CN114088339A - 一种模拟海底管道运动的试验方法 - Google Patents

一种模拟海底管道运动的试验方法 Download PDF

Info

Publication number
CN114088339A
CN114088339A CN202111335998.7A CN202111335998A CN114088339A CN 114088339 A CN114088339 A CN 114088339A CN 202111335998 A CN202111335998 A CN 202111335998A CN 114088339 A CN114088339 A CN 114088339A
Authority
CN
China
Prior art keywords
pipeline
model
box
test method
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111335998.7A
Other languages
English (en)
Inventor
李水江
齐添
孙宏磊
黄永基
张金荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Huantu Nansha Environmental Protection Energy Co ltd
Zhejiang University of Technology ZJUT
Original Assignee
Guangzhou Huantu Nansha Environmental Protection Energy Co ltd
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Huantu Nansha Environmental Protection Energy Co ltd, Zhejiang University of Technology ZJUT filed Critical Guangzhou Huantu Nansha Environmental Protection Energy Co ltd
Priority to CN202111335998.7A priority Critical patent/CN114088339A/zh
Publication of CN114088339A publication Critical patent/CN114088339A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M10/00Hydrodynamic testing; Arrangements in or on ship-testing tanks or water tunnels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/06Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for physics
    • G09B23/08Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for physics for statics or dynamics
    • G09B23/12Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for physics for statics or dynamics of liquids or gases

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Algebra (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

本发明涉及海洋工程研究领域,特别涉及一种模拟海底管道运动的试验方法。该方法包括步骤:土样制备;布置海床;安装液压加载器及注水;布置监测系统;启动液压加载器使管道循环往复运动,数据采集系统记录每次实验数据,实验结束,回收模型箱与实验用土,所得实验数据用于后期处理。本发明提供的装置能够通过改变管道尺寸、运动速度、运动周期等条件从而模拟不同类型的海底管道运动。本发明操作方便,并且可以自动记录数据,不但提高了科研效率,而且还为了研究海底滑坡对桩基础的损伤效应提供教学试验仪器。

Description

一种模拟海底管道运动的试验方法
技术领域
本发明是关于海洋工程研究领域,特别涉及一种模拟海底管道运动的试验方法。
背景技术
海底管道是通过密闭的管道在海底连续地输送大量油(气)的管道,是海上油(气)田开发生产系统的主要组成部分,也是目前最快捷、最安全和经济可靠的海上油气运输方式。海底管道的优点是可以连续输送,几乎不受环境条件的影响,不会因海上储油设施容量限制或穿梭油轮的接运不及时而迫使油田减产或停产。故输油效率高,运油能力大。另外海底管道铺设工期短,投产快,管理方便和操作费用低。
海底管线的主要作用为输油(气),在输油期间由于油的温度要高于海底环境,因此管道受热胀冷缩的影响将会产生膨胀导致位移,而在输油间歇期又会收缩,如此反复循环,改变海床地形。由于管道运动方式的不确定性和海底环境的复杂性,针对海底管道运动的试验需要面临大量的困难,同时海底管线的长距离、小直径等特征也使得模型箱的比例尺难以确定。因此此前的研究大多使用原位观测、数值模拟等方式进行分析,但它们都有相应的缺点:原位观测需要耗费大量的成本,水下设备需要定期维修检查,较为困难;数值模拟则存在缺乏验证的问题。
因此,迫切需要一种能真实模拟海底管道整个运动过程的模型试验方法,用来评估海底管道运营过程中存在的隐患及影响。
发明内容
本发明要解决的技术问题是,克服现有技术的不足,提供一种模拟海底管道运动的试验方法。
为解决技术问题,本发明的解决方案是:
提供一种模拟海底管道运动的试验方法,该试验方法是基于模拟海底管道运动的试验装置实现的,该试验装置包括模型箱、位移作用装置和监测系统;
所述模型箱是顶部开口的箱型结构,其侧壁为有机玻璃板,在两个端面设有排水口;在模型箱中水平架设一根模型管道,其两端以挡板封闭,在管壁上设有注水管和排水管;模型箱与模型管道之间填充有模拟土体;
所述位移作用装置包括设于模型管道两端的液压加载器,两个液压加载器相向布置且与模型管道同轴;
所述监测系统包括应变片、测力计、位移计、高清摄像机、红外线测距仪、孔压传感器和数据采集系统;其中,应变片有多个,间隔粘贴在模型管道的内壁上,其导线从管道内穿出;测力计有两个,安装在模型管道端部与液压加载器之间;位移计有两个,安装在模型管道的两端部;高清摄像机布置在模型箱的侧向,与模型管道保持大致水平;红外线测距仪布置在模型箱的上方,与模型管道保持大致垂直;在模型管道的侧面或下方的模拟土体中埋设了多个孔压传感器;所述应变片、测力计、位移计、高清摄像机、红外线测距仪和孔压传感器分别通过导线连接至数据采集系统;
所述模拟海底管道运动的试验方法,具体包括下述步骤:
(1)土样制备:首先将高岭土和砂子按照实验要求的比例进行配置模拟海底土体,保证混合均匀;
(2)布置海床:分层填充模拟海底土体,每填充一层都要进行整平;在填充过程中根据预设深度埋设孔压传感器;
(3)安装液压加载器及注水:在模型管道的内壁表面贴上应变片,水平放置在模型箱内,然后安装测力计、位移计和液压加载器;继续填充、整平土体,直至设置填埋深度;然后向模型箱内注水使其渗入模拟海床的土体达到饱和,当水面到达实验所需高度时停止灌水,静止24小时使土固结;
(4)布置监测系统:在模型箱外的相应位置布置高清摄像机和红外线测距仪,将各测量设备或元器件与数据采集系统相连;
(5)启动液压加载器使模拟管道做往复运动,记录每次实验数据;实验过程中根据预设方案向模拟管道中注水或排水;实验结束后回收模型箱中的实验用土,所得实验数据用于后期处理。
作为本发明的优选方案,模型箱的排水口有四个,分别布置在端面的中部和底部。
作为本发明的优选方案,所述模型管道是空心的金属管,在管壁上设有通孔;通孔中装有橡胶塞,所述连接应变片的导线穿过橡胶塞后与数据采集系统相接。
作为本发明的优选方案,所述模型箱的侧壁上设有刻度尺或刻度标记。
作为本发明的优选方案,所述模型箱上设有环绕箱体的铁条,用于强化固定作用。
作为本发明的优选方案,在模型箱的底板上设有两个支架,所述模型管道安装在支架上。
作为本发明的优选方案,所述数据采集系统是计算机或单片机。
与现有技术相比,本发明的有益效果是:
1、基于所提供的试验装置,本发明能够通过改变管道尺寸、运动速度、运动周期等条件从而模拟不同类型的海底管道运动;
2、本发明试验装置操作方便,并且可以自动记录数据,不但提高了效率,而且还为了研究海底滑坡对桩基础的损伤效应提供教学试验仪器。
附图说明
图1为本发明中试验装置的透视图。
图2为本发明中试验装置的俯视图。
图3为本发明中模型管道的左视图。
图中的附图标记为:1模型箱;2红外线测距仪;3液压加载器;4支架;5模拟管道;6位移计;7注水管;8测力计;9排水管;10孔压传感器;11数据采集系统;12应变片。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述:
本发明中用于海底管道运动的试验装置,包括模型箱1、位移作用装置和监测系统;其中,
模型箱1为顶部开口的长方体箱型结构,两侧壁为外部箍有铁条的有机玻璃,铁条用于强化固定作用;模型箱1的两个端面上各设有两个排水口,分别布置在端面的中部和底部。在模型箱1的底板上设有两个支架4,模型管道5水平安装在支架4上。模型管道5的两端以挡板封闭,在管壁上设有注水管7和排水管9;模型箱1与模型管道5之间填充有模拟土体。
在模型箱1的侧壁上设有刻度尺或刻度标记,用于计算泥浆流动时的厚度。例如在模型箱1的其中一面侧板标有网格,每个网格都是1cm×1cm的方格。
位移作用装置包括设于模型管道5两端的液压加载器3,两个液压加载器3相向布置且与模型管道5同轴。液压加载器3通过加压的方式使模型管道5产生往复的水平运动,以模拟现实中的管道在海底中因热胀冷缩而运动的过程。
监测系统包括应变片12、高清摄像机(图中未示出)、孔压传感器10、红外线测距仪2、位移计6、测力计8,分别通过导线连接至数据采集系统11。高清摄像机使用符合实验记录要求的市售产品即可,本发明不作特别要求。
模型管道5是空心的金属管(如铁管、钢管或铝管),应变片12粘贴在内壁上。在管壁上设有通孔,通孔中装有橡胶塞。连接应变片12的导线穿过橡胶塞后与数据采集系统11相接,每隔一定的时间自动记录下应变数据,以反映管道运动过程。高清摄像机布置在模型箱1的侧向,与模型管道5保持大致水平,用于测试记录管道竖向位移及箱内土体变化过程;在模型管道5的侧面或下方的模拟土体中埋设了多个孔压传感器10,用于记录管道在运动过程中下方土体的孔压变化;红外线测距仪2布置在模型箱的上方,与模型管道5保持大致垂直,用于记录管道运行过程中的横向位移变化;位移计6布置于管道5两端,并与数据采集系统11相连接,用于记录管道5的水平位移;测力计8布置在液压加载器3与模型管道5的连接处,用于记录模型管道5在运动过程中所需的拉力大小。
数据采集系统11可采用现有硬件实现,例如计算机或单片机。本领域技术人员可根据本发明功能,对现有技术手段加以利用以实现相关功能,由于这些内容并非本发明重点,故不再赘述。
下面基于上述海底管道模型试验装置,对海底管道位移效应实验研究方法进行详细描述。为了便于说明,表示装置结构的示意图会不依一般比例作局部放大,不应以此作为对本发明的限定,此外,在实际的制作中,应包含长度、宽度及高度的三维空间尺寸。
利用上述装置,本发明的模拟海底管道运动的试验方法包括下述步骤:
(1)土样制备:首先将高岭土、砂子按照实验要求的比例进行配置,保证其配比均匀,用以模拟海底土体;
(2)布置海床:先将土体铺至离底部20cm~25cm处进行整平,再铺至离底部30cm~35cm处进行整平,最后将土体铺至离底部35cm~40cm处进行整平,在模型土层中位于表层以下10cm~25cm处放置孔压传感器10。
(3)安装液压加载器3及注水:在模型管道5的内壁表面贴上应变片12,然后水平放置在模型箱1内的土体表面。在管道5两端安装液压加载器3、测力计8和位移计6,再铺上一层土至实验要求的埋深。向模型箱1内缓慢注水,使其渗入模拟海床的土体达到饱和,当水面到达实验所需高度时停止灌水,静止24小时使土固结。
(4)布置监测系统:在模型箱1外的相应位置布置高清摄像机和红外线测距仪2,并将其与数据采集系统11相连接,同时将各测量设备或元器件与数据采集系统11相连;
(5)启动液压加载器3使管道5循环往复运动,数据采集系统11记录每次实验数据。实验过程中根据预设方案向模拟管道中注水或排水;实验结束,回收模型箱1与实验用土,所得实验数据用于后期处理。
实施例:
利用本发明装置进行的一种模拟海底管道运动的试验,具体步骤为:
(1)配制所需实验土体,先将土体铺离底部25cm处进行整平,再铺至离底部35cm处进行整平,最后将土体铺至离底部40cm处进行整平,在表1所述位置处放置孔压传感器10。
(2)在模型管道5的内部如图3所示位置处贴上应变片12。完成布置后将模型管道5放置经过整平处理的土体之上,进行剩余各测量设备或元器件的安装后,再铺上一层土至实验要求的埋深。向模型箱1内缓慢注水渗入模拟海床的土体使其饱和,当液面升至土体表面以上0.3m时开始加快注水;当水面到达实验所需高度时停止灌水,静止24小时使土固结。
(3)使用位移计记录水平导管的初始位置(竖直方向);向模型管道5中注水,注满后启动一端的液压加压器3,牵引管道进行轴向匀速的往复运动。运行10小时,运行完成后记录各仪器数值变化(管直径、埋深和匀速运动速度详见附表1);
(4)运行完成后,放置24小时,记录各仪器数值变化;
(5)完成步骤4后,排除模型管道5中注入的水,并启动另一端的液压加压器3,牵引管道进行匀速的往复位移运动,速度与步骤3中的速度相同。运行10小时,运行完成后记录各仪器数值变化;
(6)运行完成后,放置24小时,记录各仪器数值变化;
(7)重复步骤3-6,进行5次。
表1
Figure BDA0003350514850000051
Figure BDA0003350514850000061
上述内容只是对模拟海底管道运动的实验研究进行描述,为了便于说明,表示装置结构的示意图会不依一般比例作局部放大,但不应以此作为对本发明的限定,此外,在实际的制作中,应包含长度、宽度及高度的三维空间尺寸。
最后,需要注意的是,以上列举的仅是本发明的具体实施例。显然,本发明不限于以上实施例,还可以有很多变形。本领域的普通技术人员能从本发明公开的内容中直接导出或联想到的所有变形,均应认为是本发明的保护范围。

Claims (7)

1.一种模拟海底管道运动的试验方法,其特征在于,该试验方法是基于模拟海底管道运动的试验装置实现的,该试验装置包括模型箱、位移作用装置和监测系统;
所述模型箱是顶部开口的箱型结构,其侧壁为有机玻璃板,在两个端面设有排水口;在模型箱中水平架设一根模型管道,其两端以挡板封闭,在管壁上设有注水管和排水管;模型箱与模型管道之间填充有模拟土体;
所述位移作用装置包括设于模型管道两端的液压加载器,两个液压加载器相向布置且与模型管道同轴;
所述监测系统包括应变片、测力计、位移计、高清摄像机、红外线测距仪、孔压传感器和数据采集系统;其中,应变片有多个,间隔粘贴在模型管道的内壁上,其导线从管道内穿出;测力计有两个,安装在模型管道端部与液压加载器之间;位移计有两个,安装在模型管道的两端部;高清摄像机布置在模型箱的侧向,与模型管道保持大致水平;红外线测距仪布置在模型箱的上方,与模型管道保持大致垂直;在模型管道的侧面或下方的模拟土体中埋设了多个孔压传感器;所述应变片、测力计、位移计、高清摄像机、红外线测距仪和孔压传感器分别通过导线连接至数据采集系统;
所述模拟海底管道运动的试验方法,具体包括下述步骤:
(1)土样制备:首先将高岭土和砂子按照实验要求的比例进行配置模拟海底土体,保证混合均匀;
(2)布置海床:分层填充模拟海底土体,每填充一层都要进行整平;在填充过程中根据预设深度埋设孔压传感器;
(3)安装液压加载器及注水:在模型管道的内壁表面贴上应变片,水平放置在模型箱内,然后安装测力计、位移计和液压加载器;继续填充、整平土体,直至设置填埋深度;然后向模型箱内注水使其渗入模拟海床的土体达到饱和,当水面到达实验所需高度时停止灌水,静止24小时使土固结;
(4)布置监测系统:在模型箱外的相应位置布置高清摄像机和红外线测距仪,将各测量设备或元器件与数据采集系统相连;
(5)启动液压加载器使模拟管道做往复运动,记录每次实验数据;实验过程中根据预设方案向模拟管道中注水或排水;实验结束后回收模型箱中的实验用土,所得实验数据用于后期处理。
2.根据权利要求1所述的试验方法,其特征在于,模型箱的排水口有四个,分别布置在端面的中部和底部。
3.根据权利要求1所述试验方法,其特征在于,所述模型管道是空心的金属管,在管壁上设有通孔;通孔中装有橡胶塞,所述连接应变片的导线穿过橡胶塞后与数据采集系统相接。
4.根据权利要求1所述试验方法,其特征在于,所述模型箱的侧壁上设有刻度尺或刻度标记。
5.根据权利要求1所述试验方法,其特征在于,所述模型箱上设有环绕箱体的铁条,用于强化固定作用。
6.根据权利要求1所述试验方法,其特征在于,在模型箱的底板上设有两个支架,所述模型管道安装在支架上。
7.根据权利要求1所述试验方法,其特征在于,所述数据采集系统是计算机或单片机。
CN202111335998.7A 2021-11-12 2021-11-12 一种模拟海底管道运动的试验方法 Pending CN114088339A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111335998.7A CN114088339A (zh) 2021-11-12 2021-11-12 一种模拟海底管道运动的试验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111335998.7A CN114088339A (zh) 2021-11-12 2021-11-12 一种模拟海底管道运动的试验方法

Publications (1)

Publication Number Publication Date
CN114088339A true CN114088339A (zh) 2022-02-25

Family

ID=80300063

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111335998.7A Pending CN114088339A (zh) 2021-11-12 2021-11-12 一种模拟海底管道运动的试验方法

Country Status (1)

Country Link
CN (1) CN114088339A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114923662A (zh) * 2022-05-10 2022-08-19 浙江省水利河口研究院(浙江省海洋规划设计研究院) 一种海底管道冲刷试验中悬空长度发展实时监测装置及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104089810A (zh) * 2014-07-08 2014-10-08 天津大学 不同埋设条件下薄壁管线热屈曲试验装置
CN207379851U (zh) * 2017-11-11 2018-05-18 广州环保投资集团有限公司 基于透明土模型的循环荷载加载试验装置
CN108254504A (zh) * 2018-01-11 2018-07-06 中国电建集团华东勘测设计研究院有限公司 模拟海底滑坡的试验装置及其试验方法
CN108827677A (zh) * 2018-04-23 2018-11-16 天津大学 一种模拟海底潮流沙波对管道工程影响的装置与实验方法
CN110954350A (zh) * 2019-11-29 2020-04-03 西安石油大学 一种海底管道散热的室内模拟装置及方法
CN112113756A (zh) * 2020-09-09 2020-12-22 天津大学 一种模拟深水钢悬链线立管触地段疲劳损伤实验装置
CN112362452A (zh) * 2020-11-18 2021-02-12 中国科学院力学研究所 一种模拟海底管道在软黏土海床浅层轴向走管的实验装置和方法
CN112525700A (zh) * 2020-11-23 2021-03-19 天津大学 一种深水立管触地段管土相互作用的模拟系统
CN112697371A (zh) * 2020-12-18 2021-04-23 温州大学 一种海底滑坡灾害致使工程管线振动的试验模拟系统及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104089810A (zh) * 2014-07-08 2014-10-08 天津大学 不同埋设条件下薄壁管线热屈曲试验装置
CN207379851U (zh) * 2017-11-11 2018-05-18 广州环保投资集团有限公司 基于透明土模型的循环荷载加载试验装置
CN108254504A (zh) * 2018-01-11 2018-07-06 中国电建集团华东勘测设计研究院有限公司 模拟海底滑坡的试验装置及其试验方法
CN108827677A (zh) * 2018-04-23 2018-11-16 天津大学 一种模拟海底潮流沙波对管道工程影响的装置与实验方法
CN110954350A (zh) * 2019-11-29 2020-04-03 西安石油大学 一种海底管道散热的室内模拟装置及方法
CN112113756A (zh) * 2020-09-09 2020-12-22 天津大学 一种模拟深水钢悬链线立管触地段疲劳损伤实验装置
CN112362452A (zh) * 2020-11-18 2021-02-12 中国科学院力学研究所 一种模拟海底管道在软黏土海床浅层轴向走管的实验装置和方法
CN112525700A (zh) * 2020-11-23 2021-03-19 天津大学 一种深水立管触地段管土相互作用的模拟系统
CN112697371A (zh) * 2020-12-18 2021-04-23 温州大学 一种海底滑坡灾害致使工程管线振动的试验模拟系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114923662A (zh) * 2022-05-10 2022-08-19 浙江省水利河口研究院(浙江省海洋规划设计研究院) 一种海底管道冲刷试验中悬空长度发展实时监测装置及方法
CN114923662B (zh) * 2022-05-10 2023-06-09 浙江省水利河口研究院(浙江省海洋规划设计研究院) 一种海底管道冲刷试验中悬空长度发展实时监测装置及方法

Similar Documents

Publication Publication Date Title
CN102094432B (zh) 一种由工程环境效应引起地面沉降的模型及其试验方法
CN107179396A (zh) 多功能拼装式岩土工程物理相似试验系统
CN108195723B (zh) 一种加固松散砾石土的渗透注浆试验系统及方法
CN101832140B (zh) 海底隧道衬砌水压力分布规律试验方法
CN102912780B (zh) 黄土湿陷性变形的砂土浸水测试方法
Suleiman et al. Soil-pile interaction for a small diameter pile embedded in granular soil subjected to passive loading
CN106638725A (zh) 一种管桩挤土效应测试装置及方法
CN106988352B (zh) 一种考虑土体预固结及循环荷载下单桩水平承载力的测试方法
CN103389260B (zh) 桩基础阻碍地下水渗流的室内模拟试验方法
CN114199686B (zh) 运营公路隧道衬砌病害演化规律的模型试验装置及方法
CN112525700B (zh) 一种深水立管触地段管土相互作用的模拟系统
CN103091471B (zh) 一种加速冲填土固结的模型及其试验方法
CN103866736A (zh) 一种矿震对煤矿地下水库影响的物理模拟试验系统及方法
CN109060532B (zh) 一种岩溶地区超长桩屈曲稳定性室内模型实验装置及方法
CN208685680U (zh) 一种桩承式加筋路堤模型试验装置
CN111896357B (zh) 一种利用反向自平衡法测试岩溶桩基承载力的模型试验装置及其制备方法
CN114088339A (zh) 一种模拟海底管道运动的试验方法
CN211122294U (zh) 一种用于研究软黏土热固结效应的模型试验装置
CN215180177U (zh) 一种模拟地下水位变动引起隧道变形的模型试验装置
CN217358824U (zh) 一种大断面矩形顶管摩阻力测试系统
CN113358851B (zh) 一种模拟地下水位变动引起隧道变形的模型试验装置及其试验方法
CN113640188B (zh) 一种模拟桩周黏土地层原位应力场的试验装置及方法
CN114518292A (zh) 斜跨坎儿井的高速铁路路基的模型试验装置及试验方法
CN104196061A (zh) 桥梁基础水平受荷试验装置及试验方法
CN111044347B (zh) 一种测定埋置管道所受浮力的试验装置和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination