CN114082400A - 一种橡胶和银杏叶共热解制备生物炭的方法及其在去除水体中抗生素中的应用 - Google Patents

一种橡胶和银杏叶共热解制备生物炭的方法及其在去除水体中抗生素中的应用 Download PDF

Info

Publication number
CN114082400A
CN114082400A CN202111322885.3A CN202111322885A CN114082400A CN 114082400 A CN114082400 A CN 114082400A CN 202111322885 A CN202111322885 A CN 202111322885A CN 114082400 A CN114082400 A CN 114082400A
Authority
CN
China
Prior art keywords
biochar
pyrolysis
adsorption
rubber
water body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111322885.3A
Other languages
English (en)
Inventor
张鹏会
李艳春
闫怀增
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Longdong University
Original Assignee
Longdong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Longdong University filed Critical Longdong University
Priority to CN202111322885.3A priority Critical patent/CN114082400A/zh
Publication of CN114082400A publication Critical patent/CN114082400A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/4825Polysaccharides or cellulose materials, e.g. starch, chitin, sawdust, wood, straw, cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/485Plants or land vegetals, e.g. cereals, wheat, corn, rice, sphagnum, peat moss
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4875Sorbents characterised by the starting material used for their preparation the starting material being a waste, residue or of undefined composition
    • B01J2220/4893Residues derived from used synthetic products, e.g. rubber from used tyres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种橡胶和银杏叶共热解制备生物炭的方法及其在去除水体中抗生素中的应用,涉及水处理技术领域。具体包括将橡胶和银杏叶清洗,烘干,粉碎,过筛,将得到的橡胶粉和银杏叶粉按一定比例混匀,在马弗炉中热解,热解完成,冷却至室温,得到的黑色固体即为生物炭。本发明的制备生物炭和生物炭对水体的吸附方法均简单易行,便于操作,对仪器设备要求低,适合大规模工业化生产,具有产业应用价值。经实际验证,本发明制备得到的生物炭对水体中抗生素具有优异的吸附效果,对水体中CIP的去除率高达98.61%以上。

Description

一种橡胶和银杏叶共热解制备生物炭的方法及其在去除水体 中抗生素中的应用
技术领域
本发明属于水处理技术领域,具体涉及一种橡胶和银杏叶共热解制备生物炭的方法,本发明还提供了使用橡胶和银杏叶共热解制备的生物炭去除水中抗生素的应用。
背景技术
生物炭(Biochar)是生物质在限氧或无氧条件下热解得到的富碳材料,具有原料来源广、成本低、环保、微孔多、比表面积大、富含大量官能团且稳定性好等特点,在水体污染物去除方面具有潜在的应用。常用于制备生物炭的原料包括农、林业废弃物、藻类、市政废料和动物粪便等,其通常富含纤维素、半纤维素和木质素及碳、氮、磷等营养元素,适合制备生物炭。然而,采用单一生物质原料的传统热解技术对制备具有多功能且应用广泛的生物炭来说,不太容易实现。例如,在相同的热解条件下,动物粪便生物炭的灰分含量明显高于植物来源的生物炭,而植物基生物炭却具有较大的比表面积。虽然比表面积大有利于有机污染物的吸附,但灰分也会影响疏水性有机污染物在生物炭上的吸附行为。这促进了生物炭制备技术的拓展—共热解,是将两种或两种以上的生物质原料混合热解,不仅克服了单一原料来源生物炭功能的局限性,且共热解过程的协同效应使生物炭性能得到进一步改善,在实际应用中的优势更为显著。
目前,共热解制备生物炭的原料大致分为两类:生物质与生物质和生物质与非生物质,其中生物质主要有秸秆、薪炭林、农林废弃物、藻类和畜禽粪便,非生物质包括污泥、塑料、煤炭和废旧轮胎等。共热解能制备出性能各异的生物炭。Sewu等首次以富含灰分的巨藻和废蘑菇基质为原料共热解制备的生物炭,灰分含量高、表面粗糙且官能团丰富、阳离子染料的Langmuir 最大吸附量是单一原料生物炭的2.2倍。由此可见,共热解法能显著改善生物炭的吸附能力。以松木、旧轮胎和废塑料为原料共热解得到的生物炭对Pb2+的去除率没有明显的提高,可能与熔融的塑料包裹在生物质表面抑制了挥发分的释放有关。共热解生物炭具有相对发达的孔隙结构、高的阳离子交换容和丰富的表面官能团等优良特性,已被有效用于水体中污染物的吸附去除。茶渣、稻壳、松木屑等生物质与污泥共热解制备孔结构发达的生物炭被用于水体中染料的去除;稻壳与聚乙烯/聚丙烯/聚苯乙烯,油菜秸秆和磷矿石等共热解制备的生物用于去除水体中重金属离子,均展现出很强的吸附能力。玉米秸秆与木屑,麦壳与造纸污泥共热解生物炭能有效去除阿特拉津和2,4- 二氯苯酚。另外,Fang等通过热重分析发现市政垃圾与造纸污泥二者热解机理不是简单的叠加,共热解的协同效应显著降低了生物质的活化能,使生物质的起始热解温度明显降低。Olajire等研究生物质与废塑料共热解发现,相对于单一原料热解,共热解使能耗降低了约6.2%。废塑料与木屑共热解的平均活化能较计算值大大降低,塑料的添加不仅提高了生物炭的分形维数,同时还增加了生物炭的不均匀性。然而,将橡胶粉与生物质共热解制备生物炭未见文献报道,共热解的协同效应尚不清楚。共热解生物炭用于去除能在水体中稳定存在的新兴环境污染物(如抗生素)的研究较少,除Nielsen等将污泥与鱼废料共热解制备的生物炭,去除水体中磺胺甲恶唑、甲氧苄啶和卡马西平外,未见其他报道。
本文以橡胶粉和银杏叶为原料,通过共热解制备生物炭,研究橡胶粉与银杏叶质量比、热解温度及停留时间等对生物炭性质的影响,探究共热解生物炭对水体中抗生素的吸附机理。这将为水体中抗生素类污染物的深度处理提供新思路,对于解决我国日益严重的水资源缺乏和水污染的问题有着十分重要的意义。
发明内容
本发明的目的在于提供一种橡胶和银杏叶共热解制备生物炭的方法,将橡胶粉和银杏叶粉混匀共热解,得到的黑色固体即为生物炭;
制备得到的生物炭具有丰富的多孔结构,比表面积为107.33-337.50 m2·g-1,总孔体积为0.35-0.39cm3·g-1,平均孔径为6.08-16.49nm,平均粒径为17.78-55.90nm,极大的增强了其对污染物的吸附能力;
而且,制备得到的生物炭具有丰富的活性官能团,其元素质量份分别为C 元素:61.31-71.84份,N元素:0.20-0.43份,H元素:0.16-0.29份,S元素:3.54-5.28份,O元素:1.52-2.49份,H/C的原子质量比为0.030-0.048,表明生物炭碳化完全且呈现出高度芳香结构,进一步增强其吸附能力。
最后,该合成方法简单,制备快速,对操作人员和仪器设备的要求低,所选用的原料均为废弃物,取材方便,成本低廉,产量巨大,既可以达到废弃资源回收利用的效果,制备出的生物炭还可以高效回收水体中抗生素,具有显著的社会和经济效益。
为实现上述目的,本发明提供一种橡胶和银杏叶共热解制备生物炭的方法,具体包括以下步骤:
材料预处理:将橡胶和银杏叶清洗,烘干,粉碎,过筛,得到橡胶粉和银杏叶粉备用;
热解:将橡胶粉和银杏叶粉按一定比例混匀,在马弗炉中热解,热解完成,冷却至室温,得到的黑色固体即为生物炭。
在一优选的实施方式中,所述材料预处理步骤中,将粉碎后的橡胶和银杏叶过100目筛后备用,优选的,过50目筛。
在一优选的实施方式中,所述热解步骤中,橡胶粉和银杏叶粉的质量比为(1-5):1,优选的,质量比为(1.5-5):1,更优选的,质量比为2.5:1。
在一优选的实施方式中,所述热解步骤中,马弗炉的升温速率为5-15℃ /min,马弗炉的热解反应温度为400-900℃,热解时间为1-3小时;优选的,热解反应温度为700-900℃,马弗炉的升温速率为5-15℃/min,热解时间为2-2.5小时;更优选的,热解反应温度为900℃,马弗炉的升温速率为5-15℃ /min,热解时间为2小时。
本发明的另一目的在于提供一种橡胶和银杏叶共热解制备的生物炭在去除水体中抗生素中的应用,将前述内容制备得到的生物炭,在室温条件下,投入到含有抗生素的水体中,室温震荡,吸附平衡后过滤,即得去除抗生素后的水体。
整体吸附过程简单,吸附效果好,经实验验证,所述生物炭对水体中的环丙沙星的吸附率达到98.61%以上,扩展了能吸附水体中抗生素的生物炭种类,大幅降低吸附水体中抗生素的操作成本,具有降本增效的有益效果。
在一优选的实施方式中,所述应用中,含有抗生素的水体中抗生素的浓度为2-70mg/L,生物炭添加量为0.8-3.6g/L;优选的,水体中抗生素的浓度为10-70mg/L,生物炭的添加量为1.6-2.8g/L;更优选的,水体中抗生素的浓度为70mg/L,生物炭的添加量为2.8g/L。
在一优选的实施方式中,所述室温振荡条件为:以100r/min速度振荡 60-300min,优选的,振荡时间为80-280min,更优选的,振荡时间为100min、 180min和240min。
在一优选的实施方式中,将生物炭投入到含有抗生素的水体中后,还包括调节溶液pH值为2-12,优选的,溶液pH值为4-10,更优选的,溶液pH 值为6。
在一优选的实施方式中,所述生物炭去除水体中的抗生素包括环丙沙星、恩诺沙星、左氧氟沙星、诺氟沙星、四环素中的一种或多种,优选的,抗生素为环丙沙星。
与现有技术相比,根据本发明的一种橡胶和银杏叶共热解制备生物炭的方法及其在去除水体中抗生素中的应用,具有如下优点:
1、本发明中,所用原料为废弃橡胶和银杏叶,具有原料易得,产量丰富,成本低廉,便于收集的优势,而且,还能回收利用废弃物,减少污染物处理和排放,具有环保意义。
2、本发明中,制备得到的生物炭具有丰富的多孔结构,比表面积为 107.33-337.50m2·g-1,总孔体积为0.35-0.39cm3·g-1,平均孔径为 6.08-16.49nm,平均粒径为17.78-55.90nm,极大的增强了其对污染物的吸附能力;而且,制备得到的生物炭具有丰富的活性官能团,其元素质量份分别为C元素:61.31-71.84份,N元素:0.20-0.43份,H元素:0.16-0.29 份,S元素:3.54-5.28份,O元素:1.52-2.49份,H/C的原子质量比为 0.030-0.048,表明生物炭碳化完全且呈现出高度芳香结构,进一步增强其吸附能力。
3、本发明的制备生物炭和生物炭对水体中抗生素的吸附方法均简单易行,便于操作,对仪器设备要求低,适合大规模工业化生产,具有产业应用价值。
4、本发明制备得到的生物炭对水体中抗生素具有优异的吸附效果,对水体中CIP的去除率达到98.61%以上。
附图说明
从下面结合附图对本发明实施例的详细描述中,本发明的这些和/或其它方面和优点将变得更加清楚并更容易理解,其中:
图1为本发明实施例1不同配比共热解生物炭对CIP的吸附率;
图2为本发明实施例2不同停留时间共热解生物炭对CIP的吸附率;
图3为本发明实施例3不同热解温度的共热解生物炭对CIP的吸附率;
图4为本发明实施例3不同温度共热解生物炭的SEM图;
图5为本发明实施例3不同温度热解生物炭的N2吸附-脱附等温线及孔径分布;
图6为本发明实施例3不同温度共热解生物炭吸附CIP动力学;
图7为本发明实施例3不同温度共热解生物炭对CIP的吸附等温线;
图8为本发明实施例3初始pH值对共热解生物炭吸附CIP的影响;
图9为本发明实施例4生物炭投加量对共热解生物炭吸附CIP的影响。
具体实施方式
若未特别指明,实施例中所用技术手段为本领域技术人员所熟知的常规手段,所用原料均为市售商品。
除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
材料:银杏叶选自树上枝叶或脱落的树叶,银杏叶的产地树龄等无限定要求;橡胶材料选自常用的废弃橡胶即可,本实施例中选自废旧轮胎,环丙沙星(CIP)、NaOH和盐酸等试剂均为分析纯。
仪器:FTIR-8400S型傅里叶红外光谱仪(日本岛津公司),XL-1型马弗炉(鹤壁市丰泰仪器仪表有限公司),SPECORD50型紫外-可见分光光度计(德国耶拿公司),THZ-82型恒温振荡器(江苏太仓医疗器械厂),BSA124S型电子分析天平,PB-10型pH计(德国赛多利斯),H1850型离心机(湖南湘仪试验室仪器开发有限公司)。
生物炭的制备方法:
将橡胶和银杏叶清洗,烘干,粉碎,过100目筛,得到橡胶粉和银杏叶粉备用;
将制备好的橡胶粉与银杏叶按不同质量比(橡胶:银杏叶=1:1,3:2,2:1, 5:2,3:1,4:1,5:1)混合均匀后,装入陶瓷坩埚中,轻微压实,盖上盖子于马弗炉中,选择不同的停留时间(1,1.5,2,2.5,3h)和热解温度 (400,500,600,700,800,900℃),进行热解,热解完成后自然冷却至室温,即得橡胶-银杏叶共热解生物炭,称量并计算产率,装入密封袋中备用。本发明实施例中的停留时间均指热解时间,即待热解物质在马弗炉中停留反应的时间。
吸附实验方法:
称取0.05g共热解生物炭于100mL锥形瓶中,加入20mg/L的CIP溶液50mL。室温下以100r/min速度振荡120min,静置后取上清液于5000r/min 离心机中离心分离,采用紫外-可见分光光度法在278nm波长处测定溶液中 CIP的浓度。
共热解生物炭对CIP的吸附量(Qe)和吸附效率(η)计算如下:
Figure BDA0003346018530000071
Figure BDA0003346018530000072
式中,Qe为生物炭对CIP的吸附量(mg/g);V为溶液的体积(L);W 为生物炭的质量(g);C0和Ct分别为溶液的初始浓度和t时间后的浓度(mg/L);η为吸附率(%)。
实施例1
选择橡胶粉与银杏叶不同的质量比为变量(橡胶:银杏叶=1:1,3:2,2:1, 5:2,3:1,4:1,5:1),停留时间为:2h,热解温度为:700℃,按上文中生物炭的制备方法,验证不同配比共热解生物炭对CIP的吸附率,结果如图1 所示。
由图1可知,橡胶与银杏叶的配比为5:2时共热解生物炭对CIP的吸附率达到最大,为90.28%。当橡胶与银杏叶的配比大于或小于5:2时,吸附率均有所下降,这是因为当橡胶的所占配比增大时热解生物质的含碳量不断升高,当配比为5:2时,有机物含量最高,挥发分较大,由于挥发分的析出会形成许多孔隙,所以共热解生物炭孔隙结构较发达,吸附性能较好。但橡胶所占配比超过一定限度时,过于集中的热解会形成过于集中挥发物,使挥发分析出不畅,在孔隙内形成热解积炭,堵塞部分已形成的孔隙,致使共热解生物炭吸附性降低。由生物炭吸附CIP的结果可以看出,原料的组成比例是决定共热解生物炭吸附性能的重要因素。
实施例2
选择不同停留时间为变量(1,1.5,2,2.5,3h),橡胶粉与银杏叶按质量比5:2,热解温度为:700℃,按上文中生物炭的制备方法,验证不同热解停留时间共热解生物炭对CIP的吸附率,结果如图2所示。
由图2可知,当停留时间为2h时制得的共热解生物炭对CIP溶液的吸附效果最好,吸附率可达90.28%。这表明停留时间过长或过短都会降低共热解生物炭的吸附性。这是因为停留时间过短时,生物质热解不完全,孔隙结构不发达,随着热解时间的延长发育出大量的孔结构,吸附能力增加,充分碳化以后吸附能力达到最强,继续延长停留时间会使部分已经形成的孔隙结构坍塌,使共热解生物炭的吸附性降低。
实施例3
选择不同热解温度为变量(400,500,600,700,800,900℃),橡胶粉与银杏叶按质量比5:2,停留时间为:2h,按上文中生物炭的制备方法,验证不同热解温度的共热解生物炭对CIP的吸附率,结果如图3所示。
由图3可知,热解温度为700℃,800℃,900℃时制备的共热解生物炭对20mg/L的CIP溶液都具有较强的吸附能力,吸附率分别高达90.12%, 92.89%,94.96%。可见随着热解温度升高,共热解生物炭的吸附性能逐渐增强,这是由于温度过低时生物质碳化不完全,生物炭孔隙也不发达,随着温度的升高,共热解生物炭的碳化程度增加,微孔数量增多,生物炭的微观结构也变的发达,比表面积变大,故吸附性能增强。
另外,将700℃,800℃,900℃制备的共热解生物炭分别记为RG700, RG800和RG900。实验因为考虑到生物炭吸附能力与制备时能源消耗以及产率等方面的原因,对这三个不同温度共热解制备的生物炭进行了更深入的生物炭性质测定及表征、动力学和等温吸附实验分析。
生物炭表征:SEM
图4为不同温度共热解生物炭的SEM图,SEM图能清晰地展示生物炭的孔隙结构变化和微观形貌特征,不同温度下橡胶-银杏叶共热解生物炭表面特征如图4所,所有生物炭均可观察到表面具有丰富的球状颗粒。其中,RG800表面呈现类葡萄串状、无明显结块现象,而RG900表面的球状颗粒显著变小且出现了明显的团聚。通常认为,生物质大分子结构通过解聚、气化和交联,导致芳香环开裂及挥发分的扩散而形成生物炭。纤维素和木质素在低温区 (<350℃)主要发生交联反应,有利于固体炭的形成,而在高温区(>350℃) 主要发生解聚反应,形成挥发分。在900℃共热解时,橡胶和银杏叶均释放出更多的CO2、H2O等气体以及大量能量从原料内部释放,将孔道冲开,使生物炭孔壁变薄,易塌陷,从而形成团聚。另外,高温时,自由基引发的裂解和二次吸附挥发分后芳环体系缩合的加剧,导致含氧化合物不断释放和环状体系不断缩小,使得生物炭颗粒变小。
生物炭表征:BET
图5为不同温度热解生物炭的N2吸附-脱附等温线及孔径分布,通过N2吸附-脱附实验研究了不同温度共热解的橡胶-银杏叶生物炭的比表面积和孔结构,如图5和表1所示。根据IUPAC的分类,三种生物炭的吸附-脱附等温线均属于Ⅰ型和Ⅳ型等温线复合组成且存在H3滞后环,表明生物炭中均存在介孔结构,随相对压力增大,在发生多层吸附的同时也发生毛细凝聚现象。 RG900在P/P0<0.1以下,吸附量陡增,说明其中存在较多的微孔。RG700、RG800和RG900在相对压力为0.45-0.85之间,吸附量缓慢增加、斜率逐渐增大,证明它们中均存在介孔。在较高的相对压力(0.85-1.0)时,接近垂直的尾部表明样品中均存在大孔。由此可见,RG700、RG800和RG900均存在微孔、介孔和大孔。
多孔性固体的孔可分为微孔(≤2.0nm)、介孔(2~50nm)和大孔(孔径≥50nm)。由孔径分布曲线可知,RG700和RG800孔径分布范围较宽,为 0.9~90nm,在2~25nm之间更为集中,表明该材料中介孔最丰富。从图5的内插图可见RG700和RG800都在37和55nm各处出现一小峰,说明此范围内孔隙比较发达,这可能是由于共热解过程产生的挥发分由径向移动转化为横向移动的结果。RG900的孔结构主要以<2nm的微孔为主(同时还有介孔存在),与SEM的观察结果一致。这样的孔结构有利于抗生素分子扩散到共热解生物炭的内部和表面,便于吸附。
通常认为,当吸附剂的孔径是污染物分子尺寸的1.7至3倍时,吸附剂所表现出来的吸附效果最佳。由表1可见,RG700、RG800和RG900的平均孔径远远大于CIP(1.22nm×0.41nm×0.80nm)分子的三维尺寸,利于CIP 分子的扩散和吸附,使共热解生物炭在去除CIP方面展现出巨大的应用潜力。
表1三种生物炭孔径结构相关参数
Figure BDA0003346018530000101
生物炭表征:元素分析
表2为不同温度下橡胶-银杏叶共热解生物炭中C、N、H、S和O元素的变化情况。随着热解温度的升高,生物炭中C和H元素含量呈现不规律变化, S元素含量不断增大。当热解度从700℃升至900℃时,C元素的含量先下降后又升高,这可能是添加了含有木质素、纤维素和半纤维素等有机物的银杏叶,热解时发生裂解反应,挥发分大量析出,同时高温下脂肪族碳被分解并向更稳定的芳香族碳转化,残留在生物炭内的挥发分进一步减少,而固定碳升高。此外,由于橡胶中的S和ZnO间发生反应生成硫化锌,促使S固定下来,随挥发分析出的含硫化合物减少,从而使S元素含量升高。通常采用 H/C、O/C和(N+O)/C的原子比来评价生物炭的芳香性、亲水性和极性大小。随着热解温度的升高,橡胶-银杏叶共热解生物炭O/C和(N+O)/C原子比均随温度的上升而下降,说明生物炭的亲水性和极性不断减弱,表面的极性官能团减少。尽管共热解生物炭的H/C原子比随热解温度的升高呈现不规律变化,但H/C比均小于1,表明生物炭碳化完全且呈现出高度芳香结构。此外,随着热解温度的升高,共热解生物炭的收率越低,700℃时生物炭产率约为28.6%、 800℃时生物炭产率约为23.5%、900℃时生物炭产率约为19.2%。
表2三种生物炭的元素组成及原子比例
Figure BDA0003346018530000111
吸附动力学
实验方法:取浓度为20mg/L的CIP溶液50mL于100mL锥形瓶中,分别加入0.05g的G700,RG800和RG900生物炭,不调节pH值,室温下以100r/min 速度振荡一定时间(10,20,30,40,50,60,75,90,105,120,150,180, 210,240,300,360,420,480min)后取出,静置、离心分离后测定溶液中CIP的浓度。
吸附动力学是通过吸附量与吸附时间间的变化关系曲线来表示吸附过程,曲线的变化揭示了吸附质在吸附剂和溶液间分配规律。Pseudo-first-order 模型基于假定吸附受扩散步骤控制,吸附速率正比于平衡吸附量与t时刻吸附量的差值;Pseudo-second-order模型则基于限速步骤是化学吸附或物理化学吸附的假设,吸附过程涉及到了电子的共用、交换和转移的作用,即化学键的形成;Elovich模型为一般经验式,描述的是包括一系列反应机制的过程,如溶质在溶液体相或界相处的扩散作用,表面的活化与去活化作用等。此外,还揭示了其他动力学方程所忽视的数据的不规则性。文中分别采用(3)~(5) 3种动力学方程对实验数据进行拟合,结果见图6和表3。
Pseudo-first-order(PFO)模型
Figure BDA0003346018530000121
Pseudo-second-order(PSO)模型
Figure BDA0003346018530000122
Elovich模型
Qt=A+Blnt (5)
式中:Qt和Qe分别是t时间和吸附平衡时的吸附量,mg·g-1;K1为准一级动力学模型常数,min-1;K2为准二级动力学模型常数,g·(mg·min)-1;A为 Elovich模型常数,mg·g-1;B为Elovich模型常数,mg·(g·min)-1
表3不同温度共热解生物炭吸附CIP的动力学参数
Figure BDA0003346018530000123
由图6和表3可知,Pseudo-first-order模型对橡胶-银杏叶共热解生物炭吸附CIP的行为描述性较差,只适合描述吸附初始阶段的动力学行为,不能用来准确描述整个吸附过程。Pseudo-second-order模型很好的描述了 700℃,800℃和900℃共热解生物炭对CIP的吸附过程,相关系数R2分别为0.9847,0.9404,0.9772,这说明共热解生物炭对CIP的吸附主要涉及共价键的化学吸附或者通过吸附剂和吸附质之间的电子共享(或交换)来实现,吸附过程中化学吸附和物理吸附并存,以化学吸附为主,吸附速率主要受化学吸附控制。
由图6可知,700℃,800℃,和900℃制备的共热解生物炭对CIP的吸附分别在240min,180min和100min时达到平衡,在吸附的初始阶段,吸附量随时间延长呈上升趋势,此后趋于平缓;初始阶段之后吸附量基本不在变化,这表明共热解生物炭对CIP的吸附呈现“慢吸附、缓慢平衡”的特点。从表3中可知,RG800对CIP的吸附量最大,为19.73,其达到吸附平衡的时间却比RG900需时间长,这表明前者的吸附容量大比后者大,但RG800对CIP的吸附速率不及RG900快,这是由于900℃共热解生物炭的介孔数量和孔径显著减小, CIP分子易于在微孔中吸附与填充。
等温吸附
实验方法:准确称取0.05g的RG700,RG800和RG900生物炭于100mL锥形瓶中,分别加入浓度分别为2,4,6,8,10,12,14,16,18,20,25, 30,35,40,45,50,60,70mg/L的CIP溶液50mL,不调节pH值,室温下以100r/min速度振荡(240min,180min和100min)后取出,静置、离心分离后测定溶液中CIP的浓度。
吸附等温线描述了吸附剂和吸附质之间的相互作用,这有利于优化低成本吸附剂的使用;也为研究吸附质在吸附剂表面形成单层或多层的吸附剂提供了思路。
Langmuir-Freundlich模型
Figure BDA0003346018530000131
Langmuir模型
Figure BDA0003346018530000132
Freundlich模型
Figure BDA0003346018530000133
Temkin模型
Qe=A+Blnce(10)
式中:Qm为理论最大吸附量(mg/g);Qe为吸附平衡时GBBC对MB的吸附量(mg/g);α为Langmuir-Freundlich等温方程常数;KL为Langmuir等温方程常数(L/mg);n为与吸附强度有关的经验常数;KF分别为Freundlich 等温方程常数(mg(1-n)·Ln·g-1);A和B为别为Temkin等温方程常数;ce为吸附平衡时MB溶液的浓度(mg/L)。
Langmuir等温模型假设吸附层的厚度是一个分子(单层吸附),吸附过程发生在相同和等价的定域位置,被吸附的分子之间没有空间位阻和横向相互作用,即Langmuir模型对于吸附剂表面吸附作用均匀,且为单分子层吸附时,能较好地模拟实验结果。Freundlich等温模型可用非均质表面上的化学吸附、适用浓度范围宽,但不能在浓度范围外估计吸附作用;Langmuir-Freundlich 等温模型能较好地互补Langmuir和Freundlich模型的优缺点。Temkin等温模型考虑了吸附剂与吸附质之间的相互作用,忽略了吸附质浓度极值的影响。
4种等温吸附模型对不同温度共热解橡胶-银杏叶生物炭吸附CIP的过程分别进行拟合(图7),其拟合的结果如表4所示。通过比较4种吸附模型的相关系数R2值发现,Langmuir-Freundlich模型能更好地描述RG700、RG800 和RG900对CIP的等温吸附特征,且R2值都接近于1,由此可见共热解生物炭表面并不均匀(与SEM结果一致),对CIP的吸附以多分子层不均匀吸附为主。在吸附初始阶段,吸附作用力大、阻力小,随着吸附量的增加,吸附的 CIP分子叠加层数不断增多,吸附作用力不断减小。在Freundlich模型中, 1/n反映了吸附剂对吸附质吸附的亲和力。当0﹤1/n﹤1时,吸附为有利的; 1/n﹥1时,吸附为不利的;1/n=1时吸附过程不可逆。本研究中,1/n均小于 1,说明共热解生物炭吸附CIP的过程是容易进行的。
表4不同温度共热解生物炭吸附CIP的等温方程参数
Figure BDA0003346018530000141
溶液pH对于吸附效果的影响
实验方法:吸附取20mg/L的CIP溶液50mL于100mL锥形瓶中,用0.1 mol/L的NaOH溶液和0.1mol/L的HCl溶液调节溶液pH值,使其分别达到2, 4,6,8,10,12,然后加入0.05g的RG700生物炭,室温下以100r/min速度振荡120min后取出,静置、离心分离后测定溶液中CIP的浓度,计算吸附量与吸附率。
溶液的pH值也是影响共热解生物炭对CIP吸附过程的因素之一。探究共热解生物炭在初始pH值不同的条件下对CIP去除率的变化,结果如图8所示。
从图8中可以看出,溶液初始pH值的改变影响了共热解生物炭对CIP的去除率。随着pH值逐渐增大,共热解生物炭对CIP的去除率呈现出先增大后减小的趋势,这是因为pH值影响了CIP表面电荷的变化和共热解生物炭的存在形态。当pH=6时吸附率最高,为91.23%,当pH=12时吸附率最低为84.86%,虽然伴随溶液初始pH值在2~12范围内变化时,共热解生物炭对CIP的去除率也出现了一定的变化,但变化范围在84.86%~91.23%之间,变化相对较小,影响效果不明显,故实验过程中未调节pH值。
实施例4
生物炭的制备方法:将橡胶和银杏叶清洗,烘干,粉碎,过100目筛,得到橡胶粉和银杏叶粉备用;
将制备好的橡胶粉与银杏叶按质量比5:2混合均匀后,装入陶瓷坩埚中,轻微压实,盖上盖子于马弗炉中,停留时间2h,热解温度700℃,进行热解,热解完成后自然冷却至室温,即得橡胶-银杏叶共热解生物炭,称量并计算产率,装入密封袋中备用。
吸附实验方法:称取一定量的共热解生物炭于100mL锥形瓶中,加入70 mg/L的CIP溶液50mL。室温下(25℃)以100r/min速度振荡240min,静置后取上清液于5000r/min离心机中离心分离,采用紫外-可见分光光度法在278nm波长处测定溶液中CIP的浓度,计算吸附量与吸附率。
生物炭用量也会影响共热解生物炭对CIP吸附过程的因素之一。探究生物炭用量对共热解生物炭吸附CIP的影响,结果如图9所示。
由图9可知,随着共热解生物炭投加量的增加,溶液中CIP的去除率由 62.22%上升到98.61%,投加量在0.04~0.08g之间,共热解生物炭对CIP的吸附基本呈直线上升。这是因为共热解生物炭投加量增大时,用于吸附CIP 的活性位点和吸附面积随之增大,使得总的吸附量也随之变大。当共热解生物炭投加量超过0.14g以上时,共热解生物炭对CIP的吸附率变化较小,吸附基本达到平衡。吸附率增大的同时单位吸附量却不断降低,这是由于共热解生物炭的活性位点竞争吸附有限的CIP,吸附过程中随着CIP浓度的减小,吸附推动力变弱,致使部分未达到饱和的吸附位点不能被充分利用。所以,共热解生物炭的投加量以0.14g为宜。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

Claims (10)

1.一种橡胶和银杏叶共热解制备生物炭的方法,其特征在于,包括以下步骤:
材料预处理:将橡胶和银杏叶清洗,烘干,粉碎,过筛,得到橡胶粉和银杏叶粉备用;
热解:将橡胶粉和银杏叶粉按一定比例混匀,在马弗炉中热解,热解完成,冷却至室温,得到的黑色固体即为生物炭。
2.如权利要求1所述的橡胶和银杏叶共热解制备生物炭的方法,其特征在于,制备得到的生物炭的比表面积为107.33-337.50m2·g-1,总孔体积为0.35-0.39cm3·g-1,平均孔径为6.08-16.49nm,平均粒径为17.78-55.90nm。
3.如权利要求1所述的橡胶和银杏叶共热解制备生物炭的方法,其特征在于,制备得到的生物炭的元素质量份分别为C元素:61.31-71.84份,N元素:0.20-0.43份,H元素:0.16-0.29份,S元素:3.54-5.28份,O元素:1.52-2.49份,H/C的原子质量比为0.030-0.048。
4.如权利要求1所述的橡胶和银杏叶共热解制备生物炭的方法,其特征在于,所述热解步骤中,橡胶粉和银杏叶粉的质量比为(1-5):1。
5.如权利要求1所述的橡胶和银杏叶共热解制备生物炭的方法,其特征在于,所述热解步骤中,马弗炉的升温速率为5-15℃/min,马弗炉的热解反应温度为400-900℃,热解时间为1-3小时。
6.一种橡胶和银杏叶共热解制备的生物炭在去除水体中抗生素中的应用,其特征在于,具体包括以下步骤:将权利要求1-5中任意一项制备得到的生物炭,在室温条件下,投入到含有抗生素的水体中,室温振荡,吸附平衡后过滤,即得去除抗生素后的水体。
7.如权利要求6所述的应用,其特征在于,所述含有抗生素的水体中抗生素的浓度为2-70mg/L,生物炭添加量为0.8-3.6g/L。
8.如权利要求6所述的应用,其特征在于,将生物炭投入到含有抗生素的水体中后,还包括调节溶液pH值为2-12。
9.如权利要求6-8中任意一项应用,其特征在于,所述生物炭去除水体中的抗生素包括环丙沙星、恩诺沙星、左氧氟沙星、诺氟沙星、四环素中的一种或多种。
10.如权利要求9所述的应用,其特征在于,所述生物炭去除水体中的环丙沙星的吸附率达到98.61%以上。
CN202111322885.3A 2021-11-09 2021-11-09 一种橡胶和银杏叶共热解制备生物炭的方法及其在去除水体中抗生素中的应用 Pending CN114082400A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111322885.3A CN114082400A (zh) 2021-11-09 2021-11-09 一种橡胶和银杏叶共热解制备生物炭的方法及其在去除水体中抗生素中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111322885.3A CN114082400A (zh) 2021-11-09 2021-11-09 一种橡胶和银杏叶共热解制备生物炭的方法及其在去除水体中抗生素中的应用

Publications (1)

Publication Number Publication Date
CN114082400A true CN114082400A (zh) 2022-02-25

Family

ID=80299419

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111322885.3A Pending CN114082400A (zh) 2021-11-09 2021-11-09 一种橡胶和银杏叶共热解制备生物炭的方法及其在去除水体中抗生素中的应用

Country Status (1)

Country Link
CN (1) CN114082400A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115501858A (zh) * 2022-10-19 2022-12-23 辽宁大学 磁性硫氮掺杂生物炭复合材料及其制备方法和在共吸附抗生素与重金属离子中的应用
CN116082092A (zh) * 2023-01-12 2023-05-09 南开大学 一种生物炭的制备方法、尾菜还田方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170224A (ja) * 2012-02-21 2013-09-02 Nihon Univ 石油代替液体燃料の製造方法
CN103613160A (zh) * 2013-11-27 2014-03-05 中国林业科学研究院亚热带林业研究所 一种利用竹炭吸附去除水体中环丙沙星的方法
CN105419848A (zh) * 2015-11-18 2016-03-23 江苏大学 一种藻类和废弃橡胶共热解催化加氢制备生物油的方法
CN109626479A (zh) * 2018-11-29 2019-04-16 华中科技大学 一种使用生物炭去除废水中放射性核素的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170224A (ja) * 2012-02-21 2013-09-02 Nihon Univ 石油代替液体燃料の製造方法
CN103613160A (zh) * 2013-11-27 2014-03-05 中国林业科学研究院亚热带林业研究所 一种利用竹炭吸附去除水体中环丙沙星的方法
CN105419848A (zh) * 2015-11-18 2016-03-23 江苏大学 一种藻类和废弃橡胶共热解催化加氢制备生物油的方法
CN109626479A (zh) * 2018-11-29 2019-04-16 华中科技大学 一种使用生物炭去除废水中放射性核素的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SUAT UÇAR ET AL.: ""Co-pyrolysis of pine nut shells with scrap tires"", 《FUEL》, vol. 137, pages 85 - 93 *
李艳春等: ""4种生物炭对阳离子染料吸附性能"", 《环境科学与技术》, vol. 43, no. 7, pages 101 - 110 *
邓雅雯等: ""生物炭对抗生素的吸附/解吸研究进展"", 《环境污染与防治》, vol. 42, no. 3, pages 376 - 384 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115501858A (zh) * 2022-10-19 2022-12-23 辽宁大学 磁性硫氮掺杂生物炭复合材料及其制备方法和在共吸附抗生素与重金属离子中的应用
CN115501858B (zh) * 2022-10-19 2023-12-08 辽宁大学 磁性硫氮掺杂生物炭复合材料及其制备方法和在共吸附抗生素与重金属离子中的应用
CN116082092A (zh) * 2023-01-12 2023-05-09 南开大学 一种生物炭的制备方法、尾菜还田方法和应用
CN116082092B (zh) * 2023-01-12 2024-04-19 南开大学 一种生物炭的制备方法、尾菜还田方法和应用

Similar Documents

Publication Publication Date Title
Hou et al. Hydrothermal conversion of bamboo shoot shell to biochar: Preliminary studies of adsorption equilibrium and kinetics for rhodamine B removal
Gupta et al. Pyrolysis of chemically treated corncob for biochar production and its application in Cr (VI) removal
Yang et al. Effects of pyrolysis temperature on the physicochemical properties of biochar derived from vermicompost and its potential use as an environmental amendment
Mahmoud et al. Batch adsorption of basic dye using acid treated kenaf fibre char: Equilibrium, kinetic and thermodynamic studies
Shaaban et al. Characterization of biochar derived from rubber wood sawdust through slow pyrolysis on surface porosities and functional groups
Li et al. A comparison of biochars from lignin, cellulose and wood as the sorbent to an aromatic pollutant
Mohan et al. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review
Xu et al. Aquatic plant-derived biochars produced in different pyrolytic conditions: spectroscopic studies and adsorption behavior of diclofenac sodium in water media
CN114082400A (zh) 一种橡胶和银杏叶共热解制备生物炭的方法及其在去除水体中抗生素中的应用
H El-Gamal et al. Comparison between properties of biochar produced by traditional and controlled pyrolysis
Lee et al. Production of bioadsorbent from phosphoric acid pretreated palm kernel shell and coconut shell by two-stage continuous physical activation via N2 and air
CN108144581B (zh) 碱改性猪粪生物炭及其制备方法和应用
Kong et al. Physico-chemical characteristics and the adsorption of ammonium of biochar pyrolyzed from distilled spirit lees, tobacco fine and Chinese medicine residues
Xiong et al. Physicochemical and adsorption properties of biochar from biomass-based pyrolytic polygeneration: effects of biomass species and temperature
Lee et al. Effect of pretreatment conditions on the chemical–structural characteristics of coconut and palm kernel shell: A potentially valuable precursor for eco-efficient activated carbon production
Hoseinzadeh et al. Adsorption of acid black 1 by using activated carbon prepared from scrap tires: kinetic and equilibrium studies
Wang et al. Enhanced nitrogen and phosphorus adsorption performance and stabilization by novel panda manure biochar modified by CMC stabilized nZVZ composite in aqueous solution: Mechanisms and application potential
Danish et al. Preparation and characterization of banana trunk activated carbon using H3PO4 activation: A rotatable central composite design approach
Hubetska et al. Sunflower biomass power plant by-products: properties and its potential for water purification of organic pollutants
Patiño et al. Magnetic hydrochar nanocomposite obtained from sunflower husk: A potential material for environmental remediation
Dudziak et al. Comparative assessment of the biomass solar pyrolysis biochars combustion behavior and zinc Zn (II) adsorption
Aljundi et al. A study of characteristics of activated carbon produced from Jordanian olive cake
Behnam et al. Effects of synthesis method, feedstock type, and pyrolysis temperature on physicochemical properties of biochar nanoparticles
Arslanoğlu et al. Fabrication, characterization, and adsorption applications of low-cost hybride activated carbons from peanut shell-vinasse mixtures by one-step pyrolysis
Mokrzycki et al. The influence of the Miscanthus giganteus pyrolysis temperature on the application of obtained biochars as solid biofuels and precursors of high surface area activated carbons

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination