CN114080475A - 用于聚合物电解质水电解池的聚合物膜的制备方法 - Google Patents

用于聚合物电解质水电解池的聚合物膜的制备方法 Download PDF

Info

Publication number
CN114080475A
CN114080475A CN202080051543.XA CN202080051543A CN114080475A CN 114080475 A CN114080475 A CN 114080475A CN 202080051543 A CN202080051543 A CN 202080051543A CN 114080475 A CN114080475 A CN 114080475A
Authority
CN
China
Prior art keywords
cell
recombination catalyst
exchange membrane
ionomer
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080051543.XA
Other languages
English (en)
Inventor
L·古布勒
T·J·施密特
U·巴比克
S·加布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scherrer Paul Institut
Original Assignee
Scherrer Paul Institut
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scherrer Paul Institut filed Critical Scherrer Paul Institut
Publication of CN114080475A publication Critical patent/CN114080475A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1644Composition of the substrate porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2053Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment only one step pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/081Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8846Impregnation
    • H01M4/885Impregnation followed by reduction of the catalyst salt precursor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明的目的是提供一种制备用于聚合物电解质水电解池的聚合物膜的方法,以便实现具有高穿透抑制并且不显示对电池性能的负面影响的薄膜。根据本发明,该目的通过一种制备离子交换膜(阴离子或阳离子交换)的离聚物的方法来实现,所述离子交换膜的离聚物含有再化合催化剂以防止物类如氢和/或氧向电化学电池的阳极电池隔室和阴极电池隔室的气体穿透;所述方法包括以下步骤:a)提供作为质子或阴离子交换聚合物的离聚物;b)从贵金属族中选择再化合催化剂;c)提供包含在液态金属盐溶液中的离子形式的所选的再化合催化剂;d)将离子交换膜浸入所述液态金属盐溶液中,由此用所述再化合催化剂的离子形式交换离子离聚物接口的至少一部分;e)将浸入过的离子交换膜组装在电化学电池中;和f)通过迫使氢渗透穿过所述离子交换膜的离聚物,至少部分地将再化合催化剂的离子形式的含量还原成金属形式。因此,本发明提出了一种通过使氢扩散穿过PEWE电池中的PEM来还原Pt‑离子的新方法。所提出的解决方案提供了一种实现具有高穿透抑制而不会对电池性能产生负面影响的薄膜以及在行进中原位还原的方式。

Description

用于聚合物电解质水电解池的聚合物膜的制备方法
本发明涉及一种用于聚合物电解质水电解池的聚合物膜的制备方法。
聚合物电解质水电解池(PEWE)是一种电化学装置,其中电极被固体质子传导聚合物膜隔开。在阳极侧,水被分解成氧和质子。质子在电场的影响下被传输到阴极,在那里析出分子氢。PEWE电池安全运行的一个关键问题是高氢气穿透(crossover),这可能导致爆炸性的氢气-氧气混合物。安全方面在采用薄膜和高压差的情况下尤为重要。
水电解有可能成为从传统的化石能源基系统向可再生的无碳能源系统的能量转型中的关键技术。由于这些一次能源的间歇性,基于很大一部分这些“新兴可再生能源”的电力供应与供需之间的巨大差异相关联。水电解是一种清洁且有效的工艺,其提供了以化学能(“电转气”(power-to-gas))形式储存大量过剩电力的广阔前景。它也是通过电转x(power-to-x)概念来耦合不同部门(电力、移动、加热)的关键要素。如图1中所示的现有技术PEWE电池包括用于析氧反应(OER)的正电极、用于析氢反应(HER)的负电极和隔膜,该隔膜使电极电子绝缘并防止析出气体的交叉混合,同时允许质子传输。现有技术膜水电解池使用质子交换膜,并且由于具有低欧姆电阻的薄聚合物电解质(~0.2 mm),可以在相对高的电流密度(1-3 A/cm2)和压差下运行。OER由贵金属如Ir和Ru催化,这是由于它们在酸性介质中具有活性和稳定性。PEWE中最常见的HER催化剂是Pt。
根据法拉第定律,PEWE电池中气体的产生速率与施加的电流密度成正比。增加电流密度,同时通过使用更薄的膜来保持转化效率是提高PEWE每单位电池面积产H2速率的一种途径。更薄的膜允许在给定的电池电压下更高的电流密度,并由此有效降低电解池电堆的投资成本。据报道,使用50μm厚的膜,在3V的电池电位下,电流密度高达19 A/cm2。相关的功率密度约为50 W/cm2
加压PEWE可以使随后的气体压缩变得多余或者减少用机械压缩进行干燥的工作量。尤其是,与平衡压力运行相比,差压式PEWE (differential pressurized PEWE)对于高纯度氢气产生和更高的法拉第效率具有吸引力。氢向阳极侧的扩散速率很大程度上取决于膜的厚度和所施加的分压。由于膜中氢的扩散系数是氧的扩散系数的大约两倍,并且大部分扩散到阴极侧的氧在Pt阴极催化剂层上再化合(recombine),所以阳极侧上氧含量中的氢含量是PEWE中的一个主要安全方面,尤其是在使用薄膜的高分压下。氢气在氧气中的爆炸下限为4%。
通过将铂粒子浸渍到膜中可以抑制气体穿透。渗透的氢和氧在铂粒子的表面上再化合成水。迄今为止,有两种将再化合催化剂(recombination catalysts)引入PEM中的方法:
1)在第一步中,将膜浸入含铂离子的溶液中。铂离子通过离子交换过程被质子交换膜吸收。在第二步中,将掺杂铂离子的膜置于含有化学还原剂(如N2H4或NaBH4)的溶液中,以将Pt离子还原为Pt。Pt粒子优先在膜-溶液界面处被还原。
2)将含有铂粒子的离聚物层喷涂到一个膜上。将第二个膜面向含铂层热压到第一个膜上。由此制备了在两个膜之间的铂中间层。据报道,该性能比使用原始膜的性能差。
D. Bessarabov, "Membranes with Recombination Catalyst for HydrogenCrossover Reduction: Water Electrolysis", ECS Trans 85(11) (2018) 17-25和美国专利申请US 2008/0044720,"Membrane Electrode Assembly having Porous ElectrodeLayers, Manufacturing Method thereof, and Electrochemical Cell Comprising thesame"已经公开了另一种途径。
Bessarabov公开了在质子交换膜中引入再化合催化剂,由此使用铂盐作为前体。在这里,产生金属Pt粒子的化学还原步骤使用肼(N2H4),即以其硼氢化钠(NaBH4)的形式。不幸的是,这导致形成Pt再化合催化剂在质子交换膜的厚度上非常不均匀的分布(参见Bessarabov中的图3,还参见图6底部)。这些结果在申请人的实验室中进行的测量过程中也得到了证实。
此外,上述美国专利申请公开了一种由两种类型的金属盐组成的前体制备用于电化学电池(燃料电池、电解池)的多孔催化剂层的方法,这与在离子交换膜的厚度上均匀分布的金属催化剂粒子的生成无法比较。一种类型的金属阳离子被还原剂BH4-还原成金属,形成电催化剂。另一种类型不被还原,但容易溶解和洗出以留下孔隙,这改进了电池性能。
然而,现有技术文献均未公开实现来自贵金属族的再化合催化剂的金属粒子在离子交换膜的厚度上均匀分布的方式。
因此,本发明的目的是提供一种制备用于聚合物电解质水电解池的聚合物膜的方法,以便实现具有高穿透抑制并且不显示对电池性能的负面影响的薄膜。
根据本发明,该目的通过一种制备离子交换膜的离聚物的方法来实现,所述离子交换膜的离聚物含有再化合催化剂以防止物类如氢和/或氧向电化学电池的阳极电池隔室和阴极电池隔室的气体穿透;所述方法包括以下步骤:
a)提供作为质子或阴离子交换聚合物的离聚物;
b)从贵金属族中选择再化合催化剂;
c)提供包含在液态金属盐溶液中的离子形式的所选的再化合催化剂;
d)将离子交换膜浸入所述液态金属盐溶液中,由此用所述再化合催化剂的离子形式交换所述离子交换膜的离子交换位点的至少一部分;
e)将浸入过的离子交换膜组装在电化学电池中;和
f)通过迫使氢渗透穿过所述离子交换膜的离聚物,至少部分地将所述再化合催化剂的离子形式还原成金属形式。
因此,本发明提出了一种通过使氢扩散穿过PEWE电池中的PEM来还原Pt-离子的新方法。所提出的解决方案提供了一种实现具有高穿透抑制而不会对电池性能产生负面影响的薄膜以及通过均匀分布在行进中(on the flight)原位还原的方式。
为了实现高穿透抑制,再化合催化剂的离子形式均匀地分布在离子交换膜的离聚物的整个横截面上。优选地,电化学电池是聚合物电解质水电解池。
取决于离子交换膜的离子特性,当再化合催化剂的离子形式为阳离子形式或阴离子形式时是合理的。
优选地,所选的金属是铂。或者,可以使用钯或银。
下面参照附图更详细地描述本发明的优选实施方案,所述附图:
在图1中示意性描绘了PEWE电池的已知原理和其中发生的电化学反应;
在图2中描绘了氢还原铂PEM (H2-Pt N212)的横截面的透射电子显微镜(TEM)图像;
在图3中描绘了在不同电流密度下使用H2-Pt N212和原始膜(N212)的PEWE电池的阳极隔室中的氧中的氢含量;
在图4中描绘了在60℃和环境压力下分别使用N212(黑色)和H2-Pt N212(浅灰色)的PEWE电池的极化曲线;
在图5中描绘了在60℃和环境压力下分别使用N212(黑色)和H2-Pt N212(浅灰色)的PEWE电池的HFR;以及
在图6中描绘了质子交换膜的TEM图像,其中用氢还原离子铂含量(顶部),和根据现有技术用肼还原离子铂含量(底部)。
本发明提出了一种在聚合物电解质膜(PEM)的整个横截面上均匀地引入再化合催化剂粒子而无需第二外部还原步骤的可行且有效的方式。将PEM浸入含有再化合催化剂前体离子的溶液中。将再化合催化剂前体离子掺杂的PEM从一侧暴露于氢气。扩散穿过膜的氢将再化合催化剂前体离子还原成金属粒子。
图1显示了PEWE电池的横截面和在阳极和阴极催化剂处发生的电化学反应的示意图,所述电化学反应包括总的水分解反应(BBP =双极板,PTL =多孔传输层,RHE =参比氢电极)。
图2显示了在本研究中介绍的氢还原铂PEM (H2-Pt N212)的横截面的透射电子显微镜(TEM)图像。Pt粒子均匀地分布在整个膜上,并且粒径范围在1和120 nm之间。将Pt浸渍的PEM组装到上述电解池系统中。详细地,显示了经由H2-还原的Pt-浸渍膜的透射电子显微镜图像和在10μm膜横截面积上以尺寸分布的计数粒子的数量。
图3显示了在不同电流密度下使用H2-Pt N212和原始膜(N212)的PEWE电池的阳极隔室中的氧中的氢含量。详细地,对于原始N212 (黑色)和通过用氢还原获得的Pt掺杂的N212 (H2-Pt N212,浅灰色),分别在环境阴极压力、5巴、10巴和环境阳极压力,以及60℃下的氧中的氢含量。数据显示由于析氧反应的速率增加,氢分数随着电流密度增加而降低。阴极侧上的压力增加导致更高的氢渗透速率并增加了氧中的氢分数。与原始N212相比,对于H2-Pt N212膜,在所有阴极压力下在整个电流密度范围内,氢含量均显著降低。
在图4中,显示了在环境温度和在60℃下的PEWE极化曲线。随着电流密度增加,H2-Pt N212电池显示出稍微更好的性能,并且如图5中所示的高频电阻(HFR)平均相差14 mΩcm2的值。这可能是由于电池组装过程中夹持压力的变化所导致。此外,氢和氧在膜中的铂粒子上再化合成水可能会导致膜的电导率增加。
膜的铂离子掺杂
将膜(A = 100 cm2,Nafion N212,DuPont)在60℃下浸入1 M NaCl溶液中2小时。用DI水冲洗之后,将膜转移到含有用于Pt-掺杂的1 mM (NH3)4PtCl2的50 mL可密封圆筒中,并在其中在80℃下保持24小时。
膜中的铂离子还原
将Pt掺杂的膜组装到PEWE电池中,在每侧都有气体扩散层(GDL)。使液态水在一个隔室中循环以湿润膜,并向另一个隔室施加5巴的氢气压力。暴露于氢气的膜的部分具有A red = 66.2 cm2的面积。
作为上文公开的使用铂的实施例的替代,也可以使用钯或银。
图6显示了铂在离子交换膜的厚度上的分布的TEM图像。如上文已经讨论的那样,根据Bessarov使用肼作为还原剂的方法导致形成Pt再化合催化剂(TEM图像中的黑点)在质子交换膜的厚度上非常不均匀的分布(参见图6底部)。铂粒子不利地在相当靠近离子交换膜的表面积聚而不是在离子交换膜的厚度上均匀分布。
与此不同的是,图6顶部显示了根据本发明通过使用氢(H2)还原金属催化剂的离子形式之后的结果。金属Pt粒子在离子交换膜的厚度上均匀分布。因此,根据本发明的解决方案提供了一种实现具有高穿透抑制而不会对电池性能产生负面影响的薄离子交换膜以及通过均匀分布在行进中原位还原的方式。

Claims (5)

1.制备离子交换膜的离聚物的方法,所述离子交换膜的离聚物含有再化合催化剂以防止物类如氢和/或氧向电化学电池的阳极电池隔室和阴极电池隔室的气体穿透;所述方法包括以下步骤:
a)提供作为质子或阴离子交换聚合物的离聚物;
b)从贵金属族中选择再化合催化剂;
c)提供包含在液态金属盐溶液中的离子形式的所选的再化合催化剂;
d)将离子交换膜浸入所述液态金属盐溶液中,由此用所述再化合催化剂的离子形式交换离子交换位点的至少一部分;
e)将浸入过的离子交换膜组装在电化学电池中;和
f)通过迫使氢渗透穿过所述离子交换膜的离聚物,至少部分地将所述再化合催化剂的离子形式还原成金属形式。
2.根据权利要求1所述的方法,其中所述再化合催化剂的离子形式均匀地分布在所述离子交换膜的离聚物的整个横截面上。
3.根据权利要求1或2所述的方法,其中所述电化学电池是聚合物电解质水电解池。
4.根据前述权利要求中任一项所述的方法,其中所述再化合催化剂的离子形式是阳离子形式或阴离子形式。
5.根据前述权利要求中任一项所述的方法,其中所选的金属是铂。
CN202080051543.XA 2019-05-17 2020-05-13 用于聚合物电解质水电解池的聚合物膜的制备方法 Pending CN114080475A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP19175071.0 2019-05-17
EP19175071.0A EP3739678A1 (en) 2019-05-17 2019-05-17 Method for preparing a polymer membrane for a polymer electrolyte water electrolyser
PCT/EP2020/063331 WO2020234085A1 (en) 2019-05-17 2020-05-13 Method for preparing a polymer membrane for a polymer electrolyte water electrolyser

Publications (1)

Publication Number Publication Date
CN114080475A true CN114080475A (zh) 2022-02-22

Family

ID=66589420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080051543.XA Pending CN114080475A (zh) 2019-05-17 2020-05-13 用于聚合物电解质水电解池的聚合物膜的制备方法

Country Status (4)

Country Link
US (1) US20220251721A1 (zh)
EP (2) EP3739678A1 (zh)
CN (1) CN114080475A (zh)
WO (1) WO2020234085A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115332590A (zh) * 2022-08-04 2022-11-11 大连理工大学 一种带有氢气耗散层的膜电极及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11560632B2 (en) * 2018-09-27 2023-01-24 3M Innovative Properties Company Membrane, membrane electrode assembly, and water electrolyzer including the same
EP4365336A1 (en) * 2021-06-29 2024-05-08 Agc Inc. Solid polymer-type water electrolysis membrane-electrode joint body and water electrolysis device
GB2622073A (en) * 2022-09-01 2024-03-06 Oort Energy Ltd A method for coating a component of an electrolyser

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959132A (en) * 1988-05-18 1990-09-25 North Carolina State University Preparing in situ electrocatalytic films in solid polymer electrolyte membranes, composite microelectrode structures produced thereby and chloralkali process utilizing the same
US5342494A (en) * 1993-03-05 1994-08-30 United Technologies Corporation High purity hydrogen and oxygen production and apparatus therefor
US6485855B1 (en) * 1999-06-21 2002-11-26 Honda Giken Kogyo Kabushiki Kaisha Active solid polymer electrolyte membrane in solid polymer type fuel cell and process for the production thereof
US20080044720A1 (en) * 2006-08-18 2008-02-21 Elchem Tech Co., Ltd. Membrane electrode assembly having porous electrode layers, manufacturing method thereof, and electrochemical cell comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959132A (en) * 1988-05-18 1990-09-25 North Carolina State University Preparing in situ electrocatalytic films in solid polymer electrolyte membranes, composite microelectrode structures produced thereby and chloralkali process utilizing the same
US5342494A (en) * 1993-03-05 1994-08-30 United Technologies Corporation High purity hydrogen and oxygen production and apparatus therefor
US6485855B1 (en) * 1999-06-21 2002-11-26 Honda Giken Kogyo Kabushiki Kaisha Active solid polymer electrolyte membrane in solid polymer type fuel cell and process for the production thereof
US20080044720A1 (en) * 2006-08-18 2008-02-21 Elchem Tech Co., Ltd. Membrane electrode assembly having porous electrode layers, manufacturing method thereof, and electrochemical cell comprising the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. BESSARABOV: "Membranes with Recombination Catalyst for Hydrogen Crossover Reduction: Water Electrolysis", 《ECS TRANSACTIONS》, 31 December 2018 (2018-12-31), pages 17 - 25 *
D.BESSARABOV: "Membranes with Recombination Catalyst for Hydrogen Crossover Reduction: Water Electrolysis", 《ECS TRANSACTIONS》, pages 17 - 25 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115332590A (zh) * 2022-08-04 2022-11-11 大连理工大学 一种带有氢气耗散层的膜电极及其制备方法和应用

Also Published As

Publication number Publication date
US20220251721A1 (en) 2022-08-11
WO2020234085A1 (en) 2020-11-26
EP3739678A1 (en) 2020-11-18
EP3970216A1 (en) 2022-03-23

Similar Documents

Publication Publication Date Title
US6299744B1 (en) Hydrogen generation by electrolysis of aqueous organic solutions
US9574276B2 (en) Production of low temperature electrolytic hydrogen
US20220251721A1 (en) Method for preparing a polymer membrane for a polymer electrolyte water electrolyser
US11035045B2 (en) Apparatus for producing organic hydride and method for producing organic hydride using same
Lee et al. Development of porous Pt/IrO2/carbon paper electrocatalysts with enhanced mass transport as oxygen electrodes in unitized regenerative fuel cells
US20060099482A1 (en) Fuel cell electrode
Tolmachev Hydrogen-halogen electrochemical cells: A review of applications and technologies
US11124885B2 (en) Anode catalyst suitable for use in an electrolyzer
KR20130098352A (ko) 가역 연료전지용 접합체
Cossar et al. Nickel‐based anodes in anion exchange membrane water electrolysis: a review
WO2013111586A1 (ja) 電気化学還元装置および、芳香族炭化水素化合物または含窒素複素環式芳香族化合物の水素化体の製造方法
US20080199774A1 (en) Membrane electrode assembly with electrode support
CN116917547A (zh) 质子交换膜水电解器膜电极组件
US11326264B2 (en) Membrane electrode assembly for proton exchange membrane water electrolyzer and method of preparing membrane electrode assembly for proton exchange membrane water electrolyzer
US20220102737A1 (en) Enhanced durability of fuel cell metallic bipolar plate
KR102260935B1 (ko) 고분자 전해질 분리막에 기반한 고효율 일체형 재생연료전지, 이의 운전방법, 및 이의 제조방법
RU2392698C1 (ru) Способ изготовления мембранно-электродного блока с бифункциональными электрокаталитическими слоями
US20230203679A1 (en) Membrane electrode assembly for pem water electrolysis capable of improving the electrical conductivity of the electrode layer and method of manufacturing thereof
Millet Noble metal-membrane composites for electrochemical applications
US8288057B2 (en) Electrode layer of fuel cell and method of fabricating the same
US20230099815A1 (en) Fuel cells with improved membrane life
Faqeeh et al. Zero-Gap Bipolar Membrane Water Electrolyzers: Principles, Challenges and Practical Insights
KR20240051841A (ko) 수전해 장치용 확산 전극의 제조방법 및 이에 의해 제조된 확산 전극을 구비하는 양이온 교환막 수전해 장치
Narayanan et al. Hydrogen generation by electrolysis of aqueous organic solutions
大野秀明 Research on Oxygen Evolution Catalysts with High Performances and Low Noble Metal Amounts for Polymer Electrolyte Membrane Water Electrolysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination