CN114100644A - 一种固体酸催化分离一体化填料及其制备方法和应用 - Google Patents

一种固体酸催化分离一体化填料及其制备方法和应用 Download PDF

Info

Publication number
CN114100644A
CN114100644A CN202111268534.9A CN202111268534A CN114100644A CN 114100644 A CN114100644 A CN 114100644A CN 202111268534 A CN202111268534 A CN 202111268534A CN 114100644 A CN114100644 A CN 114100644A
Authority
CN
China
Prior art keywords
acid
molecular sieve
silicon
solid acid
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111268534.9A
Other languages
English (en)
Inventor
张劲松
矫义来
高鑫
范晓雷
杨振明
沈恒宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN202111268534.9A priority Critical patent/CN114100644A/zh
Publication of CN114100644A publication Critical patent/CN114100644A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/30Loose or shaped packing elements, e.g. Raschig rings or Berl saddles, for pouring into the apparatus for mass or heat transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/16Fractionating columns in which vapour bubbles through liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/32Other features of fractionating columns ; Constructional details of fractionating columns not provided for in groups B01D3/16 - B01D3/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0341Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/166Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/52Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C67/54Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明属于催化分离领域,具体为一种固体酸催化分离一体化填料及其制备方法和应用。以规整填料为载体,以高硅分子筛为活性涂层,并以磷钨酸、磷钼酸、硅钨酸、硅钼酸等杂多酸或磷钨酸盐、磷钼酸盐、硅钨酸盐、硅钼酸盐等杂多酸盐或氧化锆、氧化钨、氧化铌等超强酸对高硅分子筛涂层进一步修饰,形成具有固体酸催化性能和分离特性的规整催化分离填料。本发明解决了常规固体酸催化剂不具备宏观几何外形、不易分离操作,高温环境不稳定的问题,实现催化和精馏的原位耦合,高度融合固体酸催化剂的环保优势和规整填料的高理论塔板数优势,可在保证绿色合成的前提下,提高催化精馏效率。

Description

一种固体酸催化分离一体化填料及其制备方法和应用
技术领域
本发明属于催化分离领域,具体为一种固体酸催化分离一体化填料及其制备方法和应用。
背景技术
反应精馏技术被认为是过程耦合强化概念在化工领域应用最为成功的经典案例之一,其将反应与精馏耦合集成于同一设备同时进行,为受化学平衡限制的化学反应过程强化带来了巨大的进步。然而,在催化精馏过程中所使用的催化分离材料的性能与结构成为限制这一过程广泛应用的瓶颈难题。通常,催化精馏过程使用强酸(如:硫酸)作为催化剂,副反应多,产品等级不高,设备腐蚀严重,产生大量含酸废水,污染环境,且催化剂不能重复使用。因此,亟需一种新型固体酸催化剂以解决液体酸催化剂带来的问题。然而,迄今为止,唯一商品化的用于酯化反应的固体酸催化剂只有阳离子交换树脂,但它缺乏足够的机械强度和热稳定性,且会膨胀失活,限制了通过提高反应温度来提高反应物转化率的可能。另外,阳离子交换树脂不能制备成规整结构,限制了其分离效果。
最近,沸石尤其是等级孔沸石,由于可以提供大量的可接触的
Figure BDA0003327818270000011
酸性位,在催化酯化反应方面表现优异。但相对于硫酸和阳离子交换树脂,其酸强度还稍弱,催化活性还有待进一步提高。杂多酸是一种固体超强酸,由于具有强而均一的质子酸特性和独特的“准液相”行为在酸催化反应中表现优异。但是,纯杂多酸比表面积小(<10m2/g),且易溶于极性溶剂,使得回收及重复使用困难,限制了其作为多相催化剂使用。将杂多酸分散于等级孔沸石孔道内,不仅可以与沸石表面
Figure BDA0003327818270000012
酸性位协同作用提高沸石酸强度,还可以通过等级孔道限制杂多酸流失,在乙酸正丁酯、乙酸异丁酯酯化反应合成中表现出良好的稳定性、活性和产物选择性。如果进一步将杂多酸修饰等级孔沸石负载到规整结构填料表面制成结构化沸石催化剂并应于反应精馏过程,不仅可以利用载体的分散作用将沸石稳定化并提高其利用率,还可以改善催化反应精馏体系中流体传递性能,在保持沸石高反应活性、高目标选择性等优点的前提下,有利于开发新的反应技术和过程集成技术,提高乳酸乙酯生产的节能、高效、清洁、安全水平。
泡沫碳化硅是一种高导热能力、高化学稳定性的结构化载体材料。中国科学院金属研究所在多个国家课题支持下,研发出具有全部自主知识产权的高性能、低成本泡沫碳化硅制备技术,并开展了泡沫碳化硅基结构化沸石催化剂在甲醇制丙烯反应中的应用研究,为开发具有工业应用价值的新型乳酸乙酯合成结构化催化剂奠定了良好的基础。最近,中国科学院金属研究所和天津大学合作开展了结构化沸石催化剂固定床连续流催化合成乙酸正戊酯的研究,对比了间歇反应与平推流反应两种装置,建立了反应动力学模型,该模型与实验显示出良好的一致性。近期,中国科学院金属研究所发明了一种高强度二维陶瓷丝网材料及其制备方法(申请公布号:CN 112174678 A)。该材料宏观上为一层或多层的平薄片或波纹片结构,丝网网丝自身为实心或空心结构,网丝所围的丝网孔孔径为2~60目,丝网孔面积占比为50%~95%,其组成材质优选但不限于碳化硅和/或氮化硅陶瓷,制备方法优选但不限于反应烧结。该材料作为规整填料使用,相对于金属规整填料,具有强度高、耐高温、耐腐蚀、耐氧化等特点,解决制造苛刻环境服役的工业装置或零部件所需丝网结构基础材料的力学强度低、不耐腐蚀、不耐高温等问题。发展以规整填料、特别是以多孔碳化硅为载体的结构化功能化修饰等级孔沸石催化剂(以下简称结构化沸石催化剂),对于提高我国溶剂绿色化和制备绿色化具有重要意义。
发明内容
为了解决上述阳离子交换树脂、分子筛催化剂和杂多酸催化剂存在的的局限性,本发明的目的在于提供一种具有固体酸特性、兼具催化和分离功能的结构化固体酸催化分离一体化填料及其制备方法和应用。
本发明的技术方案是:
一种固体酸催化分离一体化填料,以规整填料为载体,以高硅分子筛为活性涂层,并以杂多酸或杂多酸盐或超强酸对高硅分子筛涂层进一步修饰,形成具有固体酸催化性能和分离特性的规整催化分离填料;其中,杂多酸为磷钨酸、磷钼酸、硅钨酸或硅钼酸,杂多酸盐为磷钨酸盐、磷钼酸盐、硅钨酸盐或硅钼酸盐,超强酸为氧化锆、氧化钨或氧化铌。
所述的固体酸催化分离一体化填料,高硅分子筛涂覆于载体表面,分子筛涂层的厚度为5~100微米。
所述的固体酸催化分离一体化填料,分子筛的负载量为5~50wt%;杂多酸或杂多酸盐或超强酸的负载量为1~30wt%。
所述的固体酸催化分离一体化填料,规整填料为商业化的金属丝网填料或陶瓷丝网填料。
所述的固体酸催化分离一体化填料,陶瓷丝网填料宏观上为一层或两层以上叠合的平薄片或波纹片结构,陶瓷丝网填料的网丝自身为实心或空心结构,网丝所围的丝网孔孔径为2~60目,丝网孔面积占比为50%~95%,其组成材质优选但不限于碳化硅和/或氮化硅陶瓷,制备方法优选但不限于反应烧结。
所述的固体酸催化分离一体化填料,高硅分子筛为高硅MFI型沸石分子筛、高硅beta型沸石分子筛、高硅Y型沸石分子筛、MCM-41分子筛、高硅SBA-15分子筛、微孔二氧化硅或介孔二氧化硅。
所述的固体酸催化分离一体化填料,高硅MFI型沸石分子筛的硅铝原子比大于50,高硅beta型沸石分子筛的硅铝原子比大于20,高硅Y型沸石分子筛的硅铝原子比大于20。
所述的固体酸催化分离一体化填料的制备方法,包括如下步骤:
(1)通过原位水热合成,或涂覆,或涂覆结合蒸汽转晶,或涂覆结合水热转晶的方法,将高硅分子筛以涂层形式负载于规整填料表面;
(2)通过水热合成、浸渍或离子交换的方法,将杂多酸、杂多酸盐或超强酸负载于分子筛孔道中和表面。
所述的固体酸催化分离一体化填料的应用,固体酸催化分离一体化填料作为催化剂,用于催化精馏合成乳酸乙酯、丙二酸、乙酸乙酯和醋酸二甲酯的过程中。
本发明的设计思想是:
针对目前工业上生产各类酯多是以液体酸(如:硫酸)为催化剂,会带来设备腐蚀以及含酸废水处理的问题。树脂类固体强酸催化剂,虽然活性较高,但其热稳定性差、结构难以加工的问题。杂多酸修饰等级孔沸石可以提供大量可接触的酸性位,在酯化、水解和合成反应中表现出优异性能,成为替代树脂类固体酸催化剂的一种选择。如果进一步将杂多酸修饰等级孔沸石负载到泡沫碳化硅(SiC)载体表面制成结构化沸石催化材料,使催化材料兼具固体酸特性和结构可调变性的特点,实现催化材料设计和分离材料结构设计的结合,对于实现乳酸乙酯低碳、绿色合成具有重要意义。
本发明具有如下优点及有益效果:
(1)高硅介孔分子筛具有一定的固体酸特性和介孔结构来限域锚定杂多酸、杂多酸盐和氧化锆、氧化钨、氧化铌等纳米粒子。本发明通过酸性位的协同作用,达到协同高效催化的目的。同时,高硅介孔分子筛具有良好的耐酸特性,适用于酸性介质下的酯化反应、水解反应等。
(2)将上述活性组分负载于具有规整结构的载体上,解决了常规固体酸催化剂不具备宏观几何外形、不易分离操作,高温环境不稳定的问题。从而,实现催化和精馏的原位耦合,高度融合固体酸催化剂的环保优势和规整填料的高理论塔板数优势,可在保证绿色合成的前提下,提高催化精馏效率。
附图说明
图1为泡沫碳化硅规整填料作为载体,在其上负载高硅Y型分子筛作为活性组分,又通过杂多酸修饰高硅Y型分子筛所得的固体酸催化分离一体化填料实物图及扫描及投射电镜图。其中,(a)为波纹板精馏填料实物图,(b)为泡沫碳化硅骨架扫面电镜图,(c)为高硅分子筛涂层扫描电镜图,(d)为高硅分子筛透射电镜图,(e)为杂多酸负载于高硅分子筛介孔中的透射电镜图和结构示意图。
具体实施方式
在具体实施过程中,本发明方法以规整填料为载体,以高硅分子筛为活性涂层,并以磷钨酸、磷钼酸、硅钨酸、硅钼酸等杂多酸或磷钨酸盐、磷钼酸盐、硅钨酸盐、硅钼酸盐等杂多酸盐或氧化锆、氧化钨、氧化铌等超强酸对高硅分子筛涂层进一步修饰而形成的具有固体酸催化性能和分离特性的规整催化分离填料,作为催化剂。
该催化剂的制备方法如下:(1)通过原位水热合成、涂覆,涂覆结合蒸汽转晶或涂覆结合水热转晶的方法将高硅多级孔分子筛以涂层形式负载于规整填料表面。(2)通过水热合成、浸渍、或离子交换等方法将上述杂多酸、杂多酸盐或超强酸负载于分子筛孔道中和表面。
下面,通过实施例对本发明进一步详细阐述。
实施例1
本实施例中,以泡沫碳化硅陶瓷为载体,泡沫碳化硅载体具有三维连通孔道结构,孔径1毫米,孔体积分数70%。泡沫碳化硅载体表面涂覆高硅Y型介孔分子筛涂层,Y型分子筛的硅铝原子比为40;分子筛涂层的厚度为30微米,通过浸渍方法在分子筛涂层中负载硅钨酸,获得固体酸催化分离一体化填料。其中,分子筛的负载量为20wt%;硅钨酸的负载量为5wt%。
实施例2
本实施例中,以碳化硅丝网填料为载体,碳化硅丝网填料宏观上为一层或多层的平薄片或波纹片结构,网丝所围的丝网孔孔径为10目,丝网孔面积占比为75%。碳化硅丝网填料载体表面水热合成高硅ZSM-5型介孔分子筛涂层,ZSM-5型分子筛的硅铝原子比为200;分子筛涂层的厚度为80微米,通过离子交换方法在分子筛涂层中负载磷钼酸,获得固体酸催化分离一体化填料。其中,分子筛的负载量为30wt%;磷钼酸的负载量为23wt%。
实施例3
本实施例中,以金属丝网填料为载体,金属丝网填料宏观上为一层或多层的平薄片或波纹片结构,网丝所围的丝网孔孔径为60目,丝网孔面积占比为95%。金属丝网填料载体表面涂覆全硅silicalite-1型介孔分子筛涂层;分子筛涂层的厚度为100微米,通过水热合成方法在分子筛涂层中负载磷钨酸,获得固体酸催化分离一体化填料。其中,分子筛的负载量为30wt%;磷钨酸的负载量为15wt%。
实施例4
本实施例中,以金属波纹板填料为载体,金属波纹板填料宏观上为一层或多层的平薄片或波纹片结构。金属波纹板表面通过涂覆结合蒸汽相转化法负载beta型介孔分子筛涂层;分子筛涂层的厚度为10微米,通过浸渍方法在分子筛涂层中负载氧化锆,获得固体酸催化分离一体化填料。其中,分子筛的负载量为10wt%;氧化锆的负载量为8wt%。
实施例5
本实施例中,以泡沫碳化硅陶瓷为载体,泡沫碳化硅载体具有三维连通孔道结构,孔径1毫米,孔体积分数70%。泡沫碳化硅载体表面涂覆高硅Y型介孔分子筛涂层,Y型分子筛的硅铝原子比为100;分子筛涂层的厚度为20微米,通过浸渍方法在分子筛涂层中负载氧化钨,获得固体酸催化分离一体化填料。其中,分子筛的负载量为20wt%;氧化钨的负载量为8wt%。
实施例6
本实施例中,以碳化硅丝网填料为载体,碳化硅丝网填料宏观上为一层或多层的平薄片或波纹片结构,网丝所围的丝网孔孔径为10目,丝网孔面积占比为75%。碳化硅丝网填料载体表面水热合成高硅ZSM-5型介孔分子筛涂层,ZSM-5型分子筛的硅铝原子比为500;分子筛涂层的厚度为30微米,通过离子交换方法在分子筛涂层中负载氧化铌,获得固体酸催化分离一体化填料。其中,分子筛的负载量为30wt%;氧化铌的负载量为23wt%。
应用例
本应用例采用实施例1-6中得到的结构化固体酸作为催化剂,以乳酸乙酯、丙二酸、乙酸乙酯和醋酸二甲酯合成作为探针反应,结构化固体酸催化剂装填量为10升,结果见表1。
表1催化剂性能表
Figure BDA0003327818270000051
Figure BDA0003327818270000061
如图1所示,碳化硅规整填料宏观上具有波纹板结构,进一步观察可以看出每一片波纹板由三维联通的网孔组成,网孔尺度在毫米级。在毫米级网孔筋表面负载有厚度几十微米的分子筛涂层,分子筛涂层有几百纳米的分子筛颗粒组成。进一步通过投射电镜分析,几百纳米的分子筛晶体内部具有十几纳米的介孔,几纳米的杂多酸粒子被限域锚定在分子筛介孔孔道之中。
上述材料兼具催化与分离功能,实现了宏观结构设计和微观活性组分一体化设计。本发明结构化固体酸催化分离填料在催化精馏合成乳酸乙酯、丙二酸、乙酸乙酯和醋酸二甲酯等过程中表现出高活性、高目标产物选择性和高稳定性等优异性能。

Claims (9)

1.一种固体酸催化分离一体化填料,其特征在于,以规整填料为载体,以高硅分子筛为活性涂层,并以杂多酸或杂多酸盐或超强酸对高硅分子筛涂层进一步修饰,形成具有固体酸催化性能和分离特性的规整催化分离填料;其中,杂多酸为磷钨酸、磷钼酸、硅钨酸或硅钼酸,杂多酸盐为磷钨酸盐、磷钼酸盐、硅钨酸盐或硅钼酸盐,超强酸为氧化锆、氧化钨或氧化铌。
2.按照权利要求1所述的固体酸催化分离一体化填料,其特征在于,高硅分子筛涂覆于载体表面,分子筛涂层的厚度为5~100微米。
3.按照权利要求1所述的固体酸催化分离一体化填料,其特征在于,分子筛的负载量为5~50wt%;杂多酸或杂多酸盐或超强酸的负载量为1~30wt%。
4.按照权利要求1所述的固体酸催化分离一体化填料,其特征在于,规整填料为商业化的金属丝网填料或陶瓷丝网填料。
5.按照权利要求4所述的固体酸催化分离一体化填料,其特征在于,陶瓷丝网填料宏观上为一层或两层以上叠合的平薄片或波纹片结构,陶瓷丝网填料的网丝自身为实心或空心结构,网丝所围的丝网孔孔径为2~60目,丝网孔面积占比为50%~95%,其组成材质优选但不限于碳化硅和/或氮化硅陶瓷,制备方法优选但不限于反应烧结。
6.按照权利要求1所述的固体酸催化分离一体化填料,其特征在于,高硅分子筛为高硅MFI型沸石分子筛、高硅beta型沸石分子筛、高硅Y型沸石分子筛、MCM-41分子筛、高硅SBA-15分子筛、微孔二氧化硅或介孔二氧化硅。
7.按照权利要求6所述的固体酸催化分离一体化填料,其特征在于,高硅MFI型沸石分子筛的硅铝原子比大于50,高硅beta型沸石分子筛的硅铝原子比大于20,高硅Y型沸石分子筛的硅铝原子比大于20。
8.一种权利要求1至7之一所述的固体酸催化分离一体化填料的制备方法,其特征在于,包括如下步骤:
(1)通过原位水热合成,或涂覆,或涂覆结合蒸汽转晶,或涂覆结合水热转晶的方法,将高硅分子筛以涂层形式负载于规整填料表面;
(2)通过水热合成、浸渍或离子交换的方法,将杂多酸、杂多酸盐或超强酸负载于分子筛孔道中和表面。
9.一种权利要求1至7之一所述的固体酸催化分离一体化填料的应用,其特征在于,固体酸催化分离一体化填料作为催化剂,用于催化精馏合成乳酸乙酯、丙二酸、乙酸乙酯和醋酸二甲酯的过程中。
CN202111268534.9A 2021-10-29 2021-10-29 一种固体酸催化分离一体化填料及其制备方法和应用 Pending CN114100644A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111268534.9A CN114100644A (zh) 2021-10-29 2021-10-29 一种固体酸催化分离一体化填料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111268534.9A CN114100644A (zh) 2021-10-29 2021-10-29 一种固体酸催化分离一体化填料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN114100644A true CN114100644A (zh) 2022-03-01

Family

ID=80377495

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111268534.9A Pending CN114100644A (zh) 2021-10-29 2021-10-29 一种固体酸催化分离一体化填料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114100644A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115057773A (zh) * 2022-07-18 2022-09-16 西安交通大学 一种用于乳酸乙酯合成的制备方法及反应装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060052240A1 (en) * 2002-12-20 2006-03-09 Masaaki Sakai Heteropolyacid and or its salt supported catalyst, production process of the catalyst and production process of compound using the catalyst
CN101108360A (zh) * 2007-07-05 2008-01-23 北京服装学院 一种用于酯化反应的硅钨、磷钨杂多酸负载型催化剂、制法及应用
CN103263948A (zh) * 2013-05-31 2013-08-28 东南大学 一种基于原位合成技术的酸性催化膜及其制备方法
CN103447077A (zh) * 2013-09-06 2013-12-18 中国科学院金属研究所 一种zsm-5/泡沫碳化硅结构化催化剂的原位改性方法
CN103664529A (zh) * 2012-09-18 2014-03-26 中国石油化工股份有限公司 联产环己醇和乙醇的方法
US20150274620A1 (en) * 2012-09-18 2015-10-01 China Petroleum & Chemical Corporation Process and apparatus for co-producing cyclohexanol and alkanol

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060052240A1 (en) * 2002-12-20 2006-03-09 Masaaki Sakai Heteropolyacid and or its salt supported catalyst, production process of the catalyst and production process of compound using the catalyst
CN101108360A (zh) * 2007-07-05 2008-01-23 北京服装学院 一种用于酯化反应的硅钨、磷钨杂多酸负载型催化剂、制法及应用
CN103664529A (zh) * 2012-09-18 2014-03-26 中国石油化工股份有限公司 联产环己醇和乙醇的方法
US20150274620A1 (en) * 2012-09-18 2015-10-01 China Petroleum & Chemical Corporation Process and apparatus for co-producing cyclohexanol and alkanol
CN103263948A (zh) * 2013-05-31 2013-08-28 东南大学 一种基于原位合成技术的酸性催化膜及其制备方法
CN103447077A (zh) * 2013-09-06 2013-12-18 中国科学院金属研究所 一种zsm-5/泡沫碳化硅结构化催化剂的原位改性方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115057773A (zh) * 2022-07-18 2022-09-16 西安交通大学 一种用于乳酸乙酯合成的制备方法及反应装置

Similar Documents

Publication Publication Date Title
Li et al. Hierarchically structured monolithic silicalite-1 consisting of crystallized nanoparticles and its performance in the Beckmann rearrangement of cyclohexanone oxime
Tao et al. Highly stable hierarchical ZSM-5 zeolite with intra-and inter-crystalline porous structures
Yuan et al. Insights into hierarchically meso–macroporous structured materials
US10005703B2 (en) Propylene production using a mesoporous silica foam metathesis catalyst
Sun et al. Hierarchically porous materials: Synthesis strategies and emerging applications
Huang et al. Preparation and catalytic testing of mesoporous sulfated zirconium dioxide with partially tetragonal wall structure
Vantomme et al. Self-formation of hierarchical micro-meso-macroporous structures: generation of the new concept “Hierarchical Catalysis”
Zhu et al. γ-alumina nanofibers prepared from aluminum hydrate with poly (ethylene oxide) surfactant
Song et al. Stable, porous, and bulky particles with high external surface and large pore volume from self-assembly of zeolite nanocrystals with cationic polymer
EP3280530B1 (en) Zsm-5 catalyst
Yuan et al. Facile synthesis of ordered mesoporous γ-alumina monoliths via polymerization-based gel-casting
CN114100644A (zh) 一种固体酸催化分离一体化填料及其制备方法和应用
Liu et al. Research progress on stability of solid acid catalysts
Xing et al. Tunable isoparaffin and olefin synthesis in Fischer–Tropsch synthesis achieved by composite catalyst
Li et al. Scalable synthesis of uniform mesoporous aluminosilicate microspheres with controllable size and morphology and high hydrothermal stability for efficient acid catalysis
CN102372288A (zh) Sapo-34分子筛的制备方法
Zhao et al. Facile, low-cost, and scalable fabrication of particle size and pore structure tuneable monodisperse mesoporous silica nanospheres as supports for advanced solid acid catalysts
Zhao et al. The synthesis of novel hierarchical zeolites and their performances in cracking large molecules
CN106276957A (zh) 一种具有蛋白石结构的有序大孔-介孔多级孔纯硅分子筛Silicalite-1单晶及其合成方法
WO2014117735A1 (zh) 一种用于在流化床中由甲醇制备烯烃的催化剂及其制备方法
CN106283187B (zh) 一种具有蛋白石结构的有序大孔-介孔多级孔硅铝分子筛zsm-5单晶及其合成方法
Zhang et al. Mesoporous silica encapsulated phosphotungstic acid catalysts for alkylation desulfurization of gasoline
Li et al. Keggin-type phosphotungstic acid supported on mesoporous sio 2–al 2 o 3 aerogel like beads and their application in the isopropylation of naphthalene
CN101288843A (zh) 一种高效液相色谱用粒径可控介孔氧化硅球的制备方法
Liu et al. Synthesis of nanosized AlKIT-1 mesoporous molecular sieve and its catalytic performance for the conversion of 1, 2, 4-trimethylbenzene

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220301

RJ01 Rejection of invention patent application after publication