性的抗菌辅助材料及其制备方法和应用
CN114522150A (zh) 一种pH敏感型植物微胶囊纳米挤出器的制备方法及其应用
CN114146188A (zh) 一种修饰型LMSNs纳米药物载体的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant