CN114069376A - 一种掺钕钒酸钇单晶光纤超短脉冲放大器 - Google Patents
一种掺钕钒酸钇单晶光纤超短脉冲放大器 Download PDFInfo
- Publication number
- CN114069376A CN114069376A CN202111221460.3A CN202111221460A CN114069376A CN 114069376 A CN114069376 A CN 114069376A CN 202111221460 A CN202111221460 A CN 202111221460A CN 114069376 A CN114069376 A CN 114069376A
- Authority
- CN
- China
- Prior art keywords
- neodymium
- doped yttrium
- yttrium vanadate
- crystal fiber
- vanadate single
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 79
- QWVYNEUUYROOSZ-UHFFFAOYSA-N trioxido(oxo)vanadium;yttrium(3+) Chemical compound [Y+3].[O-][V]([O-])([O-])=O QWVYNEUUYROOSZ-UHFFFAOYSA-N 0.000 title claims abstract description 78
- 239000000835 fiber Substances 0.000 title claims abstract description 75
- 230000008878 coupling Effects 0.000 claims abstract description 27
- 238000010168 coupling process Methods 0.000 claims abstract description 27
- 238000005859 coupling reaction Methods 0.000 claims abstract description 27
- 239000013307 optical fiber Substances 0.000 claims abstract description 16
- 230000017525 heat dissipation Effects 0.000 claims abstract description 7
- 238000001816 cooling Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 238000002310 reflectometry Methods 0.000 claims description 3
- 238000002834 transmittance Methods 0.000 claims description 2
- 230000009022 nonlinear effect Effects 0.000 abstract description 3
- 239000007787 solid Substances 0.000 abstract description 2
- 230000003321 amplification Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06754—Fibre amplifiers
- H01S3/06758—Tandem amplifiers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/094042—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a fibre laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/094049—Guiding of the pump light
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/094076—Pulsed or modulated pumping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
- H01S3/1611—Solid materials characterised by an active (lasing) ion rare earth neodymium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/163—Solid materials characterised by a crystal matrix
- H01S3/1671—Solid materials characterised by a crystal matrix vanadate, niobate, tantalate
- H01S3/1673—YVO4 [YVO]
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Lasers (AREA)
Abstract
本发明公开了一种掺钕钒酸钇单晶光纤超短脉冲放大器,包括泵浦激光器、耦合镜、种子激光器、掺钕钒酸钇单晶光纤、第一双色镜和第二双色镜,泵浦激光器发出泵浦激光通过耦合镜后进入掺钕钒酸钇单晶光纤,种子激光器发出超短脉冲激光经第一双色镜反射进入掺钕钒酸钇单晶光纤,超短脉冲激光能量被放大后离开掺钕钒酸钇单晶光纤由第二双色镜反射输出。本发明结合了光纤激光在光束质量和高散热性等方面和固体激光在高峰值功率低非线性效应等方面各自的优点,在保持高光束质量的同时,提升超短脉冲激光的峰值功率,稳定可靠。
Description
技术领域
本发明涉及激光脉冲放大技术领域,特别是涉及一种掺钕钒酸钇单晶光纤超短脉冲放大器。
背景技术
超短脉冲激光在精密微加工、太赫兹波产生、生物医疗、国防科研领域均具有非常重要的应用,一直是激光领域的研究和发展的热点。随着各行业需求的不断提升,需要更高峰值功率更高能量的超短脉冲。超短脉冲放大技术是获得高峰值功率超短脉冲的主要方法。超短脉冲放大技术由多种途径和方法,典型的方法包括光纤放大器和固体放大器等。光纤放大器具有体积小、集成度高、稳定性好、免维护和光束质量好的特点,已应用于超短脉冲的放大,然而光纤放大器较强的色散和非线性效应限制了其峰值功率的提升,使得光纤放大器适用于作为预防大器使用;固体放大器的优势是能够获得大能量的脉冲激光,且抑制非线性效应的效果好,但天然的光束质量较差,控制光束质量的系统复杂,散热特性较差。
发明内容
针对上述存在的技术问题,本发明的目的是:提出了一种掺钕钒酸钇单晶光纤超短脉冲放大器,改善激光光束质量。
为实现上述目的,本发明提供如下技术方案:
一种掺钕钒酸钇单晶光纤超短脉冲放大器,包括:
泵浦激光器,用于产生泵浦激光;
耦合镜,将泵浦激光汇集成一束;
种子激光器,用于提供超短脉冲激光;
掺钕钒酸钇单晶光纤,将泵浦激光的能量转移到超短脉冲激光,使其脉冲能量得到放大;
第一双色镜和第二双色镜,均对超短脉冲激光高反射率,对泵浦激光高透过率;
泵浦激光器发出泵浦激光通过耦合镜后进入掺钕钒酸钇单晶光纤,种子激光器发出超短脉冲激光经第一双色镜反射进入掺钕钒酸钇单晶光纤,超短脉冲激光能量被放大后离开掺钕钒酸钇单晶光纤由第二双色镜反射输出。
优选的是,所述第一双色镜位于耦合镜和掺钕钒酸钇单晶光纤之间,所述第二双色镜位于掺钕钒酸钇单晶光纤远离第一双色镜的一端,所述泵浦激光通过耦合镜和第一双色镜进入掺钕钒酸钇单晶光纤后从第二双色镜透射分离。
优选的是,所述第二双色镜位于耦合镜和掺钕钒酸钇单晶光纤之间,所述第一双色镜位于掺钕钒酸钇单晶光纤远离第二双色镜的一端,所述泵浦激光通过耦合镜和第二双色镜进入掺钕钒酸钇单晶光纤后从第一双色镜透射分离。
优选的是,所述耦合镜包括第一透镜和第二透镜,所述第一透镜和第二透镜构成4f系统。
优选的是,所述超短脉冲激光的波长为1064nm,脉冲宽度<10ps。
优选的是,所述泵浦激光的波长为888nm。
优选的是,所述掺钕钒酸钇单晶光纤直径<1mm,长度为30cm。
优选的是,包括与掺钕钒酸钇单晶光纤贴合的水冷装置。
优选的是,所述掺钕钒酸钇单晶光纤的表面设置有散热齿。
由于上述技术方案的运用,本发明与现有技术相比具有下列优点:
本发明掺钕钒酸钇单晶光纤超短脉冲放大器包括泵浦激光器、耦合镜、种子激光器、掺钕钒酸钇单晶光纤、第一双色镜和第二双色镜,泵浦激光器发出泵浦激光通过耦合镜后进入掺钕钒酸钇单晶光纤,种子激光器发出超短脉冲激光经第一双色镜反射进入掺钕钒酸钇单晶光纤,超短脉冲激光能量被放大后离开掺钕钒酸钇单晶光纤由第二双色镜反射输出,结合了光纤激光在光束质量和高散热性等方面和固体激光在高峰值功率低非线性效应等方面各自的优点,在保持高光束质量的同时,提升超短脉冲激光的峰值功率,稳定可靠。
附图说明
下面结合附图对本发明技术方案作进一步说明:
附图1为本发明掺钕钒酸钇单晶光纤超短脉冲放大器的结构示意图;
附图2为本发明掺钕钒酸钇单晶光纤超短脉冲放大器的另一实施例的结构示意图。
其中:1、泵浦激光器;2、耦合镜;3、种子激光器;4、掺钕钒酸钇单晶光纤;5、第一双色镜;6、第二双色镜;7、水冷装置;8、散热齿。
具体实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个原件上或可能同时存在居中元件。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
实施例1:
附图1为本发明一种掺钕钒酸钇单晶光纤超短脉冲放大器的结构示意图,包括泵浦激光器1、耦合镜2、种子激光器3、掺钕钒酸钇单晶光纤4、第一双色镜5和第二双色镜6。
本实施例中泵浦激光器1为光纤耦合的半导体激光器,其产生的泵浦激光的波长为888nm,输出光纤的数值孔径为0.22,纤芯直径为105um。为减小端面反射,输出光纤端面为8°角。
耦合镜2为透镜组,包括第一透镜和第二透镜,第一透镜和第二透镜构成4f系统,耦合镜2放置于泵浦激光器1的输出光纤之后,将105um的泵浦激光垂直会聚到掺钕钒酸钇单晶光纤4的端面,使泵浦激光能够完全进入到掺钕钒酸钇单晶光纤4之中。
种子激光器3发出的超短脉冲激光的波长为1064nm,脉冲宽度<10ps。
掺钕钒酸钇单晶光纤4为激光增益介质,将泵浦激光的能量转移到超短脉冲激光,使其脉冲能量得到放大。目前,基于掺铝钇铝石榴石的单晶光纤已经被用来作为超短脉冲放大器并获得了高峰值功率高光束质量的皮秒和飞秒激光。相比掺铝钇铝石榴石,掺钕钒酸钇单晶光纤具有更高的泵浦吸收效率和更大的受激辐射截面,是更高峰值功率超短脉冲实现的可靠的技术途径。本实施例中掺钕钒酸钇单晶光纤4的直径<1mm,长度为30cm,其中,钕的掺杂浓度为0.6%。掺钕钒酸钇单晶光纤4两端面均镀膜,对888nm和1064nm高透,使泵浦激光和超短脉冲激光均能透过。
在激光放大过程中,存在的量子亏损以热量形式在掺钕钒酸钇单晶光纤4内,为解决散热问题,水冷装置7与掺钕钒酸钇单晶光纤4紧密贴合,将热量导出。
第一双色镜5和第二双色镜6对888nm的泵浦激光的透射率>99%,对1064nm的超短脉冲激光的反射率>99%,有效分离泵浦激光和超短脉冲激光。
本实施例中,第一双色镜5位于耦合镜2和掺钕钒酸钇单晶光纤4之间,第二双色镜6位于掺钕钒酸钇单晶光纤4远离第一双色镜5的一端,泵浦激光器1发出的888nm的泵浦激光通过耦合镜2和第一双色镜5进入掺钕钒酸钇单晶光纤4,靠近第一双色镜5的种子激光器3发出1064nm的超短脉冲激光经第一双色镜5反射进入掺钕钒酸钇单晶光纤4,超短脉冲激光能量被放大后离开掺钕钒酸钇单晶光纤4由第二双色镜6反射输出,未有效吸收的泵浦激光穿透第二双色镜6与超短脉冲激光分离。
实施例2:
附图2为本发明一种掺钕钒酸钇单晶光纤超短脉冲放大器的另一实施例的结构示意图,包括泵浦激光器1、耦合镜2、种子激光器3、掺钕钒酸钇单晶光纤4、第一双色镜5和第二双色镜6。
本实施例与实施例1的区别在于第二双色镜6位于耦合镜2和掺钕钒酸钇单晶光纤4之间,第一双色镜5位于掺钕钒酸钇单晶光纤4远离第二双色镜6的一端,种子激光器3位于远离泵浦激光器1的一端,泵浦激光与超短脉冲激光的传输方向相反。
如附图2所示,泵浦激光通过耦合镜2和第二双色镜6进入掺钕钒酸钇单晶光纤4后从第一双色镜5透射分离,靠近第一双色镜5的种子激光器3发出的超短脉冲激光经第一双色镜5反射进入掺钕钒酸钇单晶光纤4,泵浦激光与超短脉冲激光的传输方向相反,超短脉冲激光能量被放大后离开掺钕钒酸钇单晶光纤4由第二双色镜6反射输出,与实施例1相比,泵浦激光与超短脉冲激光反向传输能够获得更大的功率。
此外,掺钕钒酸钇单晶光纤4的表面紧密贴合有散热齿8,将热量传导并扩散到空间中使掺钕钒酸钇单晶光纤4降温。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (9)
1.一种掺钕钒酸钇单晶光纤超短脉冲放大器,其特征在于,包括:
泵浦激光器,用于产生泵浦激光;
耦合镜,将泵浦激光汇集成一束;
种子激光器,用于提供超短脉冲激光;
掺钕钒酸钇单晶光纤,将泵浦激光的能量转移到超短脉冲激光,使其脉冲能量得到放大;
第一双色镜和第二双色镜,均对超短脉冲激光高反射率,对泵浦激光高透过率;
泵浦激光器发出泵浦激光通过耦合镜后进入掺钕钒酸钇单晶光纤,种子激光器发出超短脉冲激光经第一双色镜反射进入掺钕钒酸钇单晶光纤,超短脉冲激光能量被放大后离开掺钕钒酸钇单晶光纤由第二双色镜反射输出。
2.根据权利要求1所述的掺钕钒酸钇单晶光纤超短脉冲放大器,其特征在于:所述第一双色镜位于耦合镜和掺钕钒酸钇单晶光纤之间,所述第二双色镜位于掺钕钒酸钇单晶光纤远离第一双色镜的一端,所述泵浦激光通过耦合镜和第一双色镜进入掺钕钒酸钇单晶光纤后从第二双色镜透射分离。
3.根据权利要求1所述的掺钕钒酸钇单晶光纤超短脉冲放大器,其特征在于:所述第二双色镜位于耦合镜和掺钕钒酸钇单晶光纤之间,所述第一双色镜位于掺钕钒酸钇单晶光纤远离第二双色镜的一端,所述泵浦激光通过耦合镜和第二双色镜进入掺钕钒酸钇单晶光纤后从第一双色镜透射分离。
4.根据权利要求1所述的掺钕钒酸钇单晶光纤超短脉冲放大器,其特征在于:所述耦合镜包括第一透镜和第二透镜,所述第一透镜和第二透镜构成4f系统。
5.根据权利要求1所述的掺钕钒酸钇单晶光纤超短脉冲放大器,其特征在于:所述超短脉冲激光的波长为1064nm,脉冲宽度<10ps。
6.根据权利要求1所述的掺钕钒酸钇单晶光纤超短脉冲放大器,其特征在于:所述泵浦激光的波长为888nm。
7.根据权利要求1所述的掺钕钒酸钇单晶光纤超短脉冲放大器,其特征在于:所述掺钕钒酸钇单晶光纤直径<1mm,长度为30cm。
8.根据权利要求1所述的掺钕钒酸钇单晶光纤超短脉冲放大器,其特征在于:包括与掺钕钒酸钇单晶光纤贴合的水冷装置。
9.根据权利要求1所述的掺钕钒酸钇单晶光纤超短脉冲放大器,其特征在于:所述掺钕钒酸钇单晶光纤的表面设置有散热齿。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111221460.3A CN114069376A (zh) | 2021-10-20 | 2021-10-20 | 一种掺钕钒酸钇单晶光纤超短脉冲放大器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111221460.3A CN114069376A (zh) | 2021-10-20 | 2021-10-20 | 一种掺钕钒酸钇单晶光纤超短脉冲放大器 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114069376A true CN114069376A (zh) | 2022-02-18 |
Family
ID=80235023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111221460.3A Withdrawn CN114069376A (zh) | 2021-10-20 | 2021-10-20 | 一种掺钕钒酸钇单晶光纤超短脉冲放大器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114069376A (zh) |
-
2021
- 2021-10-20 CN CN202111221460.3A patent/CN114069376A/zh not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6363090B1 (en) | Laser system for producing ultra-short light pulses | |
CN105375246B (zh) | 一种端面倾斜泵浦的平面波导激光放大器 | |
CN100470347C (zh) | 一种窄脉冲光纤放大器 | |
Zhao et al. | 35 W continuous-wave Ho: YAG single-crystal fiber laser | |
CN107086430B (zh) | 一种三倍频紫外激光器 | |
CN101807774B (zh) | 一种In-Band泵浦的自受激拉曼散射激光器 | |
CN107465071A (zh) | 光纤‑固体混合放大激光系统 | |
CN103346472B (zh) | 100MHz高重频、1ns窄脉宽窄线宽激光混合放大装置及其方法 | |
CN101814692A (zh) | 医用全固态黄光激光器 | |
CN111478175A (zh) | 一种激光能量放大器 | |
CN101340053A (zh) | 中红外掺铥光纤激光放大器 | |
CN101719625A (zh) | 高重复频率窄脉宽半导体泵浦绿激光器 | |
CN113594842A (zh) | 一种铒掺杂激光器超短脉冲产生装置及方法 | |
CN211859139U (zh) | 一种Kerr锁模掺镱硅酸钆镧晶体的全固态飞秒激光器 | |
CN201243158Y (zh) | 中红外掺铥光纤激光放大器 | |
CN114069376A (zh) | 一种掺钕钒酸钇单晶光纤超短脉冲放大器 | |
CN105490139A (zh) | 一种高功率全光纤化近中红外超连续谱激光光源 | |
CN213636603U (zh) | 三波长双端综合泵浦Cr:Er:YSGG声光调Q激光器 | |
CN212033421U (zh) | 一种倍频脉冲激光器 | |
CN211907942U (zh) | 一种激光能量放大器 | |
CN205303940U (zh) | 一种558nm波长单频输出的全固体激光器 | |
CN110048294B (zh) | 一种产生高功率中红外超快脉冲激光的方法 | |
CN203423368U (zh) | 光纤激光系统 | |
RU189457U1 (ru) | Оптическая схема фемтосекундного резонатора на основе конусного световода | |
CN113270785A (zh) | 一种连续波1.5μm人眼安全全固态自拉曼激光器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20220218 |
|
WW01 | Invention patent application withdrawn after publication |