CN114100666B - 碳化聚多巴胺包覆钴纳米颗粒材料及其制备和应用方法 - Google Patents

碳化聚多巴胺包覆钴纳米颗粒材料及其制备和应用方法 Download PDF

Info

Publication number
CN114100666B
CN114100666B CN202111553197.8A CN202111553197A CN114100666B CN 114100666 B CN114100666 B CN 114100666B CN 202111553197 A CN202111553197 A CN 202111553197A CN 114100666 B CN114100666 B CN 114100666B
Authority
CN
China
Prior art keywords
nanoparticle material
cobalt
persulfate
coated cobalt
polydopamine coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111553197.8A
Other languages
English (en)
Other versions
CN114100666A (zh
Inventor
林嘉薇
尹怡
郑光明
李丽春
马丽莎
黎嘉惠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pearl River Fisheries Research Institute CAFS
Original Assignee
Pearl River Fisheries Research Institute CAFS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pearl River Fisheries Research Institute CAFS filed Critical Pearl River Fisheries Research Institute CAFS
Priority to CN202111553197.8A priority Critical patent/CN114100666B/zh
Publication of CN114100666A publication Critical patent/CN114100666A/zh
Application granted granted Critical
Publication of CN114100666B publication Critical patent/CN114100666B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

一种碳化聚多巴胺包覆钴纳米颗粒材料及其制备及应用方法,包括:S1、调节Tris‑HCl缓冲溶液的pH至8.5(溶液A),再加入六水合氯化钴,搅拌至完全溶解(溶液B);S2、再加入多巴胺搅拌反应后,离心洗涤、真空干燥后研磨得到物质C;S3、将物质C置于真空管式炉中,在惰性气体保护下烧结即得。本发明制备的材料具有吸附和过硫酸盐催化氧化双功能,其催化作用使得被强烈吸附的污染物原位快速分解,释放出的吸附位点重新吸附残余的有机物,使得更多有机物参与转运过程,提高去除效率,这种吸附‑降解‑吸附循环的模式为去除水环境中的磺胺甲恶唑、双氯芬酸、双酚A、恩诺沙星提供了一种新的去除策略,具有显著的环境效益。

Description

碳化聚多巴胺包覆钴纳米颗粒材料及其制备和应用方法
技术领域
本发明涉及催化活化材料技术领域,尤其涉及一种双功能聚多巴胺衍生氮掺杂碳包覆钴纳米颗粒材料及其制备方法和应用方法。
背景技术
与OH·相比,SO4 具有更高的氧化电位(SO4 =2.5~3.1V,OH·=1.9~2.7V)、更宽的工作pH值范围(2-9)和更长的半衰期(30-40μs),因此,基于SO4 的过硫酸盐高级氧化技术在去除水环境中的污染物应用中越来越收到人们的重视。过硫酸盐活化方式有光、超声波等外加能量活化,过渡金属离子、单质及氧化物活化,碳材料活化等方式。
经众多学者研究论证,钴基材料因其显著的催化降解性能是众多过渡金属基纳米催化剂中最好的一种,值得特别关注。然而,不同的钴基催化剂活性中心的数量有所不同,导致其性能和稳定性有巨大差异,此外,Co(Ⅱ)泄露可对环境造成不可逆的伤害,对人体健康造成威胁。而钴基材料复合碳材料可以提高金属的分散性,减少金属的聚集和流失,提高金属基催化剂的循环稳定性。一般情况下,碳材料结构稳定,呈电中性,不会表现出明显的氧化还原活性,尽管有研究报道,活性炭、多孔碳、富勒烯、石墨烯、碳纳米管均可有效活化过硫酸盐去除水体中的有机污染物,然而,由于其表面活性位点数量较少,所以应用于实际污染水体的治理效果并不理想。
值得一提的是,吸附作用在基于过硫酸盐活化去除污染物的高级氧化技术中具有关键作用,有机物的吸附是决定氧化反应速率的控制步骤。然而,当前研究集中于增加催化反应活性位点数量开发新型过硫酸盐活化催化剂,吸附作用对催化过程的贡献往往被弱化甚至忽视,这在一定程度上限制了高效催化剂的发展进程。
发明内容
为解决上述问题,本发明提供了一种碳化聚多巴胺包覆钴纳米颗粒材料,以及该材料的制备方法和应用方法。
本发明是通过以下技术方案来实现的:
一种碳化聚多巴胺包覆钴纳米颗粒材料的制备方法,包括如下步骤:
S1、在10mmol/L的三(羟甲基)氨基甲烷盐酸盐溶液(Tris-HCl溶液)中加入盐酸调节溶液pH至8.5,得到缓冲溶液A;在缓冲溶液A中加入一定量的六水合氯化钴,搅拌至完全溶解得到溶液B。
S2、将一定量的盐酸多巴胺溶于溶液B中,搅拌反应一段时间后,多巴胺自聚反应生成聚多巴胺,用蒸馏水离心洗涤,再用真空干燥箱进行干燥,干燥结束后研磨得到物质C。此时物质C可为一种黑色粉末。
S3、将物质C(黑色粉末)置于真空管式炉中,在惰性气体保护下烧结得到碳化聚多巴胺包覆钴纳米颗粒材料,亦即双功能聚多巴胺衍生氮掺杂碳包覆钴纳米颗粒。惰性气体可为氮气、氩气或氦气。
聚多巴胺作为一种真黑素仿生大分子,是制备具有高比表面积和孔体积的新型氮掺杂多孔碳的良好前驱体,氮掺杂碳材料表面的含氮官能团能够改善碳材料的亲水性能,提高其在反应介质中的分散度,有利于底物与活性位点更充分的接触,提高催化活性;氮原子上带有孤对电子,这使碳基材料表面的电荷密度增加,增强其给出电子的能力,提高碳材料的化学活性。钴纳米颗粒以包覆的形式负载于氮掺杂碳材料中,提高了分散性并减少了钴离子泄露的风险。本发明制备的纳米颗粒材料具有吸附和过硫酸盐催化氧化双功能,其催化作用使得被强烈吸附的污染物原位快速分解,释放出的吸附位点重新吸附残余的有机物,使得更多有机物参与转运过程,提高去除效率。
进一步地,步骤S2中多巴胺的添加量为2g/L,即添加多巴胺后,多巴胺在溶液体系中的浓度为2g/L。
进一步地,制备体系中,添加的六水合氯化钴的物质的量为盐酸多巴胺物质的量的5%~20%。
进一步地,步骤S2中的反应时间为2-6h,用蒸馏水离心洗涤3-5次,离心的转速为10000-15000r/min,离心时间为5-10min。相比于一般多巴胺的自聚反应,本反应体系中多巴胺的自聚反应时间大大缩短,分析原因可能是钴离子的加入、反应条件的控制等因素导致的。
进一步地,步骤S2中真空干燥的温度为60-100℃,干燥时间为12-24h。
进一步地,步骤S3中的烧结温度为700-1000℃,升温速率为1-5℃/min,在最高温度的保持时间为1-3h。
本发明还保护一种由上述方法制备的碳化聚多巴胺包覆钴纳米颗粒材料,其粒径在30-100nm,其表面具有凹凸结构;该纳米颗粒材料具有聚多巴胺衍生氮掺杂碳包覆钴的包覆结构。
本发明还保护如上述碳化聚多巴胺包覆钴纳米颗粒材料的应用方法,所述纳米颗粒材料应用在催化活化过硫酸盐氧化降解废水中的目标污染物中,所述纳米颗粒材料通过吸附和过硫酸盐催化活化双功能协同发挥作用。多巴胺衍生氮掺杂碳包覆钴纳米颗粒具有吸附和过硫酸盐催化活化双功能,其催化作用使得被强烈吸附的污染物原位快速分解,释放出的吸附位点重新吸附残余的有机物,使得更多有机物参与转运过程,提高去除效率,增强处理效果,这种吸附-降解-吸附循环模式为污染物的高效去除提供了一种新策略。
进一步地,该应用方法可具体为:将一定量的碳化聚多巴胺包覆钴纳米颗粒材料快速超声分散于一定体积的目标污染物废水中,再立即加入一定体积的过硫酸盐溶液进行催化氧化分解反应,以目标污染物的去除率为指标,评价碳化聚多巴胺包覆钴纳米颗粒材料(双功能聚多巴胺衍生氮掺杂碳包覆钴纳米颗粒)去除目标污染物的性能。过硫酸盐在废水中的浓度为0.2~2mmol/L,双功能聚多巴胺衍生氮掺杂碳包覆钴纳米颗粒投加量为0.05~0.2g/L,未调pH,反应时间为1~15min。过硫酸盐可为过硫酸钾、过硫酸钠和过硫酸氨中的一种。
进一步地,所述目标污染物包括磺胺甲恶唑、恩诺沙星、双酚A、双氯芬酸等磺胺类和氟喹诺酮类抗菌药物、内分泌干扰物及消炎镇痛药物。
本发明的优点在于:
(1)本发明创造性建立了一种全程零有机溶剂、绿色高效、具吸附与过硫酸盐催化活化双功能的新型碳化聚多巴胺包覆钴纳米颗粒材料的合成方法,该合成方法原料易得,过程简单易操作,反应时间短,易于实现。
(2)本发明合成的新型碳化聚多巴胺包覆钴纳米颗粒材料具有很强的磁性,可解决粉体催化剂难分离回收及循环利用差的技术瓶颈;包覆结构也有利于减少Co(Ⅱ)溶出,延长催化剂使用寿命;该材料具有吸附和催化活化双重功能,双功能间存在协同效应,氮掺杂碳的改性方式有利于吸附和催化活化双功能的发挥。
(3)本发明构建的新型碳化聚多巴胺包覆钴纳米颗粒材料/过硫酸盐催化氧化体系能够快速高效的去除水环境中的磺胺甲恶唑、恩诺沙星、双酚A、双氯芬酸,为基于SO4 的高级氧化技术实际应用于污染水体修复提供了坚实的实验基础,可产生较好的经济效益和社会效益。
(4)本发明提供了一种吸附-降解-吸附循环模式为水环境中的污染物高效去除新策略,为水环境污染修复提供了技术支撑。
附图说明
图1为实施例1制备的双功能纳米颗粒材料的XRD图;
图2为实施例1制备的双功能纳米颗粒材料的SEM图;
图3为实施例1制备的双功能纳米颗粒材料的HRTEM图;
图4为实施例1制备的双功能纳米颗粒材料的XPS总谱图
图5为实施例1制备的双功能纳米颗粒材料的EDS图
图6为实施例1制备的双功能纳米颗粒材料在吸附、降解、吸附协同降解体系中对磺胺甲恶唑的去除动力学曲线(磺胺甲恶唑浓度=10mg/L,双功能纳米颗粒材料投加量=0.2g/L,过硫酸钠浓度=0.4mM)
图7为实施例1制备的双功能纳米颗粒材料对磺胺甲恶唑、双氯芬酸、双酚A、恩诺沙星的去除动力学曲线(污染物浓度=10mg/L,双功能纳米颗粒材料投加量=0.2g/L,过硫酸钠浓度=0.4mM)
具体实施方式
实施例1
以100mL物质的量浓度为10mmol/L的Tris-HCl缓冲溶液(pH=8.5)为分散介质,在搅拌下加入28.6mgCoCl2·6H2O,待溶解完全后加入0.2g盐酸多巴胺,反应6h后,经蒸馏水离心洗涤(离心转速10000r/min,离心时间10min)后,将产物在80℃下真空干燥12h,干燥结束后经玛瑙研钵研磨,放置于真空管式炉并在氮气氛围中升温至800℃,升温速率为5℃/min,保温2h得到本发明的目的产物,即新型碳化聚多巴胺包覆钴纳米颗粒材料(双功能聚多巴胺衍生氮掺杂碳包覆钴纳米颗粒材料)。
由图1的XRD图可看出本实施例制备的材料呈现的衍射峰分别对应石墨碳(PDF#00-023-0064)、立方钴晶相(PDF#04-005-9656)和六方钴晶相(PDF#01-089-7373),对应的衍射峰强度较高,且图谱中未观察到其他的杂质峰,表明碳材料复合钴基材料合成成功且合成晶体纯度高。图2的SEM图可看出本实施例制备的材料直径在30-100nm,颗粒表面凹凸不平,比表面积较大,具有较为丰富的吸附位点。HRTEM图谱(图3(a))可见到明显的钴纳米颗粒包覆结构,这一结合方式降低了Co(Ⅱ)对环境造成不可逆伤害的风险,并有利于催化剂的循环稳定性。图3(b)和图3(c)可看到六方钴和四方钴晶体的衍射条纹,这与XRD结果一致。从XPS总谱图(图4)可见N1s、O1s、C1s、及Co2p的特征峰,说明材料中含有碳、氮、氧及钴元素。由图5的EDS图可看出各元素之间分散性良好,减少了元素集聚导致的活性位点数量减少。综合图4和图5结果表明,XRD中的石墨碳物相为氮掺杂碳。
本实例制备得到的新型聚多巴胺掺杂碳包覆钴纳米颗粒材料用于催化活化过硫酸钠降解废水中的磺胺甲恶唑:将20mg双功能聚多巴胺衍生氮掺杂碳包覆钴纳米颗粒迅速超声分散于100mL、10mg/L的磺胺甲恶唑中,立即加入一定体积的过硫酸钠储备溶液,使过硫酸钠的分散浓度为0.4mmol/L,反应12min后,对目标污染物磺胺甲恶唑的去除率为100%。
图6是本实施例制备的双功能材料在吸附、降解、吸附协同降解体系中对磺胺甲恶唑的去除动力学曲线,可看出双功能纳米颗粒材料的吸附和催化活化过硫酸盐降解作用之间存在协同效应,当吸附和降解同时作用时,15min内便可完全去除体系中的磺胺甲恶唑,相比于单一的吸附和降解体系,污染物去除效率有了极大提升。
图7是本实施例制备的双功能材料对磺胺甲恶唑、双氯芬酸、双酚A、恩诺沙星的去除动力学曲线,可看出在相同的目标污染物浓度、双功能材料浓度、过硫酸物浓度的条件下,本实施例制备的双功能材料对上述四种目标污染物均有较强的去除效果,体系作用15min,对双氯芬酸的去除率为92%,对磺胺甲恶唑、双酚A和恩诺沙星均可达到100%的去除率。
实施例2
以100mL物质的量浓度为10mmol/L的Tris-HCl缓冲溶液(pH=8.5)为分散介质,在搅拌下加入28.6mgCoCl2·6H2O,待溶解完全后加入0.2g盐酸多巴胺,反应6h后,经蒸馏水离心洗涤后(离心转速15000r/min,离心时间5min),将产物在60℃下真空干燥24h,干燥结束后经玛瑙研钵研磨,放置于真空管式炉并在氦气氛围中升温至1000℃,升温速率为1℃/min,保温1h得到本发明的目的产物,即新型碳化聚多巴胺包覆钴纳米颗粒材料(双功能聚多巴胺衍生氮掺杂碳包覆钴纳米颗粒材料)。
新型碳化聚多巴胺包覆钴纳米颗粒材料用于催化活化过硫酸盐降解废水中的双酚A:将15mg双功能聚多巴胺衍生氮掺杂碳包覆钴纳米颗粒迅速超声分散于100mL、10mg/L的双酚A中,立即加入一定体积的过硫酸钠储备溶液,使过硫酸钠的分散浓度为0.8mmol/L,反应6min后,对目标污染物双酚A的去除率为100%。
实施例3
以100mL物质的量浓度为10mmol/L的Tris-HCl缓冲溶液(pH=8.5)为分散介质,在搅拌下加入42.9mgCoCl2·6H2O,待溶解完全后加入0.2g盐酸多巴胺,反应4h后,经蒸馏水离心洗涤后(离心转速12000r/min,离心时间8min),将产物在100℃下真空干燥12h,干燥结束后经玛瑙研钵研磨,放置于真空管式炉并在氩气氛围中升温至700℃,升温速率为3℃/min,保温3h得到目的产物,即新型碳化聚多巴胺包覆钴纳米颗粒材料(双功能聚多巴胺衍生氮掺杂碳包覆钴纳米颗粒材料)。
本实例制备得到的新型碳化聚多巴胺包覆钴纳米颗粒材料用于催化活化过硫酸盐降解废水中的双氯芬酸:将15mg双功能聚多巴胺衍生氮掺杂碳包覆钴纳米颗粒迅速超声分散于100mL、10mg/L的双氯芬酸中,立即加入一定体积的过硫酸钾储备溶液,使过硫酸钾的分散浓度为0.8mmol/L,反应9min后,对目标污染物双氯芬酸的去除率为100%。
实施例4
以100mL物质的量浓度为10mmol/L的Tris-HCl缓冲溶液(pH=8.5)为分散介质,在搅拌下加入57.2mgCoCl2·6H2O,待溶解完全后加入0.2g盐酸多巴胺,反应2h后,经蒸馏水离心洗涤后(离心转速12000r/min,离心时间10min),将产物在80℃下真空干燥18h,干燥结束后经玛瑙研钵研磨,放置于真空管式炉并在氮气氛围中升温至900℃,升温速率为3℃/min,保温2h得到目的产物,即新型碳化聚多巴胺包覆钴纳米颗粒材料(双功能聚多巴胺衍生氮掺杂碳包覆钴纳米颗粒材料)。
本实例制备得到的新型碳化聚多巴胺包覆钴纳米颗粒材料用于催化活化过硫酸盐降解废水中的恩诺沙星:将10mg双功能聚多巴胺衍生氮掺杂碳包覆钴纳米颗粒迅速超声分散于100mL、10mg/L的恩诺沙星中,立即加入一定体积的过硫酸铵储备溶液,使过硫酸盐铵的分散浓度为2mmol/L,反应3min后,对目标污染物恩诺沙星的去除率为100%。
上列详细说明是针对本发明可行实施例的具体说明,该实施例并非用以限制本发明的专利范围,凡未脱离本发明所为的等效实施或变更,均应包含于本案的专利范围中。

Claims (3)

1.一种碳化聚多巴胺包覆钴纳米颗粒材料在催化活化过硫酸盐氧化降解磺胺甲恶唑、恩诺沙星、双酚A或双氯芬酸中的应用,其特征在于,所述纳米颗粒材料的粒径在30-100nm,所述碳化聚多巴胺包覆钴纳米颗粒材料为碳化聚多巴胺包覆的钴单质复合材料,所述钴单质包括六方钴和四方钴两种晶体;
所述碳化聚多巴胺包覆钴纳米颗粒材料的制备方法包括如下步骤:
S1、在10mmol/L的三(羟甲基)氨基甲烷盐酸盐溶液中加入盐酸调节溶液pH至8.5,得到缓冲溶液A;在缓冲溶液A中加入一定量的六水合氯化钴,搅拌至完全溶解得到溶液B;
S2、将一定量的盐酸多巴胺溶于溶液B中,搅拌反应一段时间后,用蒸馏水离心洗涤,再用真空干燥箱干燥,研磨后得到物质C;
S3、将物质C置于真空管式炉中,在惰性气体保护下烧结得到碳化聚多巴胺包覆钴纳米颗粒材料;
步骤S2中盐酸多巴胺的添加量为2g/L;添加的六水合氯化钴的物质的量为盐酸多巴胺物质的量的5%-20%;
步骤S2中的反应时间为2-6h,用蒸馏水离心洗涤3-5次,离心的转速为10000-15000r/min,离心时间为5-10min;
步骤S3中的烧结温度为700-1000℃,升温速率为1-5℃/min,在最高温度的保持时间为1-3h。
2.根据权利要求1所述的一种碳化聚多巴胺包覆钴纳米颗粒材料在催化活化过硫酸盐氧化降解磺胺甲恶唑、恩诺沙星、双酚A或双氯芬酸中的应用,其特征在于,步骤S2中真空干燥的温度为60-100℃,干燥时间为12-24h。
3.根据权利要求1所述的一种碳化聚多巴胺包覆钴纳米颗粒材料在催化活化过硫酸盐氧化降解磺胺甲恶唑、恩诺沙星、双酚A或双氯芬酸中的应用,其特征在于,所述纳米颗粒材料通过吸附和过硫酸盐催化活化双功能协同发挥作用;
其应用为:将一定量的碳化聚多巴胺包覆钴纳米颗粒材料快速超声分散于一定体积的目标污染物废水中后,立即加入一定体积的过硫酸盐溶液进行催化氧化分解反应;以目标污染物的去除率为指标,评价碳化聚多巴胺包覆钴纳米颗粒材料去除目标污染物的性能;过硫酸盐在废水中的浓度为0.2-2mmol/L,碳化聚多巴胺包覆钴纳米颗粒材料投加量为0.05-0.2g/L,未调pH,反应时间为1-15min;所述目标污染物为磺胺甲恶唑、恩诺沙星、双酚A或双氯芬酸。
CN202111553197.8A 2021-12-17 2021-12-17 碳化聚多巴胺包覆钴纳米颗粒材料及其制备和应用方法 Active CN114100666B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111553197.8A CN114100666B (zh) 2021-12-17 2021-12-17 碳化聚多巴胺包覆钴纳米颗粒材料及其制备和应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111553197.8A CN114100666B (zh) 2021-12-17 2021-12-17 碳化聚多巴胺包覆钴纳米颗粒材料及其制备和应用方法

Publications (2)

Publication Number Publication Date
CN114100666A CN114100666A (zh) 2022-03-01
CN114100666B true CN114100666B (zh) 2024-01-23

Family

ID=80365566

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111553197.8A Active CN114100666B (zh) 2021-12-17 2021-12-17 碳化聚多巴胺包覆钴纳米颗粒材料及其制备和应用方法

Country Status (1)

Country Link
CN (1) CN114100666B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115149011B (zh) * 2022-07-04 2024-09-24 安徽理工大学 一种过渡金属基双壳层碳纳米盒的制备方法和用途
CN118079941A (zh) * 2024-01-16 2024-05-28 洛阳师范学院 一种难熔金属掺杂钴基催化剂的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106093245A (zh) * 2016-07-12 2016-11-09 中国水产科学研究院珠江水产研究所 地表水内酚类化合物的气相色谱‑质谱测定方法
CN106984261A (zh) * 2017-05-16 2017-07-28 浙江工业大学 一种CoFe2O4/N/C空心纳米球及其制备与应用
CN112403501A (zh) * 2020-10-20 2021-02-26 上海大学 具有超低钴原子含量的多孔氮掺杂碳球材料、其制备方法及其应用
CN113101962A (zh) * 2021-04-25 2021-07-13 山西中科国蕴环保科技有限公司 一种用于活化过硫酸盐的多孔碳层保护催化剂、制备方法及应用
KR20210097250A (ko) * 2020-01-29 2021-08-09 한국과학기술연구원 리튬이온전지용 Ni-rich 층상계 양극재료, 이의 제조방법 및 이를 포함하는 리튬이온전지
CN113318770A (zh) * 2021-07-02 2021-08-31 河北建设集团股份有限公司 一种活化过硫酸盐的钴氮掺杂碳化木材海绵催化剂的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835605B2 (en) * 2015-10-01 2020-11-17 University Of South Carolina Preparations of poly(lactic-co-glycolic acid)/polydopamine core/shell hybrid nanoparticle for photothermal applications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106093245A (zh) * 2016-07-12 2016-11-09 中国水产科学研究院珠江水产研究所 地表水内酚类化合物的气相色谱‑质谱测定方法
CN106984261A (zh) * 2017-05-16 2017-07-28 浙江工业大学 一种CoFe2O4/N/C空心纳米球及其制备与应用
KR20210097250A (ko) * 2020-01-29 2021-08-09 한국과학기술연구원 리튬이온전지용 Ni-rich 층상계 양극재료, 이의 제조방법 및 이를 포함하는 리튬이온전지
CN112403501A (zh) * 2020-10-20 2021-02-26 上海大学 具有超低钴原子含量的多孔氮掺杂碳球材料、其制备方法及其应用
CN113101962A (zh) * 2021-04-25 2021-07-13 山西中科国蕴环保科技有限公司 一种用于活化过硫酸盐的多孔碳层保护催化剂、制备方法及应用
CN113318770A (zh) * 2021-07-02 2021-08-31 河北建设集团股份有限公司 一种活化过硫酸盐的钴氮掺杂碳化木材海绵催化剂的制备方法

Also Published As

Publication number Publication date
CN114100666A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
Zhou et al. Single atom Mn anchored on N-doped porous carbon derived from spirulina for catalyzed peroxymonosulfate to degradation of emerging organic pollutants
Li et al. Novel magnetic biochar as an activator for peroxymonosulfate to degrade bisphenol A: Emphasizing the synergistic effect between graphitized structure and CoFe2O4
Lai et al. Fabrication of novel magnetic MnFe2O4/bio-char composite and heterogeneous photo-Fenton degradation of tetracycline in near neutral pH
Li et al. Solvent-free method to encapsulate polyoxometalate into metal-organic frameworks as efficient and recyclable photocatalyst for harmful sulfamethazine degrading in water
CN111097414B (zh) 一种多孔材料负载超细纳米零价铁的简单方法
CN111790422B (zh) 一种石墨化基氮络合的Fe(III)-Fe0催化剂及其合成方法和应用
Huang et al. In-situ fabrication from MOFs derived MnxCo3-x@ C modified graphite felt cathode for efficient electro-Fenton degradation of ciprofloxacin
Zhang et al. Insight into peroxymonosulfate assisted photocatalysis over Fe2O3 modified TiO2/diatomite composite for highly efficient removal of ciprofloxacin
CN114100666B (zh) 碳化聚多巴胺包覆钴纳米颗粒材料及其制备和应用方法
Wang et al. A novel partially carbonized Fe3O4@ PANI-p catalyst for tetracycline degradation via peroxymonosulfate activation
Wang et al. Highly dispersed Ag and g-C3N4 quantum dots co-decorated 3D hierarchical Fe3O4 hollow microspheres for solar-light-driven pharmaceutical pollutants degradation in natural water matrix
Mao et al. Adsorption and photocatalysis removal of arsenite, arsenate, and hexavalent chromium in water by the carbonized composite of manganese-crosslinked sodium alginate
CN112607832B (zh) 一种纳米零价铁碳材料及其制备方法和应用
Luo et al. A dual-MOFs (Fe and Co)/g-C3N4 heterostructure composite for high-efficiently activating peroxymonosulfate in degradation of sertraline in water
Bao et al. Mo2C/C catalyst as efficient peroxymonosulfate activator for carbamazepine degradation
Cao et al. Covalent organic frameworks derived carbon supported cobalt ultra-small particles: CO and Co-Nx complex sites activated peroxymonosulfate synergistically for efficient degradation of levofloxacin
Guo et al. ZIF-derived CoFe2O4/Fe2O3 combined with g-C3N4 as high-efficient photocatalysts for enhanced degradation of levofloxacin in the presence of peroxymonosulfate
Xu et al. Catalytic ozonation with biogenic Fe-Mn-Co oxides: Biosynthesis protocol and catalytic performance
An et al. Fe-doped g-C3N4 synthesized by supramolecular preorganization for enhanced photo-Fenton activity
Zhang et al. Enhanced photocatalytic removal of antibiotics over graphitic carbon nitride induced by acetic acid post-treatment
Chen et al. Cu-O-incorporation design for promoted heterogeneous catalysis: synergistic effect of surface adsorption and catalysis towards efficient bisphenol A removal
Guo et al. Construction of Fe2+/Fe3+ cycle system at dual-defective carbon nitride interfaces for photogenerated electron utilization
Yang et al. Strong coupling of super-hydrophilic and vacancy-rich g-C3N4 and LDH heterostructure for wastewater purification: Adsorption-driven oxidation
CN113441142B (zh) 一种富含氧空位的石墨烯负载多孔纳米氧化铁电催化剂的制备方法及应用
Zhang et al. Porous pie-like nitrogen-doped biochar as a metal-free peroxymonosulfate activator for sulfamethoxazole degradation: Performance, DFT calculation and mechanism

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant