CN114072247A - 用于快速凝固加工的钛合金 - Google Patents

用于快速凝固加工的钛合金 Download PDF

Info

Publication number
CN114072247A
CN114072247A CN202080025876.5A CN202080025876A CN114072247A CN 114072247 A CN114072247 A CN 114072247A CN 202080025876 A CN202080025876 A CN 202080025876A CN 114072247 A CN114072247 A CN 114072247A
Authority
CN
China
Prior art keywords
range
based powder
powder
metal
rapid solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202080025876.5A
Other languages
English (en)
Other versions
CN114072247B (zh
Inventor
阿尔伯特·米夏埃尔·阿克尔斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eurekon Am Co ltd
Original Assignee
Eurekon Am Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eurekon Am Co ltd filed Critical Eurekon Am Co ltd
Publication of CN114072247A publication Critical patent/CN114072247A/zh
Application granted granted Critical
Publication of CN114072247B publication Critical patent/CN114072247B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2303/00Functional details of metal or compound in the powder or product
    • B22F2303/01Main component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明涉及一种用于生产部件的增材制造方法,包括以下步骤:(a)提供并熔化金属基粉末,(b)将熔化的颗粒相互融合并与它们的基材融合,从而形成融合的材料,(c)冷却,从而使融合的材料凝固,其特征在于,该金属基粉末是Ti基粉末,其至少包括Ta、Fe和i)Sn和/或ii)Nb和Zr。

Description

用于快速凝固加工的钛合金
金属熔体的快速凝固(ΔT≈10至1010K/s)发生在许多技术工艺中,如粉末雾化、焊接、增材制造(AM)、铸造、电弧或等离子体熔化等。梯度导致非平衡相、偏析效应和残余应力,这限制了可加工合金的选择。因此,本发明的目的是公开两种合金体系,它们令人惊讶地显示出出色的快速凝固行为。
在某些应用中,需要细粒的粉末(<1mm)。在其他应用中,需要颗粒状物质(包含尺寸≥1mm的颗粒)。这甚至可能是块状物质。在本说明书的意义上,这些都是粉末。
发明人发现在快速凝固加工性方面显示出最佳性能的金属体系是钛(Ti)+钽(Ta)+铁(Fe)+铌(Nb)+锆(Zr)和Ti+Ta+铁+锡(Sn)。
在下文中简写为TTFNZ和TIFS:
Figure BDA0003285068290000011
TTFNZ仅可选地包含Sn。
Figure BDA0003285068290000021
TTFNZ和TTFS的热力学平衡显示在图1、1b和2、2b中。在快速凝固过程(类似于3D打印)后,TTFNZ和TIFS的α/β微观结构和相组成显示在图3、3b和4、4b中。在电弧熔化条件后,TTFNZ和TTFS的β主导的微观结构显示在图5和图6中。
TTFNZ的热力学平衡显示在图1、1b中。在快速凝固(非平衡)和/或最后伴随着热处理以达到接近平衡的微观结构后,针对不同的条件,合金的α/β微观结构用电子背散射探测器(EBSD)分析得到确认。由这些过程产生的不同的微观结构在图2、2b中显示,其中,热处理实现更接近热力学计算的微观结构。
在所调查的工艺窗口中,这种合金显示出与增材制造工艺的高度兼容性,突出表现为加工后没有裂纹。
TTFS的模拟热力学平衡相图显示在图2、2b中。以1K的间隔大小进行模拟。合金在TS=1922K(基体形成温度)时处于液态,在TS=1821K时转变为100%相摩尔分数的固态立方体BCC_B2相。这产生约为TLS=101K的平衡凝固间隔。冷却至1027K后,六方HCP相成核(β-α转变温度)并且被稳定至300K的模拟温度,达到92.88%的相摩尔分数。在这个温度,剩下的相是斜方μ相(Fe7Ta6),其相摩尔分数为4.3%,以及具有Ta的溶解态的有序的金属间化合物FeTi(BCC_B2#2,立方B2型)。金属间相,如μ相,或次级相,如HCP_A3(α相)的析出引起了材料电阻的增加;这产生了对激光辐射更高的吸收,这可以使基于激光的制造工艺的生产成本降低。
在快速凝固(非平衡)和/或最后伴随着热处理以达到接近平衡的微观结构后,针对不同的条件,合金的α/β微观结构用电子背散射探测器(EBSD)分析得到确认。图6显示了这些过程产生的不同的微观结构,其中,热处理实现了更接近热力学计算的微观结构。
在所研究的加工窗口中,这种合金显示出与增材制造工艺的高兼容性,突出表现为加工后没有裂纹。
根据本发明的另一个方面,由于其高比强度>200kN·m/kg,该新型材料在航空航天、汽车、工具或医疗方面的应用是有意义的。
根据本发明的另一个方面,由于其低密度、高韧性、优良的腐蚀性能和对热裂纹或冷裂纹的抵抗力,这些新型材料对航空航天、汽车、工具或医疗应用很有意义。
金属体系TTFNZ和TTFS特别适用于医疗应用。最常见的植入材料(Ti64、CoCr、316L)[1]具有相对较高的耐腐蚀性,但在人体体液中,它们会暴露在溶解氧、氯化物和蛋白质的非常具有侵蚀性的环境中,其促进Al-、Co-、Cr-、Ni-、V-离子释放到人体内。如果超过痕量,溶解的离子会扰乱细胞的新陈代谢并且导致致命的肿瘤疾病。Ti、Ta、Nb、Zr和它们的合金在耐腐蚀性和生物相容性方面达到了最佳性能。目前用于医疗应用的合金的另一个关键参数是植入材料和硬组织之间的弹性特性不匹配。在这个问题上,所提出的金属体系TTFNZ和TTFS显示出优于既定的ISO[1]和ASTM标准合金的生物相容性。特别是由于生物相容的合金元素和相对较低的弹性模量(E<100GPa,优选<120Gpa),与既定的ISO[1]和ASTM标准化合金相比,所提出的金属体系TTFNZ在临床使用中应该是优选的。特别是由于生物相容的合金元素和相对较低的弹性模量(E<115GPa,优选<120GPa),与既定的ISO[1]和ASTM标准化合金相比,所提出的金属体系TTFS在临床使用中应是优选的。
此外,TTFNZ和TTFS的普通AM快速凝固加工可以使组织工程的开放式多孔、仿骨的晶格结构(支架)成为可能,这将允许骨细胞的氧合和营养,实现骨结合和牢固的植入物固定。
根据本发明的另一个方面,关于TTFS,可以考虑在所有现有的钛合金中加入锡(Sn;优选是0.01-10wt.%),以改善普通增材(AM)的加工性能,特别是焊接性或打印性(AM)。因为Sn可以降低高表面张力和高熔体粘度,这可能会在快速凝固过程中造成球化效应。特别是Sn同时可以增加对激光辐射的吸收,这可以使钛合金的加工更具成本效益。
在这种情况下,Sn可以作为元素粉末添加到预合金化的粉末混合物中,或者Sn可以直接被合金化到预合金化的粉末中。
本说明书是以粉末为重点撰写的。然而,本领域的技术人员了解到,有一些增材制造方法不是基于粉末,而是基于金属丝或例如液体聚合物中的金属粉末混合物。本说明书中介绍的材料也可用于此类方法,这也是本发明的一个方面。
根据本发明的另一个方面,可以考虑在TTFNZ和/或TTFS中加入氧O,和/或碳C,和/或氮,以产生一种坚硬、耐磨的材料。
在本发明中,要求保护一种用于生产部件的增材制造方法,包括以下步骤:
(a)提供并熔化金属基粉末,
(b)将熔化的颗粒相互融合并与它们的基材融合,从而形成融合的材料,
(c)使所述融合的材料冷却且进而凝固,
其特征在于,该金属基粉末是Ti基粉末,其至少包含Ta、Fe和i)Sn和/或ii)Nb和Zr。
优选地,该方法的特征在于,所述Ti基粉末还包括Si。
优选地,该方法的特征在于,所述Ti基粉末包括C和/或N,和/或O。
在本发明中,要求保护一种用于增材制造的Ti基粉末,其特征在于,该粉末包括:
-Ta,在0.01wt%和15wt%的范围内,优选在3wt%和10wt%的范围内,最优选地包含6wt%,和
-Nb,在0.01wt%和25wt%的范围内,优选在4wt%和12wt%的范围内,最优选地包含8wt%,
-Fe,在0.01wt%和15wt%的范围内,优选在2wt%和6wt%的范围内,最优选地包含4wt%,
-Zr,在0.01wt%和25wt%的范围内,优选在3wt%和9wt%的范围内,最优选地包含6wt%。
在本发明中,要求保护一种用于增材制造的Ti基粉末,其特征在于,该粉末包括:
-Ta,在0.01wt%和20wt%的范围内,优选在3wt%和10wt%的范围内,最优选包含7wt%,和
-Fe,在0.01wt%和15wt%的范围内,优选在2wt%和10wt%的范围内,最优选包含5wt%,
-Sn,在0.01wt%和10wt%的范围内,优选在0.1wt%和9wt%的范围内,最优选包含3wt%,
-Si,在0.001wt%和3wt%的范围内。
优选地,该Ti基粉末的特征在于,该粉末包括:
-氧,优选在0.001wt%和0.3wt%的范围内,和/或
-氮,优选在0.001wt%和0.2wt%的范围内,和/或
-碳,优选在0.001wt%和0.9wt%的范围内。
对于上述的一些Ti基粉末,与仅由Ti作为金属元素组成的Ti基粉末的凝固相比,添加到Ti中的金属引起了融合材料粉末的更快速的凝固。在其中一些情况下,这可以通过与纯Ti相比,融合材料的熔点升高来解释。更高的熔点引起冷却过程中,正在凝固的熔体和周围介质之间的更大的温度梯度,从而引起更快的凝固。在此上下文中,更快意味着凝固至少要快1K/s。
关键文献
[1]ISO 5832,手术用植入物-金属材料

Claims (6)

1.一种用于生产部件的增材制造方法,包括以下步骤:
(a)提供并熔化金属基粉末,
(b)将熔化的颗粒相互融合并与它们的基材融合,从而形成融合的材料,
(c)冷却,从而使所述融合的材料凝固,
其特征在于,所述金属基粉末是Ti基粉末,至少包含Ta、Fe和i)Sn和/或ii)Nb和Zr。
2.根据权利要求1所述的方法,其特征在于,所述Ti基粉末也包含Si。
3.根据前述权利要求中任一项所述的方法,其特征在于,所述Ti基粉末包含C和/或N和/或O。
4.用于增材制造的钛基粉末,其特征在于,该粉末包含:
-Ta,在0.01wt%和15wt%的范围内,优选在3wt%和10wt%的范围内,并且最优选地包含6wt%,和
-Nb,在0.01wt%和25wt%的范围内,优选在4wt%和12wt%的范围内,并且最优选地包含8wt%,
-Fe,在0.01wt%和15wt%的范围内,优选在2wt%和10wt%的范围内,更优选在2wt%和6wt%的范围内,并且最优选地包含约4wt%,
-Zr,在0.01wt%和25wt%的范围内,优选在0.01wt%和15wt%的范围内,优选在2wt%和10wt%的范围内,优选在3wt%和9wt%的范围内,并且最优选地包含约6wt%。
5.一种用于增材制造的钛基粉末,其特征在于,该粉末包含:
-Ta,在0.01wt%和20wt%的范围内,优选在3wt%和10wt%的范围内,并且最优选地包含7wt%,和
-Fe,在0.01wt%和15wt%的范围内,优选在2wt%和10wt%的范围内,并且最优选地包含约5wt%,
-Sn,在0.01wt%和10wt%范围内,优选在0.1wt%和9wt%范围内,并且最优选包含约3wt%,
-Si,在0.001wt%和3wt%的范围内。
6.根据权利要求4或5所述的钛基粉末,其特征在于所述粉末包含:
-氧,优选在0.001wt%和0.3wt%的范围内,和/或
-氮,优选在0.001wt%和0.2wt%的范围内,和/或
-碳,优选在0.001wt%和0.9wt%的范围内。
CN202080025876.5A 2019-03-28 2020-03-27 用于快速凝固加工的钛合金 Active CN114072247B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102019002232 2019-03-28
DE102019002232.7 2019-03-28
PCT/EP2020/058761 WO2020193763A1 (en) 2019-03-28 2020-03-27 Titanium alloys for rapid solidification processing

Publications (2)

Publication Number Publication Date
CN114072247A true CN114072247A (zh) 2022-02-18
CN114072247B CN114072247B (zh) 2024-04-09

Family

ID=70058354

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080025876.5A Active CN114072247B (zh) 2019-03-28 2020-03-27 用于快速凝固加工的钛合金

Country Status (11)

Country Link
US (1) US20220184704A1 (zh)
EP (1) EP3946782A1 (zh)
JP (1) JP2022527024A (zh)
KR (1) KR20220016043A (zh)
CN (1) CN114072247B (zh)
AU (1) AU2020245766A1 (zh)
BR (1) BR112021019396A2 (zh)
CA (1) CA3135311A1 (zh)
MX (1) MX2021011859A (zh)
SG (1) SG11202110765YA (zh)
WO (1) WO2020193763A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257130A (ja) * 1990-03-05 1991-11-15 Daido Steel Co Ltd Ti―Al系耐熱材料
JPH05148567A (ja) * 1991-11-25 1993-06-15 Nkk Corp 高密度粉末焼結用チタン合金
CN1659302A (zh) * 2002-05-30 2005-08-24 德累斯顿协会莱布尼茨固体材料研究所 由钛合金构成的高强度的、可塑变形的成型体
CN105154701A (zh) * 2015-10-14 2015-12-16 华中科技大学 一种采用选择性激光熔化快速成形技术制备高温钛合金的方法
US20170067136A1 (en) * 2015-09-04 2017-03-09 King Fahd University Of Petroleum And Minerals Titanium alloys for biomedical applications and fabrication methods thereof
CN108486408A (zh) * 2018-04-18 2018-09-04 王甲林 一种低弹性模量补牙用β型钛合金及其制造方法
WO2018162919A1 (en) * 2017-03-10 2018-09-13 Ilika Technologies Limited Titanium alloys

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257130A (ja) * 1990-03-05 1991-11-15 Daido Steel Co Ltd Ti―Al系耐熱材料
JPH05148567A (ja) * 1991-11-25 1993-06-15 Nkk Corp 高密度粉末焼結用チタン合金
CN1659302A (zh) * 2002-05-30 2005-08-24 德累斯顿协会莱布尼茨固体材料研究所 由钛合金构成的高强度的、可塑变形的成型体
US20170067136A1 (en) * 2015-09-04 2017-03-09 King Fahd University Of Petroleum And Minerals Titanium alloys for biomedical applications and fabrication methods thereof
CN105154701A (zh) * 2015-10-14 2015-12-16 华中科技大学 一种采用选择性激光熔化快速成形技术制备高温钛合金的方法
WO2018162919A1 (en) * 2017-03-10 2018-09-13 Ilika Technologies Limited Titanium alloys
CN108486408A (zh) * 2018-04-18 2018-09-04 王甲林 一种低弹性模量补牙用β型钛合金及其制造方法

Also Published As

Publication number Publication date
EP3946782A1 (en) 2022-02-09
CA3135311A1 (en) 2020-10-01
JP2022527024A (ja) 2022-05-27
WO2020193763A8 (en) 2021-10-07
AU2020245766A1 (en) 2021-10-28
MX2021011859A (es) 2021-12-10
WO2020193763A1 (en) 2020-10-01
SG11202110765YA (en) 2021-10-28
BR112021019396A2 (pt) 2022-01-18
KR20220016043A (ko) 2022-02-08
CN114072247B (zh) 2024-04-09
US20220184704A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
Sing et al. Emerging metallic systems for additive manufacturing: In-situ alloying and multi-metal processing in laser powder bed fusion
Akbarpour et al. Processing and microstructure of Ti-Cu binary alloys: A comprehensive review
Sing et al. Selective laser melting of titanium alloy with 50 wt% tantalum: Microstructure and mechanical properties
JP7353031B2 (ja) チタン系合金及び付加製造法によるチタン系合金コンポーネントの製造のための方法。
Long et al. Novel Mg-based alloys by selective laser melting for biomedical applications: microstructure evolution, microhardness and in vitro degradation behaviour
Kafkas et al. Metallurgical and mechanical properties of Ti–24Nb–4Zr–8Sn alloy fabricated by metal injection molding
Zhang et al. Effect of Nb addition on microstructure, mechanical properties and castability of β-type Ti–Mo alloys
US20190084048A1 (en) Titanium-tantalum powders for additive manufacturing
Liu et al. A comparison of Ti–Ni and Ti-Sn binary alloys processed using powder metallurgy
Song et al. Thermodynamic parameters, microstructure, and electrochemical properties of equiatomic TiMoVWCr and TiMoVNbZr high-entropy alloys prepared by vacuum arc remelting
Banerjee et al. Laser‐deposited Ti‐Nb‐Zr‐Ta orthopedic alloys
US20140322067A1 (en) Ultrahigh strength and ultralow elastic modulus titanium alloy showing linear elastic deformation behavior
JP7041778B1 (ja) チタン合金の製造方法
Vogiatzief et al. Laser powder bed fusion of an Al-Cr-Fe-Ni high-entropy alloy produced by blending of prealloyed and elemental powder: Process parameters, microstructures and mechanical properties
Mertens Metal matrix composites processed by laser additive manufacturing: microstructure and properties
Moshokoa et al. Effects of Mo content on the microstructural and mechanical properties of as-cast Ti-Mo alloys
Anikeev et al. Preparation of porous TiNi-Ti alloy by diffusion sintering method and study of its composition, structure and martensitic transformations
CN114072247A (zh) 用于快速凝固加工的钛合金
Senthilkumar et al. Spark plasma sintering of NiTi shape memory alloy
Zhou et al. Laser directed energy deposition of Ti-1Al-8V-5Fe alloy: From zero to significant tensile plasticity
Kim Martensitic transformation behavior and mechanical properties of highly porous Ti-Ni-Mo scaffolds
JPS63134642A (ja) ニツケル系粉末冶金合金物体
Caron et al. Effects of composition, processing, and structure on properties of nonferrous alloys
Gonçalves et al. Unravelling microstructure of novel as-cast in-situ α Ti and β Ti-Nb alloy matrix composites with NbC addition
EP3489375B1 (en) Ternary ti-zr-o alloys, methods for producing same and associated utilizations thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant