CN114088787A - 一种二维铁磁性纳米复合传感电极及其制备方法和应用 - Google Patents
一种二维铁磁性纳米复合传感电极及其制备方法和应用 Download PDFInfo
- Publication number
- CN114088787A CN114088787A CN202111360037.1A CN202111360037A CN114088787A CN 114088787 A CN114088787 A CN 114088787A CN 202111360037 A CN202111360037 A CN 202111360037A CN 114088787 A CN114088787 A CN 114088787A
- Authority
- CN
- China
- Prior art keywords
- dimensional
- electrode
- nano composite
- sensing electrode
- mmf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002114 nanocomposite Substances 0.000 title claims abstract description 36
- 230000005294 ferromagnetic effect Effects 0.000 title claims abstract description 13
- 238000002360 preparation method Methods 0.000 title claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 50
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 34
- 229910052596 spinel Inorganic materials 0.000 claims abstract description 17
- 239000011029 spinel Substances 0.000 claims abstract description 17
- 239000000696 magnetic material Substances 0.000 claims abstract description 16
- 239000000725 suspension Substances 0.000 claims abstract description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 11
- 238000013329 compounding Methods 0.000 claims abstract description 11
- 229910052961 molybdenite Inorganic materials 0.000 claims abstract description 10
- 229910052982 molybdenum disulfide Inorganic materials 0.000 claims abstract description 10
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000011259 mixed solution Substances 0.000 claims abstract description 6
- 229910052582 BN Inorganic materials 0.000 claims abstract description 4
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910000708 MFe2O4 Inorganic materials 0.000 claims abstract description 4
- 229910052802 copper Inorganic materials 0.000 claims abstract description 4
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 4
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 4
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 239000003607 modifier Substances 0.000 claims abstract description 4
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 52
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 claims description 52
- 238000000034 method Methods 0.000 claims description 36
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 claims description 26
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 claims description 26
- 229960005070 ascorbic acid Drugs 0.000 claims description 26
- 235000010323 ascorbic acid Nutrition 0.000 claims description 26
- 239000011668 ascorbic acid Substances 0.000 claims description 26
- 229960003638 dopamine Drugs 0.000 claims description 26
- 229940116269 uric acid Drugs 0.000 claims description 26
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 10
- 239000000243 solution Substances 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 8
- 239000008367 deionised water Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- 238000010992 reflux Methods 0.000 claims description 4
- 239000003513 alkali Substances 0.000 claims description 3
- 238000000227 grinding Methods 0.000 claims description 3
- 239000002244 precipitate Substances 0.000 claims description 3
- 239000000376 reactant Substances 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 239000006228 supernatant Substances 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims description 2
- 229910021397 glassy carbon Inorganic materials 0.000 claims description 2
- 239000002105 nanoparticle Substances 0.000 claims description 2
- 238000009210 therapy by ultrasound Methods 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 7
- 239000007788 liquid Substances 0.000 abstract 1
- 238000001308 synthesis method Methods 0.000 abstract 1
- 229910017163 MnFe2O4 Inorganic materials 0.000 description 5
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 5
- 239000002953 phosphate buffered saline Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000000975 co-precipitation Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000027756 respiratory electron transport chain Effects 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000012472 biological sample Substances 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- GTKRFUAGOKINCA-UHFFFAOYSA-M chlorosilver;silver Chemical compound [Ag].[Ag]Cl GTKRFUAGOKINCA-UHFFFAOYSA-M 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910017135 Fe—O Inorganic materials 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 201000001431 Hyperuricemia Diseases 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 229910018663 Mn O Inorganic materials 0.000 description 1
- 229910003176 Mn-O Inorganic materials 0.000 description 1
- 208000027089 Parkinsonian disease Diseases 0.000 description 1
- 206010034010 Parkinsonism Diseases 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 238000003837 high-temperature calcination Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000002122 magnetic nanoparticle Substances 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 230000006371 metabolic abnormality Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 201000000980 schizophrenia Diseases 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/48—Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Compounds Of Iron (AREA)
Abstract
本发明公开了一种二维铁磁性纳米复合传感电极及其制备方法和应用,包含:S1,将二维材料进行剥离;二维材料为MoS2、活性炭、石墨烯、氮化硼、二硫化钨、MXene材料中的一种;S2,以尖晶石类磁性材料作为修饰物和S1剥离的二维材料进行复合,制备MMF纳米复合材料;尖晶石类磁性材料为MFe2O4,M为Mn,Co,Cu,Mg,Fe,Zn中的一种;二维材料与尖晶石类磁性材料的质量比为1:(0.3‑3);S3,将S2制备的MMF纳米复合材料分散在乙醇/萘酚混合溶液中形成悬浮液;然后,将该悬浮液滴在电极表面后干燥,形成纳米复合传感电极。本发明提供的合成方法简单,反应条件温和,成本可控,制备的电极可以同时检测AA、DA和UA,还可以在其他干扰物存在的情况下同时检测AA、DA和UA。
Description
技术领域
本发明涉及电化学传感器领域,涉及抗坏血酸、多巴胺、尿酸的检测,具体涉及基于铁磁性纳米复合材料传感电极及其制备。
背景技术
抗坏血酸(AA)、多巴胺(DA)、尿酸(UA)经常共存于哺乳动物的中枢神经系统的细胞间液和血液中,而且他们还是人体代谢生理过程中重要的生物分子。如抗坏血酸作为一个常见的抗氧化剂,在人体新陈代谢过程中起到重要作用。它可以有效地清除体内的有毒自由基和细胞代谢产生的其他活性氧化物。多巴胺则对肾脏、激素、心血管和中枢神经系统起到重要作用。多巴胺的缺乏将使人患上精神分裂症或者帕金森氏综合症。在人体中,嘌呤类代谢过程的主要最终产物是尿酸,其浓度水平的异常可能会导致中风、自毁容貌症(Lesch-Nyan综合症)、高尿酸血症等疾病。
近半个世纪以来,电化学技术被大量地用于研究对抗坏血酸、多巴胺、尿酸的检测和量化,在这方面电化学技术具有响应迅速、高灵敏度、费用低廉和操作简便等优点。然而,抗坏血酸和尿酸通常都与多巴胺共存于生物样本中,它们的氧化电位也很接近,因此想要达到对AA,DA,UA同时检测的目的还是有很大的困难,因此建立快速、准确的检测方法对实际生物样品中这三种活性分子进行同时检测,在医疗保健、生物分析和疾病诊断领域都具有非常重要的意义。
发明内容
本发明的目的是制备一种传感电极,用于分别或同时测定抗坏血酸,多巴胺和尿酸。
为了达到上述目的,本发明提供了一种纳米复合传感电极的制备方法,包含以下步骤:
S1,将二维材料进行剥离;所述的二维材料为MoS2、活性炭、石墨烯、氮化硼、二硫化钨、MXene材料中的一种;
S2,以尖晶石类磁性材料作为修饰物和S1剥离的二维材料进行复合,制备MMF纳米复合材料;所述的尖晶石类磁性材料为MFe2O4,M为Mn,Co,Cu,Mg,Fe,Zn中的一种;所述的二维材料与尖晶石类磁性材料的质量比为1:(0.3-1);
S3,将S2制备的MMF纳米复合材料分散在乙醇/萘酚混合溶液中形成悬浮液;然后,将该悬浮液滴在干净的电极表面后干燥,形成所述的纳米复合传感电极。
较佳地,S1中,所述的剥离方法选取超声剥离法或研磨法。
较佳地,所述的纳米复合传感电极的制备方法,其特征在于,所述的超声剥离法具体步骤为:将二维材料分散在乙醇/水溶液中,超声5-15h后离心去除上清液,得到固体沉淀;所述的乙醇/水溶液中,体积比为乙醇:水=1:(0.5-1.5)。
较佳地,S2中所述的复合方法选取水热法、超声波法、微波法、回流水热法、油浴法中的一种。
较佳地,所述的水热法具体步骤为:将FeX3和MX2溶于乙二醇,加碱将得到的混合溶液调节至pH>12后充分溶解,并加入S1制备的二维材料进行共热,其中X为Cl-或NO3 -。
较佳地,所述共热的温度为180-250℃。
较佳地,在S2与S3之间,将所述的MMF纳米复合材料先后用去离子水和乙醇洗涤,除去多余的反应物,然后在60-90℃下真空干燥。
较佳地,S3中所述的悬浮液中,MMF纳米复合材料的浓度为1-4mg·mL-1。
较佳地,S3中所述的电极为玻碳电极或丝网印刷电极。
本发明还公开了一种使用上述方法制备的纳米复合传感电极,包含电极本体和电极表面形成的MMF涂层。
本发明制备的纳米复合传感电极可用于单独或同时检测AA、DA和UA。
本发明的有益效果包含:
(1)本发明通过尖晶石类磁性材料和二维材料复合制备MMF,所采用的合成方法为尖晶石类磁性材料和二维材料溶解后进行共热复合,反应条件温和,成本可控。
(2)本发明制备的MMF与丝网印刷电极形成的纳米复合传感电极,可用于柔性穿戴健康设备,应用前景广阔。
(3)本发明克服了现阶段AA、DA和UA检测的诸多缺点,不仅可以同时检测AA、DA和UA,还可以在其他干扰物存在的情况下同时检测AA、DA和UA。
附图说明
图1为本发明的实施例中的MMF材料的扫描电镜照片;
图2为本发明实施例中的MMF材料的XRD图谱;
图3为本发明实施例中的MMF材料在pH=7.4浓度为0.1mol/L的磷酸缓冲溶液(PBS)中单独检测AA、DA和UA的DPV曲线和线性图;
图4为本发明实施例中的MMF材料在pH=7.4浓度为0.1mol/L的磷酸缓冲溶液(PBS)中同时检测AA、DA和UA的DPV曲线和线性图;
图5为本发明实施例中的MMF材料在0.1mol/L KCl中包含有5mmol/L[Fe(CN)6]3-和[Fe(CN)6]4-溶液中的EIS曲线图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明公开了一种可用于同时检测抗坏血酸、多巴胺和尿酸的纳米复合传感电极的制备方法,其步骤包含:
S1,将二维材料进行剥离,使该二维材料更加松散,便于在后续步骤中与尖晶石类磁性材料复合;所述的二维材料为MoS2或活性炭、石墨烯、氮化硼、二硫化钨、MXene材料中的一种,所述的剥离方法可选取超声剥离或研磨中的一种。
S2,以尖晶石类磁性材料作为修饰物和S1处理后的二维材料进行复合,制备MMF纳米复合材料;所述的尖晶石类磁性材料为MFe2O4(M=Mn,Co,Cu,Mg,Fe,Zn等)。
MMF的复合制备方法可选取水热法,即将尖晶石类磁性材料和S1处理后的二维材料在乙二醇中共热;也可以采用共沉淀法、超声波法、微波法、回流水热法或油浴法中的一种;其中,共沉淀法是制备纳米颗粒的一种溶液技术,与其他技术相比,共沉淀技术不需要昂贵的设备、严格的反应条件或复杂的程序;微波法具有加热快、均质与选择性、节省能源、无公害等优点;回流水热是指水解或沉淀后经过相转变避免高温煅烧,优点是合成的产物粒径均匀;油浴法能够使受热物保持恒温、加热均匀、可控性强。
水热法具体为:将FeX3和MX2溶于乙二醇,加碱将得到的混合溶液调节至pH>12后充分溶解,并加入S1制备的二维材料进行共热,其中X为Cl-或NO3 -,共热温度为180-250℃反应12-18h,若共热温度过低则反应速率较慢,效果不佳,水热法中的操作温度一般不高于250℃。最后是所得黑色产物用去离子水和乙醇洗涤多次后在60-90℃真空干燥箱中加热干燥,干燥温度若过高容易影响材料的结构。
S3,将S2制备的MMF纳米复合材料分散在乙醇/萘酚混合溶液中,以获得浓度为1-4mg/mL的均匀悬浮液,浓度过高或过低会电极表面的材料过多或过少,导致性能不符合预期;然后,将悬浮液少量多次滴在干净的电极表面;进一步地,如图1所示,选取丝网印刷电极(SPE,screen printing electrode),可用于柔性穿戴健康设备。
以下结合具体实施例对本发明做进一步说明。
实施例
S1,将100mg MoS2分散在乙醇/水(体积比为45:55)超声5h后离心去除上清液,将MoS2剥离,得到的固体沉淀重新溶解在20mL乙二醇中。
S2,然后将0.1g FeCl3·6H2O和0.078g MnCl2·4H2O溶于20mL乙二醇,通过1.2gNaOH溶解于5mL蒸馏水中调解pH,搅拌30min充分溶解后和步骤S1制备的溶液混合转移至聚四氟乙烯衬里的高压釜180℃反应12h,进行共热复合。最后是所得黑色产物用去离子水和乙醇洗涤多次,以除去多余的反应物,然后在60℃真空炉中加热干燥,收集产物MMF。
扫描电镜相片如图1,X射线粉末衍射图如图2,表明MMF材料制备成功。XRD图谱示MMF材料的所有衍射峰都由MnFe2O4(JCPDS10-0319)和MoS2(JCPDS37-1492)占据。位于14.39°、32.69°、39.56°、44.16°、49.81°、58.35°和60.16°处的衍射峰与MoS2的(002)、(100)、(103)、(006)(105)、(110)和(008)晶格面密切相关;位于34.98°、56.19°、61.56°和77.27°的衍射峰与尖晶石MnFe2O4的(311)、(511)、(440)和(444)晶格面密切相关。所有这些衍射峰证实了MoS2纳米片作为生长的“载体”并在其表面形成结晶良好的MnFe2O4铁氧体磁性纳米颗粒。
用制备的电极对对AA、DA和UA的单独和同时检测,具体步骤如下;
首先准备丝网印刷电极,然后将干燥的MMF纳米复合材料(1mg)分散在混合溶液(体积980μL乙醇和20μL萘酚溶液)中,以获得浓度为1mg/mL的悬浮液。
S3,然后,将10μL悬浮液滴入干净的SPE中,并在室温下在空气中干燥。作为比较,分别将MoS2和MnFe2O4分散在乙醇/萘酚混合溶液中,以获得浓度为1-4mg/mL的均匀悬浮液;然后,将悬浮液用移液枪少量多次滴在干净的电极表面。
本实验采用传统三电极体系进行差分脉冲(DPV)测试并很具峰电流拟合工作曲线,实验中使用SPE作为工作电极,银-氯化银电极作为参比电极,铂电极作为对电极,电解质溶液为pH=7.4浓度为0.1mol/L的PBS溶液。
对AA、DA和UA的单独测试:通过添加不同摩尔量的待测目标物,通过DPV测试后对峰电流和点位进行分析,如图3,测得单独检测AA、DA和UA时的检出限分别为0.175mmol/L、0.41μmol/L和0.14μmol/L;灵敏度分别为0.0070μA·L/μmol,0.9942μA·L/μmol和0.5404μA·L/μmol;线性范围分别为200-1000μmol/L,1-100μmol/L和1-100μmol/L。
对AA、DA和UA的同时测试:通过添加固定浓度的2个待测目标物,再线性添加第三个待测目标物进行DPV测试,最后对峰电流和点位进行分析,如图4,测得同时检测AA、DA和UA时的检出限分别为0.903mmol/L、0.16μmol/L和3.05μmol/L;灵敏度分别为0.0017μA·L/μmol,0.9422μA·L/μmol和0.2854μA·L/μmol;线性范围分别为1000-6000μmol/L,1-100μmol/L和5-80μmol/L。
将现有的各电极与本发明公开的MMF电极相比较,如表1所示:
表1不同修饰电极检测AA、DA和UA的响应特性比较表
由表1可知,MMF相较于其他修饰电极具有更低的检出限或者更宽的线性范围,能够同时检测AA、DA和UA,且具有良好的技术效果。
如图5所示,采用传统三电极体系,SPE工作电极,银-氯化银电极作为参比电极,铂电极作为对电极,电解质溶液为0.1mol/L KCl中包含有5mmol/L[Fe(CN)6]3-和[Fe(CN)6]4-,高频区具有比较大的半圆直径说明其电荷转移电阻大,经过ZVIEW软件处理模拟计算得MoS2,MnFe2O4和MMF的电阻分别为42940Ω、26471Ω和3138Ω,表明复合后制备的MMF电阻有效减小,利于电子转移,能够有效检测AA、DA和UA。
通过MoS2和MnFe2O4复合得到的MMF(MnFe2O4/MoS2)材料结合了两者的优点,并在一定程度上规避了块状二维材料MoS2的π-π相互聚集作用导致的表面催化边缘位点堵塞缺点,极大程度上加速了电子的转移,Mn-O键和Fe-O键提供了氧化能力,并且对不同的目标检测物电子转移速度不尽相同,呈现出不同氧化电位。
综上所述,本发明通过对二维材料和尖晶石类磁性材料共热制备MMF,反应条件温和,方法简单,最终制备的纳米复合传感电极具有更低的检出限或者更宽的线性范围,能够同时检测AA、DA和UA,效果优良。MMF与丝网印刷电极形成的纳米复合传感电极,可用于柔性穿戴健康设备,应用前景广阔。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。
参考文献
1.Wang,C.et al.A facile electrochemical sensor based on reducedgraphene oxide and Au nanoplates modified glassy carbon electrode forsimultaneous detection of ascorbic acid,dopamine anduric acid.SensorsandActuators B:Chemical 204,302–309(2014).
2.Shen,X.,Ju,F.,Li,G.&Ma,L.Smartphone-Based ElectrochemicalPotentiostat Detection System Using PEDOT:PSS/Chitosan/Graphene ModifiedScreen-Printed Electrodes forDopamine Detection.14(2020).
3.Zhao,L.et al.Electropolymerization fabrication of three-dimensionalN,P-co-doped carbon network as a flexible electrochemical dopaminesensor.Sensors and Actuators B:Chemical 253,1113–1119(2017).
4.Qiu,Z.,Yang,T.,Gao,R.,Jie,G.&Hou,W.An electrochemical ratiometricsensor based on 2D MOF nanosheet/Au/polyxanthurenic acid composite fordetection of dopamine.Journal ofElectroanalytical Chemistry 835,123–129(2019).
5.Zhao,D.A highly sensitive and stable electrochemical sensor forsimultaneous detection towards ascorbic acid,dopamine,and uric acid based onthe hierarchical nanoporous PtTi alloy.Biosensors andBioelectronics 8(2016).
6.Omar,M.N.,Salleh,A.B.,Lim,H.N.&Ahmad Tajudin,A.Electrochemicaldetection of uric acid via uricase-immobilized graphene oxide.AnalyticalBiochemistry 509,135–141(2016).
7.Conway,G.E.et al.Layer-by-layer design and optimization of xerogel-based amperometric first generation biosensors for uric acid.Journal ofElectroanalytical Chemistry775,135–145(2016).
8.Huang,H.et al.Electrochemical sensor based on a nanocompositeprepared from TmPO4 and graphene oxide for simultaneous voltammetricdetection of ascorbic acid,dopamine and uric acid.MicrochimActa 186,189(2019).
9.Han,D.,Han,T.,Shan,C.,Ivaska,A.&Niu,L.Simultaneous Determination ofAscorbic Acid,Dopamine and Uric Acid with Chitosan-Graphene ModifiedElectrode.Electroanalysis 22,2001–2008(2010).
10.Bao,Y.et al.Graphene Oxide-Templated Polyaniline Microsheetstoward Simultaneous Electrochemical Determination of AA/DA/UA.Electroanalysis23,878–884(2011).
11.Yang,L.,Liu,D.,Huang,J.&You,T.Simultaneous determination ofdopamine,ascorbic acid and uric acid at electrochemically reduced grapheneoxide modified electrode.Sensors and Actuators B:Chemical 193,166–172(2014).
Claims (10)
1.一种二维铁磁性纳米复合传感电极的制备方法,其特征在于,包含以下步骤:
S1,将二维材料进行剥离;所述的二维材料为MoS2、活性炭、石墨烯、氮化硼、二硫化钨、MXene材料中的一种;
S2,以尖晶石类磁性材料作为修饰物和S1剥离的二维材料进行复合,制备MMF纳米复合材料;所述的尖晶石类磁性材料为MFe2O4,M为Mn,Co,Cu,Mg,Fe,Zn中的一种;所述的二维材料与尖晶石类磁性材料的质量比为1:(0.3-1);
S3,将S2制备的MMF纳米复合材料分散在乙醇/萘酚混合溶液中形成悬浮液;然后,将该悬浮液滴在干净的电极表面后干燥,形成所述的纳米复合传感电极。
2.如权利要求1所述的二维铁磁性纳米复合传感电极的制备方法,其特征在于,S1中,所述的剥离方法选取超声剥离法或研磨法。
3.如权利要求2所述的二维铁磁性纳米复合传感电极的制备方法,其特征在于,所述的超声剥离法具体步骤为:将二维材料分散在乙醇/水溶液中,超声5-15h后离心去除上清液,得到固体沉淀;所述的乙醇/水溶液中,体积比为乙醇:水=1:(0.5-1.5)。
4.如权利要求1所述的二维铁磁性纳米复合传感电极的制备方法,其特征在于,S2中所述的复合方法选取水热法、超声波法、微波法、回流水热法、油浴法中的一种。
5.如权利要求4所述的二维铁磁性纳米复合传感电极的制备方法,其特征在于,所述的水热法具体步骤为:将FeX3和MX2溶于乙二醇,加碱将得到的混合溶液调节至pH>12后充分溶解,并加入S1制备的二维材料进行在180-250℃共热,其中X为Cl-或NO3 -。
6.如权利要求1所述的二维铁磁性纳米复合传感电极的制备方法,其特征在于,在S2与S3之间,将所述的MMF纳米复合材料先后用去离子水和乙醇洗涤,除去多余的反应物,然后在60-90℃下真空干燥。
7.如权利要求1所述的二维铁磁性纳米复合传感电极的制备方法,其特征在于,S3中所述的悬浮液中,MMF纳米复合材料的浓度为1-4mg·mL-1。
8.如权利要求1所述的二维铁磁性纳米复合传感电极的制备方法,其特征在于,S3中所述的电极为玻碳电极或丝网印刷电极。
9.一种通过权利要求1-8中任意一项所述的方法制备的纳米二维铁磁性复合传感电极,其特征在于,包含在电极本体及在电极表面形成的MMF涂层。
10.如权利要求9所述的二维铁磁性纳米复合传感电极的应用,其特征在于,用于单独或同时检测抗坏血酸、多巴胺和尿酸。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111360037.1A CN114088787A (zh) | 2021-11-17 | 2021-11-17 | 一种二维铁磁性纳米复合传感电极及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111360037.1A CN114088787A (zh) | 2021-11-17 | 2021-11-17 | 一种二维铁磁性纳米复合传感电极及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114088787A true CN114088787A (zh) | 2022-02-25 |
Family
ID=80301197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111360037.1A Pending CN114088787A (zh) | 2021-11-17 | 2021-11-17 | 一种二维铁磁性纳米复合传感电极及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114088787A (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090045491A (ko) * | 2007-11-02 | 2009-05-08 | 건국대학교 산학협력단 | 도파민, 아스코빅산 및 요산의 동시 검출이 가능한 전도성고분자 전극을 이용한 바이오센서 및 그 제조방법 |
DE102011056381A1 (de) * | 2010-12-16 | 2012-06-21 | Instytut Chemii Fizycznej Polskiej Akademii Nauk | Mehrschichtige Elektrode und ihre Anwendung |
CN102744068A (zh) * | 2012-07-20 | 2012-10-24 | 常州大学 | 可磁分离的二氧化钛p25-铁酸盐-石墨烯纳米催化剂及其制备方法 |
CN105510416A (zh) * | 2016-01-07 | 2016-04-20 | 上海第二工业大学 | 基于磁性纳米复合材料的电化学传感器的制备方法 |
CN106215861A (zh) * | 2016-08-19 | 2016-12-14 | 大连理工大学 | 一种石墨烯/铁酸盐复合磁性纳米八面体的制备方法 |
CN108344785A (zh) * | 2018-01-23 | 2018-07-31 | 常州大学 | 一种可用于同时检测抗坏血酸、多巴胺和尿酸的复合材料修饰电极的制备方法 |
-
2021
- 2021-11-17 CN CN202111360037.1A patent/CN114088787A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090045491A (ko) * | 2007-11-02 | 2009-05-08 | 건국대학교 산학협력단 | 도파민, 아스코빅산 및 요산의 동시 검출이 가능한 전도성고분자 전극을 이용한 바이오센서 및 그 제조방법 |
DE102011056381A1 (de) * | 2010-12-16 | 2012-06-21 | Instytut Chemii Fizycznej Polskiej Akademii Nauk | Mehrschichtige Elektrode und ihre Anwendung |
CN102744068A (zh) * | 2012-07-20 | 2012-10-24 | 常州大学 | 可磁分离的二氧化钛p25-铁酸盐-石墨烯纳米催化剂及其制备方法 |
CN105510416A (zh) * | 2016-01-07 | 2016-04-20 | 上海第二工业大学 | 基于磁性纳米复合材料的电化学传感器的制备方法 |
CN106215861A (zh) * | 2016-08-19 | 2016-12-14 | 大连理工大学 | 一种石墨烯/铁酸盐复合磁性纳米八面体的制备方法 |
CN108344785A (zh) * | 2018-01-23 | 2018-07-31 | 常州大学 | 一种可用于同时检测抗坏血酸、多巴胺和尿酸的复合材料修饰电极的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | CuCo2O4/N-Doped CNTs loaded with molecularly imprinted polymer for electrochemical sensor: Preparation, characterization and detection of metronidazole | |
Li et al. | Electrochemical sensor based on a three dimensional nanostructured MoS 2 nanosphere-PANI/reduced graphene oxide composite for simultaneous detection of ascorbic acid, dopamine, and uric acid | |
Lavanya et al. | Electrochemical sensor for simultaneous determination of ascorbic acid, uric acid and folic acid based on Mn-SnO2 nanoparticles modified glassy carbon electrode | |
Huang et al. | A high performance electrochemical biosensor based on Cu 2 O–carbon dots for selective and sensitive determination of dopamine in human serum | |
Prathap et al. | Simultaneous detection of guanine, adenine, thymine, and cytosine at polyaniline/MnO2 modified electrode | |
Yang et al. | Amperometric sarcosine biosensor based on hollow magnetic Pt–Fe3O4@ C nanospheres | |
Wang et al. | Rod-shaped units based cobalt (II) organic framework as an efficient electrochemical sensor for uric acid detection in serum | |
Liu et al. | Molecularly imprinted polymer decorated 3D-framework of functionalized multi-walled carbon nanotubes for ultrasensitive electrochemical sensing of Norfloxacin in pharmaceutical formulations and rat plasma | |
CN106383158B (zh) | 一种基于银-石墨烯纳米复合物的过氧化氢无酶传感器及其制备方法 | |
Chen et al. | A highly sensitive non-enzymatic glucose sensor based on tremella-like Ni (OH) 2 and Au nanohybrid films | |
Lai et al. | A sandwich-type electrochemical immunosensor using polythionine/AuNPs nanocomposites as label for ultrasensitive detection of carcinoembryonic antigen | |
Chen et al. | Dispersed Nickel Nanoparticles on Flower‐like Layered Nickel‐Cobalt Double Hydroxides for Non‐enzymic Amperometric Sensing of Glucose | |
Jiang et al. | A novel electrochemical sensor based on SH-β-cyclodextrin functionalized gold nanoparticles/reduced-graphene oxide nanohybrids for ultrasensitive electrochemical sensing of acetaminophen and ofloxacin | |
Liu et al. | A core-shell MWCNT@ rGONR heterostructure modified glassy carbon electrode for ultrasensitive electrochemical detection of glutathione | |
CN110412095B (zh) | 一种负载花球状硫化铜-钯核壳结构的氮掺杂石墨烯复合材料及其制备方法与应用 | |
CN110031522B (zh) | 镍金属有机框架材料及其制备方法与应用 | |
Yue et al. | A novel non-enzymatic dopamine sensors based on NiO-reduced graphene oxide hybrid nanosheets | |
Wang et al. | A nonenzymatic glucose sensing platform based on Ni nanowire modified electrode | |
CN103616418A (zh) | 一种dna电化学生物传感器及其制备方法 | |
Muthukumaran et al. | Enzymeless biosensor based on β-NiS@ rGO/Au nanocomposites for simultaneous detection of ascorbic acid, epinephrine and uric acid | |
Zhao et al. | Flexible nickel–cobalt double hydroxides micro-nano arrays for cellular secreted hydrogen peroxide in-situ electrochemical detection | |
Xia et al. | An electrochemical sensor for the sensitive detection of rutin based on a novel composite of activated silica gel and graphene | |
Abedini et al. | A simple and low-cost electrochemical sensor based on a graphite sheet electrode modified by carboxylated multiwalled carbon nanotubes and gold nanoparticles for detection of acyclovir | |
Shanmugam et al. | Co-N/Zn@ NPC derived from bimetallic zeolitic imidazolate frameworks: A dual mode simultaneous electrochemical sensor for uric acid and ascorbic acid | |
Muthukumaran et al. | Nanocomposite based on restacked crystallites of β-NiS and Ppy for the determination of theophylline and uric acid on screen-printed electrodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |