CN114075676B - 一种四元高熵合金纳米材料、制备方法及其应用 - Google Patents

一种四元高熵合金纳米材料、制备方法及其应用 Download PDF

Info

Publication number
CN114075676B
CN114075676B CN202111236847.6A CN202111236847A CN114075676B CN 114075676 B CN114075676 B CN 114075676B CN 202111236847 A CN202111236847 A CN 202111236847A CN 114075676 B CN114075676 B CN 114075676B
Authority
CN
China
Prior art keywords
entropy alloy
salt
organic
hea
feconimo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111236847.6A
Other languages
English (en)
Other versions
CN114075676A (zh
Inventor
胡觉
梅云婕
张呈旭
黎氏琼春
冯月斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202111236847.6A priority Critical patent/CN114075676B/zh
Publication of CN114075676A publication Critical patent/CN114075676A/zh
Application granted granted Critical
Publication of CN114075676B publication Critical patent/CN114075676B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/089Alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种四元高熵合金纳米材料、制备方法及其应用,属于OER催化剂技术领域。将铁盐、钴盐、镍盐、钼盐与2,5‑二羟基对苯二甲酸有机配体溶于乙醇、去离子水和有机溶剂组成的混合溶剂中,进行水热反应,然后冷却至室温,经有机微孔滤膜抽滤,抽滤得到的产物依次用去离子水和乙醇有机溶剂洗涤,然后干燥得到四金属有机框架前驱体产物;将得到的四金属有机框架前驱体产物在通入H2‑Ar混合气下,高温下还原,冷却至室温后得到FeCoNiMo HEA四元高熵合金纳米材料。本发明四元高熵合金纳米材料FeCoNiMo HEA纳米催化剂不仅是首次合成,而且在1摩尔KOH环境下对于OER反应具有优异的催化活性和稳定性。

Description

一种四元高熵合金纳米材料、制备方法及其应用
技术领域
本发明涉及一种四元高熵合金纳米材料、制备方法及其应用,属于OER催化剂技术领域。
背景技术
现今全球为谋求共同快速发展,对能源的需求量与日俱增,而现如今环保的概念深入人心,可持续发展的能源得到了越来越多的关注与利用。传统的化石燃料因其储量有限已无法供给未来的需求,且会排放大量的CO2、CO等污染气体,而氢气因其高能量密度、零二氧化碳排放量,被认为是未来理想的清洁能源。电化学技术因其可控性和反应条件的温和性,被选择为转换能源的途径之一。通过电化学可进行分解水获得氢能,实现NH3、CO2的循环利用。以上电化学技术是基于电催化过程,即需要高效廉价的电催化剂。水分解反应又分为两个半反应:水氧化反应(或析氧反应)(OER) 和水还原反应(或析氢反应)(HER)。相较于HER,OER由于其复杂的四电子转移过程,则需要消耗较高的过电位来克服OER动力学能垒(1.23V vs.RHE)才能够发生反应,因此限制水的分解速率。
常见的OER电催化剂有贵金属及其氧化物、过渡金属及其氧化物(硫化物、氮化物、磷化物和氢氧化物)和非金属材料。然而,在较高阳极电位下,贵金属Ru基和Ir 基催化剂容易氧化为水溶性的RuO4和IrO或IrO4 2-,发生电极溶出,从而使得催化活性下降,且在酸性介质电解质中更明显。同时,由于贵金属元素的稀缺性、高成本限制其更大规模的研究与应用。在过去的几年金属合金在OER过程中展现出来不俗的潜力,
引起了人们的极大关注。例如,双金属纳米合金(CoNi,FeNi,FeCo,MoNi和三元纳米合金(IrNiCo、和NiCoFe)由于其优化的表面电子结构和吸附,它们都表现出优异的 OER活性。
高熵合金(HEAs)作为一类具有独特性能的新型金属合金,自从本世纪初被提出并被研究至今,因其高强度、高硬度、热稳定性等优异性能被广泛地关注,探索其在各个方向的适用性。最近的研究发现高熵合金在电催化领域有着突出的表现,由于自身成分组成可以进行无数种的匹配与组合,不同金属元素间的协同作用,不同组合的高熵合金会对结构、形貌上造成影响,在电催化性能上也存在着显著的差异。因此将高熵合金纳米颗粒应用于OER催化的开发已成为一项新的研究。
发明内容
针对上述现有技术存在的问题及不足,本发明提供一种四元高熵合金纳米材料、制备方法及其应用。本发明四元高熵合金纳米材料FeCoNiMo HEA纳米催化剂不仅是首次合成,而且在1摩尔KOH环境下对于OER反应具有优异的催化活性和稳定性。本发明通过以下技术方案实现。
一种四元高熵合金纳米材料,该四元高熵合金纳米材料由Fe、Co、Ni和Mo组成。
一种四元高熵合金纳米材料的制备方法,其包括以下具体步骤:
步骤1、将铁盐、钴盐、镍盐、钼盐与2,5-二羟基对苯二甲酸有机配体按照摩尔比为0.25:0.25:0.25:0.025:0.34溶于乙醇、去离子水和有机溶剂组成的混合溶剂中,在120-150℃加热24-32h进行水热反应,然后冷却至室温,经有机微孔滤膜抽滤,抽滤物依次用去离子水和乙醇有机溶剂洗涤,然后干燥得到四金属有机框架前驱体产物;
步骤2、将步骤1得到的四金属有机框架前驱体产物在通入H2-Ar混合气下,在温度为350-450℃高温下还原2-4h,冷却至室温后得到FeCoNiMo HEA四元高熵合金纳米材料。
所述步骤1中铁盐为四水合乙酸亚铁、钴盐为六水合硝酸钴、镍盐为六水合硝酸镍和钼盐为钼酸铵。
所述步骤1中乙醇、去离子水和有机溶剂体积比为1.35:1.35:22.5,铁盐与乙醇的比值为0.25:1.35mmol/mL。
所述步骤1中有机溶剂为N,N-二甲基甲酰胺。
所述步骤2中H2-Ar混合气流量为0.05-0.1L/min,H2与Ar的体积比为5-10:95-90。
一种四元高熵合金纳米材料应用于电催化OER反应。
上述四元高熵合金纳米材料的OER应用方法,电极制备方法如下:在5mg的FeCoNiMo HEA催化剂里添加在300μL 0.5%的Nafion乙醇溶液和200μL的去离子水,随后水浴超声处理分散均匀成悬浮液;然后将50μL悬浮液滴加到面积为0.5cm2的泡沫镍电极上;测量前将电极在室温下自然干燥;所述催化剂的含量为1mg/cm2
本发明的有益效果是:
(1)本发明制备新型高熵合金FeCoNiMo纳米材料催化剂
(2)本发明制备的高熵合金FeCoNiMo纳米材料催化剂在碱性环境下具有较高氧析出的电催化活性和稳定性。
附图说明
图1为合金FeCoNi纳米材料样品的XRD衍射图谱。
图2为高熵合金FeCoNiMo纳米材料样品的XRD衍射图谱。
图3为高熵合金FeCoNiMn纳米材料样品的XRD衍射图谱。
图4为高熵合金FeCoNiCu纳米材料样品的XRD衍射图谱。
图5为FeCoNi合金,高熵合金FeCoNiMo纳米材料,高熵合金FeCoNiMn纳米材料和高熵合金FeCoNiCu纳米材料的傅里叶红外光谱(FT-IR)图;
图6a,b,c,d,e,f为FeCoNi合金,高熵合金FeCoNiCu,高熵合金FeCoNiMn样品的场发射扫描电镜(FESEM)图;
图7为四元高熵合金FeCoNiMo纳米材料的FESEM图;
图8为四元高熵合金FeCoNiMo纳米材料的高分辨透射电镜(HRTEM)图;
图9为四元高熵合金FeCoNiMo纳米材料的高分辨透射电镜(HRTEM)图;
图10为四元高熵合金FeCoNiMo纳米材料的高分辨透射电镜(HRTEM)图;
图11为四元高熵合金FeCoNiMo纳米材料与FeCoNi合金的Fe 2p高分辨率X射线光电子能谱(XPS)图谱对比;
图12为四元高熵合金FeCoNiMo纳米材料与FeCoNi合金的Co 2p高分辨率X射线光电子能谱(XPS)图谱对比;
图13为四元高熵合金FeCoNiMo纳米材料与FeCoNi合金的Ni 2p高分辨率X射线光电子能谱(XPS)图谱对比;
图14为四元高熵合金FeCoNiMo纳米材料的Mo 3d高分辨率X射线光电子能谱(XPS)图谱;
图15为FeCoNi合金,高熵合金FeCoNiMo纳米材料,高熵合金FeCoNiMn纳米材料和高熵合金FeCoNiCu纳米材料在1.0M KOH、室温条件下的IR校正极化曲线;
图16为为FeCoNi合金,高熵合金FeCoNiMo纳米材料,高熵合金FeCoNiMn纳米材料和高熵合金FeCoNiCu纳米材料在电催化析氧反应时的塔菲尔曲线图;
图17为实施例2和3四元高熵合金纳米材料结构示意图,其中不同颜色的圆球代表不同的金属。
具体实施方式
下面结合附图和具体实施方式,对本发明作进一步说明。
实施例1
该四元高熵合金纳米材料,该四元高熵合金纳米材料由Fe、Co、Ni和Mo组成。
该四元高熵合金纳米材料的制备方法,其包括以下具体步骤:
步骤1、将0.25mmol铁盐(四水合乙酸亚铁)、0.25mmol钴盐(六水合硝酸钴)、0.25mmol镍盐(六水合硝酸镍)、0.25mmol钼盐(钼酸铵)与0.34mmol2,5-二羟基对苯二甲酸有机配体按照摩尔比为0.25:0.25:0.25:0.025:0.34溶于1.35mL乙醇、 1.35mL去离子水和22.5mL有机溶剂(N,N-二甲基甲酰胺)组成的混合溶剂中,在120℃加热24h进行水热反应,然后冷却至室温,经有机微孔滤膜抽滤,抽滤物依次用去离子水和乙醇有机溶剂洗涤,然后干燥得到四金属有机框架前驱体产物;其中乙醇、去离子水和有机溶剂体积比为1.35:1.35:22.5,铁盐与乙醇的比值为0.25:1.35mmol/mL;
步骤2、将步骤1得到的四金属有机框架前驱体产物在通入H2-Ar混合气下(H2-Ar混合气流量为0.05L/min,H2与Ar的体积比为5:95),在温度为450℃高温下还原2h,冷却至室温后得到FeCoNiMo HEA四元高熵合金纳米材料。
对比实施例1
将0.25mmol铁盐(四水合乙酸亚铁),0.25mmol钴盐(六水合硝酸钴),0.25mmol 镍盐(六水合硝酸镍)与0.34mmol有机配体2,5-二羟基对苯二甲酸溶于1.35ml乙醇, 1.35ml去离子水和22.5mL有机溶剂(N,N-二甲基甲酰胺)中,在120℃加热24h水热反应得到反应三金属有机框架前驱体产物。
步骤2、将步骤1得到的反应产物冷却至室温,经有机微孔滤膜抽滤,抽滤物依次用去离子水和乙醇有机溶剂洗涤,然后干燥两小时。将产物放入管式炉中通入H2/Ar 混合气(H2-Ar混合气流量为0.05L/min,H2与Ar的体积比为5:95)在高温(温度为 450℃)下还原两小时,冷却到室温后即得FeCoNi合金纳米材料。
对比实施例2
将0.25mmol铁盐(四水合乙酸亚铁),0.25mmol钴盐(六水合硝酸钴),0.25mmol 镍盐(六水合硝酸镍),0.025mmol锰盐(四水合硝酸锰)与0.34mmol有机配体2, 5-二羟基对苯二甲酸溶于1.35ml乙醇,1.35ml去离子水和22.5mL有机溶剂(N,N-二甲基甲酰胺)中,在120℃加热24h水热反应得到反应四金属有机框架前驱体产物。
步骤2、将步骤1得到的反应产物冷却至室温,经有机微孔滤膜抽滤,抽滤物依次用去离子水和乙醇有机溶剂洗涤,然后干燥两小时。将产物放入管式炉中通入H2/Ar 混合气(H2-Ar混合气流量为0.05L/min,H2与Ar的体积比为5:95)在高温(温度为 450℃)下还原两小时,冷却到室温后即得FeCoNiMn HEA纳米材料。
对比实施例3
将0.25mmol铁盐(四水合乙酸亚铁),0.25mmol钴盐(六水合硝酸钴),0.25mmol 镍盐(六水合硝酸镍),0.025mmol铜盐(三水合硝酸铜)与0.34mmol有机配体2, 5-二羟基对苯二甲酸溶于1.35ml乙醇,1.35ml去离子水和22.5mL有机溶剂(N,N-二甲基甲酰胺)中,在120℃加热24h水热反应得到反应四金属有机框架前驱体产物。
步骤2、将步骤1得到的反应产物冷却至室温,经有机微孔滤膜抽滤,抽滤物依次用去离子水和乙醇有机溶剂洗涤,然后干燥两小时。将产物放入管式炉中通入H2/Ar 混合气(H2-Ar混合气流量为0.05L/min,H2与Ar的体积比为5:95)在高温(温度为 450℃)下还原两小时,冷却到室温后即得FeCoNiCu HEA纳米材料。
对比实施例制备的FeCoNi合金,FeCoNiMn HEA,FeCoNiCu HEA和实施例制备的FeCoNiMo HEA进行结构与形貌表征:
从图1,2,3,4中可以看出对比实施例制备的FeCoNi合金,FeCoNiMn HEA,FeCoNiCu HEA和实施例制备的FeCoNiMo HEA其主要的衍射峰在2θ=43.38°、50.52°、74.20°,分别对应着(1 1 1)、(2 0 0)、(2 2 0)晶面,这些晶面指数表明纳米颗粒呈现面心立方结构(FCC)。四个图都分别将纯金属与制备的合金对比,衍射峰存在着偏移,证明这些元素被引入高熵合金结构中。不同金属的引入会引起高熵合金结构的细微变化,导致衍射峰存在着些许的偏移。且随着衍射峰向左偏移,其相对应的晶格常数也相应的有所增加。
如图5所示,为了证明合成的产物均为合金,不含有有机物,将对比实施例制备的FeCoNi合金,FeCoNiMn HEA,FeCoNiCu HEA和实施例制备的FeCoNiMo HEA结构通过FT-IR进行了验证。证明合成的产物均为合金,不含有机物。
如图6a,d,FESEM显示,FeCoNi合金样品为颗粒状纳米结构,表面粗糙,直径小于10nm。加入第四种过渡金属形成的四元高熵合金催化剂表面形貌发生了明显的变化,颗粒更加分明。如图6b,e所示,FeCoNiCu HEA显示了颗粒堆积结构,团聚较为明显。如图6c,f,FeCoNiMn HEA也显示了颗粒堆积结构,团聚较为明显。与三元 FeCoNi合金相比,合成的四元高熵合金颗粒化更加明显。
如图7,FeCoNiMo HEA的FESEM图中可以清楚地看出该纳米催化材料为多纳米颗粒堆叠形成的球状结构。
如图8,FeCoNiMo HEA的HRTEM图中可以清楚地看到这种新型的四元高熵合金纳米颗粒尺寸较小,且为单个颗粒状。
如图9,10FeCoNiMo HEA的HRTEM图中可以清楚地看到明显的晶格条纹,表明其结晶度较好。晶格条纹的距离分别为0.196nm,0.200nm,0.200nm,对应于CoFe,合金的(1 11)、(2 0 0)、(2 2 0)晶面。这些晶面指数表明纳米颗粒呈现面心立方结构(FCC)。更进一步对其晶格条纹进行分析观察,会发现四元高熵合金的晶格条纹出现了明显的扭曲。
通过XPS进一步分析了FeCoNiMo HEA样品的化学成分和状态。XPS分析表明,高熵合金FeCoNiMo中都存在Fe、Co、Ni和Mo。
如图11,FeCoNiMo HEA样品的Fe 2p高分辨率XPS图谱中,在711.73eV和 724.51eV处分别显示了Fe 2p3/2和Fe 2p1/2两个主峰,其中的双重峰分别对应于 Fe0+(711.73eV,724.51eV)和Fe2+(716.02eV,727.12eV)。可见,与FeCoNi相比, FeCoNiMo HEA样品中Fe2P1/2的电子结合能偏移到更高的能量(AE=0.07eV),这种结合能的变化表明缺陷应变引起了Fe-O键长度的变化,有利于OER催化活性的提高。
如图12所示,FeCoNiMo HEA样品的Co 2p高分辨率XPS图谱在778.87和 781.02eV处分别显示了Co 2p3/2和Co 2p1/2两个主峰,与FeCoNi相比,FeCoNiMo HEA 样品的第二个主峰具有更高的结合能。在FeCoNiMo HEA中观察到XPS峰的偏移,这表明部分电荷从Co转移到其他金属中心,多种金属的电荷密度提高将会改变OER活性。
如图13所示,FeCoNiMo HEA样品的Ni 2p高分辨率XPS图谱在853.15和 870.97eV处分别显示了Ni 2p3/2和Ni 2p1/2两个主峰,与FeCoNi相比,FeCoNiMo HEA 样品的两个主峰具有的结合能都有所下降。这表明在高熵合金中,各金属之间存在着电荷的互相转移,多种金属的协同作用将会提升催化剂活性。
如图14所示,FeCoNiMo HEA样品的Mo 3d高分辨率XPS图谱在 226.42,229.07,230.85和232.64eV处分别显示了Mo3d5/2的四个主峰。Mo的加入是的 FeCoNi周围的电子结构发生重新分布,四种金属的相互影响,使得该FeCoNiMo HEA 样品具有了优异的电子结构。
作为OER反应催化剂的应用
通过线性扫描伏安法(LSV)和循环伏安法(CV)测试了样品对于OER反应的电催化性能,测试条件如下:三电极电池体系,氧气饱和的1.0M KOH溶液,室温。
如图15为对比实施例制备的FeCoNi合金,FeCoNiMn HEA,FeCoNiCu HEA和实施例制备的FeCoNiMo HEA在1mV s-1的低扫描速率下,通过IR矫正得到了极化曲线。在所有合金样品中,FeCoNiMo HEA在10mA cm-2的电流密度下表现出250mV 的最低过电位,这比FeCoNi合金(298mV)、FeCoNiMn HEA(283mV)以及FeCoNiCu HEA(273mV)都低。这些结果表明,合成的新型FeCoNiMo HEA的OER的催化活性最为显著。
需要特别指出的是,本发明所制备FeCoNiMo HEA在碱性介质中的OER催化活性明显优于已知的FeCoNi合金的电催化剂。FeCoNiMo HEA出色的OER活性可以归因于过渡金属Mo加入,使得该合金的电荷分布重新调整,多种金属的协同催化,促进反应物的吸附。
如图16为对比实施例制备的FeCoNi合金,FeCoNiMn HEA,FeCoNiCu HEA和实施例制备的FeCoNiMo HEA基于极化曲线得到的塔菲尔斜率。FeCoNiMo HEA催化剂的Tafel斜率为48.02mV dec-1,这比FeCoNi合金(55.32mV dec-1)、FeCoNiMn HEA (50.23mV dec-1)以及FeCoNiCu HEA(54.95mV dec-1)都小,说明在OER过程中反应动力学更有利。
本发明的四元高熵合金FeCoNiMo催化剂对于OER反应也具有优异的催化活性。并且,该四元高熵合金FeCoNiMo催化剂首次通过水热-热解两步合成法制备,具有制备方法简单的优点。
实施例2
该四元高熵合金纳米材料,该四元高熵合金纳米材料由Fe、Co、Ni和Mo组成,其结构示意如图17所示:
该四元高熵合金纳米材料的制备方法,其包括以下具体步骤:
步骤1、将0.25mmol铁盐(四水合乙酸亚铁)、0.25mmol钴盐(六水合硝酸钴)、0.25mmol镍盐(六水合硝酸镍)、0.25mmol钼盐(钼酸铵)与0.34mmol2,5-二羟基对苯二甲酸有机配体按照摩尔比为0.25:0.25:0.25:0.025:0.34溶于1.35mL乙醇、 1.35mL去离子水和22.5mL有机溶剂(N,N-二甲基甲酰胺)组成的混合溶剂中,在150℃加热32h进行水热反应,然后冷却至室温,经有机微孔滤膜抽滤,抽滤物依次用去离子水和乙醇有机溶剂洗涤,然后干燥得到四金属有机框架前驱体产物;其中乙醇、去离子水和有机溶剂体积比为1.35:1.35:22.5,铁盐与乙醇的比值为0.25:1.35mmol/mL;
步骤2、将步骤1得到的四金属有机框架前驱体产物在通入H2-Ar混合气下(H2-Ar混合气流量为0.5L/min,H2与Ar的体积比为8:92),在温度为350℃高温下还原4h,冷却至室温后得到FeCoNiMo HEA四元高熵合金纳米材料。
实施例3
该四元高熵合金纳米材料,该四元高熵合金纳米材料由Fe、Co、Ni和Mo组成,其结构示意如图17所示:
该四元高熵合金纳米材料的制备方法,其包括以下具体步骤:
步骤1、将0.25mmol铁盐(四水合乙酸亚铁)、0.25mmol钴盐(六水合硝酸钴)、0.25mmol镍盐(六水合硝酸镍)、0.25mmol钼盐(钼酸铵)与0.34mmol2,5-二羟基对苯二甲酸有机配体按照摩尔比为0.25:0.25:0.25:0.025:0.34溶于1.35mL乙醇、 1.35mL去离子水和22.5mL有机溶剂(N,N-二甲基甲酰胺)组成的混合溶剂中,在135℃加热28h进行水热反应,然后冷却至室温,经有机微孔滤膜抽滤,抽滤物依次用去离子水和乙醇有机溶剂洗涤,然后干燥得到四金属有机框架前驱体产物;其中乙醇、去离子水和有机溶剂体积比为1.35:1.35:22.5,铁盐与乙醇的比值为0.25:1.35mmol/mL;
步骤2、将步骤1得到的四金属有机框架前驱体产物在通入H2-Ar混合气下(H2-Ar混合气流量为0.1L/min,H2与Ar的体积比为10:90),在温度为400℃高温下还原3h,冷却至室温后得到FeCoNiMo HEA四元高熵合金纳米材料。
以上结合附图对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。

Claims (2)

1.一种四元高熵合金纳米材料应用于电催化OER反应,其特征在于:该四元高熵合金纳米材料由Fe、Co、Ni和Mo组成;
所述四元高熵合金纳米材料的制备方法,包括以下具体步骤:
步骤1、将0.25mmol铁盐、0.25mmol钴盐、0.25mmol镍盐、0.25mmol钼盐与0.34mmol2,5-二羟基对苯二甲酸有机配体溶于1.35mL乙醇、1.35mL去离子水和22.5mL有机溶剂组成的混合溶剂中,在120-150℃加热24-32h进行水热反应,然后冷却至室温,经有机微孔滤膜抽滤,抽滤物依次用去离子水和乙醇有机溶剂洗涤,然后干燥得到四金属有机框架前驱体产物;
步骤2、将步骤1得到的四金属有机框架前驱体产物在通入H2-Ar混合气下,在温度为350-450℃高温下还原2-4h,冷却至室温后得到FeCoNiMo HEA四元高熵合金纳米材料;
钼盐为钼酸铵;
所述步骤1中铁盐为四水合乙酸亚铁、钴盐为六水合硝酸钴、镍盐为六水合硝酸镍;
所述步骤1中乙醇、去离子水和有机溶剂体积比为1.35:1.35:22.5,铁盐与乙醇的比值为0.25:1.35mmol/mL;
所述步骤1中有机溶剂为N,N-二甲基甲酰胺。
2.根据权利要求1所述的四元高熵合金纳米材料应用于电催化OER反应,其特征在于:所述步骤2中H2-Ar混合气流量为0.05-0.1L/min,H2与Ar的体积比为5-10:95-90。
CN202111236847.6A 2021-10-23 2021-10-23 一种四元高熵合金纳米材料、制备方法及其应用 Active CN114075676B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111236847.6A CN114075676B (zh) 2021-10-23 2021-10-23 一种四元高熵合金纳米材料、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111236847.6A CN114075676B (zh) 2021-10-23 2021-10-23 一种四元高熵合金纳米材料、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN114075676A CN114075676A (zh) 2022-02-22
CN114075676B true CN114075676B (zh) 2024-01-30

Family

ID=80283812

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111236847.6A Active CN114075676B (zh) 2021-10-23 2021-10-23 一种四元高熵合金纳米材料、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN114075676B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115076698A (zh) * 2022-06-04 2022-09-20 昆明理工大学 原位热解焚烧耦合电催化燃烧处理医疗垃圾的短流程方法
CN115261921B (zh) * 2022-07-20 2024-10-01 昆明理工大学 FeCoNiMnCr高熵合金/高熵氧化物异质相催化剂及其制备方法和应用
CN115323396A (zh) * 2022-08-31 2022-11-11 国科绿氢(湖州)科技有限公司 一种双功能电解水制氢活性电极
CN115594229B (zh) * 2022-10-18 2024-06-21 香港理工大学 纳米高熵氧化物材料及其制备方法、锂硫电池正极材料
CN116000281B (zh) * 2023-02-14 2024-06-04 天津大学 一种均匀、单分散FeCoNi中熵合金纳米晶复合材料、制备和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107587158A (zh) * 2017-08-11 2018-01-16 天津工业大学 一种纳米多孔高熵合金电极及其制备方法和应用
CN115305480A (zh) * 2022-08-11 2022-11-08 苏州协鑫新能源运营科技有限公司 一种合金纳米材料催化剂及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107587158A (zh) * 2017-08-11 2018-01-16 天津工业大学 一种纳米多孔高熵合金电极及其制备方法和应用
CN115305480A (zh) * 2022-08-11 2022-11-08 苏州协鑫新能源运营科技有限公司 一种合金纳米材料催化剂及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst;Kang Huang 等;J.Mater.Chem.A;第11938-11947页 *
High-Entropy Alloy with Mo-Coordination as Efficient Electrocatalyst for Oxygen Evolution Reaction;yunjie mei等;ACS Catalysis;第10808-10817页 *
罗北平 等.高析氢催化活性和稳定性的纳米晶Ni-Fe-Mo-Co合金.功能材料.2006,第94-97页. *
高析氢催化活性和稳定性的纳米晶Ni-Fe-Mo-Co合金;罗北平 等;功能材料;第94-97页 *

Also Published As

Publication number Publication date
CN114075676A (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
CN114075676B (zh) 一种四元高熵合金纳米材料、制备方法及其应用
Zhang et al. Single‐atom catalysts for electrocatalytic applications
Tang et al. Structural optimization of carbon-based diatomic catalysts towards advanced electrocatalysis
Zhang et al. Progress on iron-series metal-organic frameworks materials towards electrocatalytic hydrogen evolution reaction
Matin et al. PdM nanoparticles (M= Ni, Co, Fe, Mn) with high activity and stability in formic acid oxidation synthesized by sonochemical reactions
Zhu et al. Fe‐based catalysts for nitrogen reduction toward ammonia electrosynthesis under ambient conditions
US11078581B2 (en) Catalyst composite and method for manufacturing the same
Dong et al. Regulating Ni site in NiV LDH for efficient electrocatalytic production of formate and hydrogen by glycerol electrolysis
Li et al. Synergetic regulation of CeO2 modification and (W2O7) 2-intercalation on NiFe-LDH for high-performance large-current seawater electrooxidation
Meng et al. Flower-like Co3O4@ NiFe-LDH nanosheets enable high-performance bifunctionality towards both electrocatalytic HER and OER in alkaline solution
Wang et al. High-entropy phosphate/C hybrid nanosheets for efficient acidic hydrogen evolution reaction
Farooqi et al. Zero valent iron nanoparticles as sustainable nanocatalysts for reduction reactions
Lakshmi et al. Electrocatalytic hydrogen and oxygen evolution reactions: Role of two-dimensional layered materials and their composites
Yesudoss et al. Accelerated N2 reduction kinetics in hybrid interfaces of NbTiO4 and nitrogen-doped carbon nanorod via synergistic electronic coupling effect
Inocêncio et al. Electrochemical hydrogen generation technology: Challenges in electrodes materials for a sustainable energy
Zhu et al. The high performance NiFe layered double hydroxides@ Ti3C2Tx/reduced graphene oxide hybrid catalyst for oxygen evolution reaction
CN115261921B (zh) FeCoNiMnCr高熵合金/高熵氧化物异质相催化剂及其制备方法和应用
Pham et al. Single-atom iridium-based catalysts: synthesis strategies and electro (photo)-catalytic applications for renewable energy conversion and storage
Sun et al. Non-noble metal single atom-based catalysts for electrochemical reduction of CO2: Synthesis approaches and performance evaluation
Zhang et al. Dual‐Active‐Sites Single‐Atom Catalysts for Advanced Applications
Chen et al. Progress in MXene‐based catalysts for oxygen evolution reaction
Chen et al. Improving oxygen evolution reaction activity by constructing core-shell structure of Co/N-doped carbon polyhedron@ NiCo layered double hydroxides
CN111111678A (zh) 镍铁合金/钼酸铁杂化的纳米材料制备方法及其应用
Wang et al. Electron-transfer enhancement of urchin-like CoP–Ce 2 (CO 3) 2 O/NF as an ultra-stable bifunctional catalyst for efficient overall water splitting
Maouche et al. Recent advances of the key parameters of 3d block transition metal single and dual atoms catalysts: from their synthesis to their practical applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant