CN114065520B - 一种鱼类洄游通道确定方法及系统 - Google Patents

一种鱼类洄游通道确定方法及系统 Download PDF

Info

Publication number
CN114065520B
CN114065520B CN202111365006.5A CN202111365006A CN114065520B CN 114065520 B CN114065520 B CN 114065520B CN 202111365006 A CN202111365006 A CN 202111365006A CN 114065520 B CN114065520 B CN 114065520B
Authority
CN
China
Prior art keywords
target fish
fish
determining
target
swimming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111365006.5A
Other languages
English (en)
Other versions
CN114065520A (zh
Inventor
权全
樊荣
高少泽
杨思敏
许美娇
马川惠
杨思童
张飞跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN202111365006.5A priority Critical patent/CN114065520B/zh
Publication of CN114065520A publication Critical patent/CN114065520A/zh
Application granted granted Critical
Publication of CN114065520B publication Critical patent/CN114065520B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/231Hierarchical techniques, i.e. dividing or merging pattern sets so as to obtain a dendrogram
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Abstract

本发明公开了一种鱼类洄游通道确定方法及系统,方法包括根据目标鱼类栖息地的基础地形数据和水文数据确定目标鱼类栖息地的水环境参数信息;结合目标鱼类的游泳能力、上溯行为特征和水环境参数信息,确定目标鱼类的运动轨迹;利用聚类分析方法对运动轨迹进行聚类,确定目标鱼类的多条潜在洄游通道;确定每条潜在洄游通道的权重,利用加权平均法确定目标鱼类的最终洄游通道。本发明的方法及系统所考虑的影响因素全面且准确,且所确定的洄游通道是通过定量计算获得的,故可快速获得准确的鱼类洄游通道。

Description

一种鱼类洄游通道确定方法及系统
技术领域
本发明公开了一种鱼类洄游通道确定方法及系统,属于环境保护技术领域。
背景技术
鱼类洄游主要包括有生殖洄游、索铒洄游和越冬洄游,针对于终生生活在黄河中的冷水性淡水鱼类,其生殖洄游是从下游及支流上溯到河流的中上游产卵;索铒洄游发生在结束繁殖期或接近性成熟的鱼群中,鱼类通过索铒摄取和补充因生殖洄游和繁殖过程中所消耗的巨大能量,索铒洄游也可使鱼类恢复体能、增强体质,并可积蓄大量营养物以供生长、越冬和性腺再次发育;越冬洄游指的是当气温下降影响水温时,鱼类为寻求适宜水温常集结成群,从索铒的湖泊中转移至江河深处。鱼类进入越冬区后,即潜至水底或埋身淤泥中,体表被有一层粘液,暂时停止进食,很少活动,降低新陈代谢,以度过寒冷的冬季。
水坝横跨河道的两侧,是拦截江河渠道水流以抬高水位或调节流量的挡水建筑物。水坝的建设影响了鱼类的繁殖、索饵以及越冬等洄游行为,致使上下游的物质、能量与基因交流受到阻碍,鱼类种群数量下降。因此,人们通常通过在坝体上修建洄游通道,以降低人类开发活动对鱼类洄游的影响。
现有技术是通过实地观察、水下录像以及鱼类标记等手段确定鱼类洄游通道的,该方法存在效率低、通道确定不准确的技术问题。
发明内容
本申请的目的在于,提供一种鱼类洄游通道确定方法及系统,以解决现有洄游通道确定方法存在的效率低,结果不准确的技术问题。
本发明的第一方面提供了一种鱼类洄游通道确定方法,包括:
根据目标鱼类栖息地的基础地形数据和水文数据确定所述目标鱼类栖息地的水环境参数信息;
结合目标鱼类的游泳能力、上溯行为特征和所述水环境参数信息,确定目标鱼类的运动轨迹;
利用聚类分析方法对所述运动轨迹进行聚类,确定目标鱼类的多条潜在洄游通道;
确定每条潜在洄游通道的权重,利用加权平均法确定所述目标鱼类的最终洄游通道。
优选地,结合目标鱼类的游泳能力、上溯行为特征和所述水环境参数信息,确定目标鱼类的运动轨迹,具体包括:
获取所述目标鱼类的游泳能力;
根据所述游泳能力,确定所述目标鱼类的上溯行为特征;
结合所述目标鱼类的游泳能力、上溯行为特征和所述水环境参数信息,确定目标鱼类的运动轨迹。
优选地,目标鱼类游泳能力的表征参数包括感应流速、临界游泳速度和突进游泳速度。
优选地,所述临界游泳速度根据第一公式确定,所述第一公式为:
Figure BDA0003360307210000021
式中,Vc为所述目标鱼类的临界游泳速度,Vp为所述目标鱼类极限疲劳的前一个水流速度,Vi为相邻两次增速之间的水流增速值,tf为流速增加到极限疲劳流速后所述目标鱼类持续游泳的时间,ti为增速前后的时间间隔。
优选地,获取所述目标鱼类的游泳能力,具体包括:
采用封闭环形水槽对所述目标鱼类开展游泳能力测试;
采用开放水槽对所述目标鱼类开展游泳能力测试;
利用所述开放水槽的游泳能力测试结果修正所述封闭环形水槽的游泳能力测试结果,得到所述目标鱼类的游泳能力。
优选地,所述聚类分析方法为层次聚类分析方法。
优选地,确定每条潜在洄游通道的权重,具体包括:
根据第二公式确定每条潜在洄游通道的权重,所述第二公式为:
Figure BDA0003360307210000031
式中,T(x,y)为计算网格(x,y)内所述潜在洄游通道的权重,Wi为计算网格(x,y)内与第i条潜在洄游通道重叠的所述运动轨迹的数量。
优选地,利用加权平均法确定所述目标鱼类的最终洄游通道,具体包括:
建立直角坐标系,所述计算网格位于所述直角坐标系内;
逐一获取每一个横坐标点处,多条所述潜在洄游通道的加权平均值;
多个所述加权平均值依次相连,得到所述目标鱼类的最终洄游通道。
优选地,所述水环境参数信息包括水动力参数信息、水温参数信息和水质参数信息。
本发明的第二方面提供了一种鱼类洄游通道确定系统,包括:
参数获取模块,所述参数获取模块用于根据目标鱼类栖息地的基础地形数据和水文数据确定所述目标鱼类栖息地的水环境参数信息;
运动轨迹确定模块,所述运动轨迹确定模块用于结合目标鱼类的游泳能力、上溯行为特征和所述水环境参数信息,确定目标鱼类的运动轨迹;
潜在通道确定模块,所述潜在通道确定模块用于利用聚类分析方法对所述运动轨迹进行聚类,确定目标鱼类的多条潜在洄游通道;
洄游通道确定模块,所述洄游通道确定模块用于确定每条潜在洄游通道的权重,利用加权平均法确定所述目标鱼类的最终洄游通道。
本发明的鱼类洄游通道确定方法及系统,相较于现有技术,具有如下有益效果:
本发明的鱼类洄游通道确定方法及系统,根据栖息地水环境的参数信息、目标鱼类的游泳能力及上溯行为特征确定了目标鱼类的运动轨迹;再结合目标鱼类的运动轨迹确定了整群目标鱼类的洄游通道。本发明的方法及系统所考虑的影响因素全面且准确,且所确定的洄游通道是通过定量计算获得的,故可快速获得准确的鱼类洄游通道。
附图说明
图1为本发明实施例提供的鱼类洄游通道确定方法的流程图;
图2为本发明实施例提供的封闭环形水槽的结构示意图;
图3为本发明实施例中代理鱼粒子的运动规则示意图;
图4为本发明实施例中利用层次聚类法得到的目标鱼类运动轨迹的结果图;
图5为本发明实施例提供的鱼类洄游通道确定系统的结构示意图。
图中1为变频电极;2为外水箱;3为试验段;4为导流板;5为螺旋桨;101为参数获取模块;102为运动轨迹确定模块;103为潜在通道确定模块;104为洄游通道确定模块。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
图1为本发明实施例提供的鱼类洄游通道确定方法的流程图。
如图1所示,本发明实施例的鱼类洄游通道确定方法包括:
步骤1、根据目标鱼类栖息地的基础地形数据和水文数据搭建三位水环境模型,确定出目标鱼类栖息地的水环境参数信息;
具体地,根据目标鱼类栖息地的基础地形数据和水文数据在DHI MIKE 3三维水动力水质生态模拟软件上构建包括水动力模型、水温模型、水质模型在内的三维水环境模型,并输出水环境参数信息。
其中,水动力模型中包括x方向水流动量方程和y方向水流动量方程:
x方向水流动量方程如公式(1):
Figure BDA0003360307210000041
y方向水流动量方程如公式(2):
Figure BDA0003360307210000051
式中,u,v,w分别是笛卡尔坐标系中x方向,y方向,z方向上的水流速度分量;t是时间;η是水面高度;d是静水深;h=η+d是总水深;f=2Ωsinφ是科里奥利参数,Ω是旋转角速度,φ是纬度;g是重力加速度;ρ0是水的密度;sxx,sxy,syx和syy是辐射应力张量的分量;vt是垂向涡粘系数;pa是大气压强;ρ0是水的参考密度;S是点源的流量大小,
Figure BDA0003360307210000052
(us,vs)是源汇项水流流速,(Fu,Fv)为水平应力项,,用压力梯度相关来描述,简化为公式(3)和公式(4):
Figure BDA0003360307210000053
Figure BDA0003360307210000054
水体与大气交界面的热交换即表面净热量通量H是影响水体温度的重要因素,本申请中的水温模型主要考虑了4种类型的热量交换形式,分别为:显热通量(对流引起的热通量)、潜热通量(蒸发引起的热量损失)、净短波辐射和净长波辐射。
其中显热通量qc(对流引起的热通量)如公式(5):
Figure BDA0003360307210000055
式中,ρair为空气密度(通常为1.3kg/m3);Cair为空气比热(通常为1007J/kg℃);W10m为水面上方10m高处风速;Twater为水体的绝对温度;Tair为大气的绝对温度;Cc为显热传热系数,通常为0.00141。
其中潜热通量qv(蒸发引起的热量损失)如公式(6):
qv=LCe(a1+b1W2m)(Qwater-Qair) (6)
式中L为蒸发潜热(通常为2.5×106J/kg);Ce为湿度系数(通常为0.00132);W2m为水面上方2米处风速;Qwater为靠近水表面的水蒸气密度;Qair为大气中的水蒸气密度,与大气的相对湿度R成正比关系;a1和b1是道尔顿常数,分别用来调整蒸发和受风影响的蒸发,用户自定义a1和b1,用于对蒸发量进行率定。
其中太阳短波辐射如公式(7):
Figure BDA0003360307210000061
式中,n为实际日照时数;Nd为最大日照时数(白天时长);a2和b2是用户自定义常数,用于对短波辐射进行率定,H为实际太阳短波辐射强度,H0为绝对太阳短波辐射强度,H0如公式(8):
Figure BDA0003360307210000062
式中,qsc为日照辐射常数;E0为地球到太阳的平均距离的平方与太阳实际距离间的比值;φ为研究区域的纬度值;δ为偏向角;ωsr为日出方位角。上述这些参数均可由MIKE模型内置的相关计算公式计算得到。
其中,净长波辐射如公式(9):
Figure BDA0003360307210000063
式中a、b、c、d为常数,分别为a=0.56,b=0.077,c=0.10,d=0.90;n为实际日照时数;Nd为最大日照时数(白天时长);Tair为大气温度;σsb为Stefan Boltzman常数(5.6697×10-8W/(m2·K4));ed为测量露点温度处的蒸汽压强,ed=10esaturatedR;其中R为大气相对湿度;esaturated为饱和蒸汽压(kPa)。
步骤2、结合目标鱼类的游泳能力、上溯行为特征和水环境参数信息,确定目标鱼类的运动轨迹;
步骤2.1、获取目标鱼类的游泳能力,具体包括:
步骤2.1.1、采用封闭环形水槽对目标鱼类开展游泳能力测试;
其中封闭环形水槽的结构如图2所示,包括变频电机1,外水箱2,试验段3,导流板4和螺旋桨5。环道设置在外水箱2里面,试验段3在环道上取平直的一段,螺旋桨5深入环道中由变频电机1驱动,推动环道内的水体运动。其中试验段3的布置要求是:在目标鱼类的栖息地中选择卵石铺在试验段上,具体方式是在试验段内设置与试验段等尺寸的铺沙板,铺沙板上铺设在栖息地中选择的卵石。
利用上述封闭环形水槽,采用流速递增法对目标鱼类开展游泳能力测试,本发明中,目标鱼类游泳能力的表征参数包括感应流速、临界游泳速度和突进游泳速度。
其中感应流速是指目标鱼类开始对水流产生反应的流速值,这种产生反应的标准通常是鱼类改变游动的方向。
临界游泳速度的计算公式如公式(10):
Figure BDA0003360307210000071
式中,Vc为所述目标鱼类的临界游泳速度,Vp为所述目标鱼类极限疲劳的前一个水流速度,Vi为相邻两次增速之间的水流增速值,tf为流速增加到极限疲劳流速后所述目标鱼类持续游泳的时间,ti为增速前后的时间间隔。
突进游泳速度指的是是鱼类游泳的最大速度,鱼类在躲避外界刺激时,主要依靠厌氧能源进行厌氧呼吸。
步骤2.1.2、采用开放水槽对目标鱼类开展游泳能力测试;
采用现场开放水槽对目标鱼类开展游泳能力测试,测试可得修正系数。
修正系数R的计算公式如公式(11):
R=(1+εs) (11)
式中,εs为固体阻塞影响因素,其是根据公式(12)确定的:
Figure BDA0003360307210000081
式中,τ是取决于开放水槽截面形状的量纲为一的常数,λ为鱼形状因子,且"λ=0.5T",其中鱼体厚度T可表示为体高和体宽的平均值;A0为鱼最大截面积且A0=0.25πhw,h是开放水槽的深度,w为系数;AT为开放水槽截面积。
步骤2.1.3、利用开放水槽的游泳能力测试结果修正封闭环形水槽的游泳能力测试结果,得到目标鱼类的游泳能力,具体包括:
在采用封闭环形水槽获得每条目标鱼类的感应速度、临界游泳速度和突进游泳速度后,再使用现场开放水槽试验获得的修正系数R修正上述三个参数,具体修正方法为利用修正系数分别乘以上述三个参数,即可得到修正后的参数。
步骤2.2、根据游泳能力,确定目标鱼类的上溯行为特征。
本发明以三维水环境模型为基础,在ABM框架下搭建基于个体的鱼类运动模型,选取目标鱼类洄游期进行模拟,从而利用该运动模型确定目标鱼类的上溯行为特征。在该模型中,赋予代理鱼粒子(每一条目标鱼类对应一个代理鱼粒子)多重属性,包括有不同的质量、体长、初始速度、游泳能力特征值(突进游泳速度等)等,以表征同一鱼种的不同生命阶段。
在基于个体的鱼类运动模型计算模式下,代理鱼粒子的运动可以同时受到多种环境因子的影响,其中包括基于欧拉方法下流速、水深、水温、水质浓度等因子,也包括基于拉格朗日方法下其他代理与当前/目标代理之间的相互影响。每个时间步进行代理下一时间步空间位移的如果仅取决于其喜好流速及其临近的个体位置(如逃离其最近的个体),则当前代理鱼粒子即将发生的运动速度和方向(即上溯行为特征)将是上述两个因子各自影响下的代理运动速度矢量的叠加结果。代理鱼粒子运动规则示意图见图3。
步骤2.3、结合目标鱼类游泳能力、上溯行为特征及水环境参数信息,确定出目标鱼类的运动轨迹。
该运动路径是由结合目标鱼类游泳能力、上溯行为特征和水环境参数信息,以三维水环境模型为基础,在ABM框架下搭建基于个体的鱼类运动模型在目标鱼类洄游期进行模拟所计算得到的,为目标鱼类代理粒子在洄游过程中的路径。
步骤3、利用聚类分析方法对运动轨迹进行聚类,确定目标鱼类的多条潜在洄游通道。
本发明所使用的聚类分析的算法可以分为划分法、层次法、基于密度的方法、基于网格的方法、基于模型的方法等。本发明使用的为层次聚类法。
层次聚类法是通过某种相似性测度计算节点之间的相似性,并按相似度由高到低排序,逐步重新连接节点。层次聚类使用欧式距离来计算不同类别数据点间的距离(相似度)。通过移除网络中的所有边,得到有n个孤立节点的初始状态后,计算网络中每对节点的相似度。并根据相似度从强到弱连接相应节点对,形成树状图。根据实际需求横切树状图,获得社区结构。本发明利用聚类分析方法对目标鱼类的运动轨迹进行聚类,从而确定目标鱼类的多条潜在洄游通道,得到的结果如图4所示。图4中实点代表目标鱼类,与实点连接的短线为目标鱼类的运动轨迹,三条长实线为利用层次聚类法得到的潜在洄游通道。
步骤4、确定每条潜在洄游通道的权重,利用加权平均法确定目标鱼类的最终洄游通道,具体包括:
步骤4.1、确定每个运动轨迹的权重,具体包括:
根据公式(13)确定运动轨迹的权重:
Figure BDA0003360307210000091
式中,T(x,y)为在研究范围的计算网格(x,y)内潜在洄游通道的权重,Wi为计算网格(x,y)内与第i条潜在洄游通道重叠的运动轨迹的数量。
具体地,图4中的九宫格中的每一格即为一个计算网格,左上角为的第一个计算网格为(1,1),其右侧为(1,2),下侧为(2,1),依次类推。
步骤4.2、利用加权平均法确定目标鱼类的最终洄游通道,具体包括:。
本发明中的加权平均法实际为加权迹线法,加权的对象为运动轨迹。
步骤4.2.1、建立直角坐标系,计算网格位于直角坐标系内;本发明中以九宫格的相邻两边为横纵坐标系;
步骤4.2.2、逐一获取每一个横坐标点处,多条潜在洄游通道的加权平均值;
步骤4.2.3、多个加权平均值依次相连,得到目标鱼类的最终洄游通道。
本发明得到的目标鱼类的洄游通道为目标鱼类整群的最佳洄游通道。
本发明实施例的第二方面还公开了一种鱼类洄游通道确定系统,如图5所示,包括参数获取模块101、运动轨迹确定模块102、潜在通道确定模块103和洄游通道确定模块104;
其中参数获取模块101用于根据目标鱼类栖息地的基础地形数据和水文数据确定目标鱼类栖息地的水环境参数信息;
运动轨迹确定模块102用于结合目标鱼类的游泳能力、上溯行为特征和水环境参数信息,确定目标鱼类的运动轨迹;
潜在通道确定模块103用于利用聚类分析方法对运动轨迹进行聚类,确定目标鱼类的多条潜在洄游通道;
洄游通道确定模块104用于确定每条潜在洄游通道的权重,利用加权平均法确定目标鱼类的最终洄游通道。
本发明的鱼类洄游通道确定方法及系统,根据栖息地水环境的参数信息、目标鱼类的游泳能力及上溯行为特征确定了目标鱼类的运动轨迹;再结合目标鱼类的运动轨迹确定了整群目标鱼类的洄游通道。本发明的方法及系统所考虑的影响因素全面且准确,且所确定的洄游通道是通过定量计算获得的,故可快速获得准确的鱼类洄游通道。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (8)

1.一种鱼类洄游通道确定方法,其特征在于,包括:
根据目标鱼类栖息地的基础地形数据和水文数据确定所述目标鱼类栖息地的水环境参数信息;
结合目标鱼类的游泳能力、上溯行为特征和所述水环境参数信息,确定目标鱼类的运动轨迹,具体包括:结合目标鱼类游泳能力、上溯行为特征和水环境参数信息,以三维水环境模型为基础,在ABM框架下搭建基于个体的鱼类运动模型,利用所述鱼类运动模型确定目标鱼类的运动轨迹;
利用聚类分析方法对所述运动轨迹进行聚类,确定目标鱼类的多条潜在洄游通道;
确定每条潜在洄游通道的权重,利用加权平均法确定所述目标鱼类的最终洄游通道,具体包括:
根据第二公式确定每条潜在洄游通道的权重,所述第二公式为:
Figure FDA0003644968590000011
式中,T(x,y)为计算网格(x,y)内所述潜在洄游通道的权重,Wi为计算网格(x,y)内与第i条潜在洄游通道重叠的所述运动轨迹的数量;
建立直角坐标系,所述计算网格位于所述直角坐标系内;
逐一获取每一个横坐标点处,多条所述潜在洄游通道的加权平均值;
多个所述加权平均值依次相连,得到所述目标鱼类的最终洄游通道。
2.根据权利要求1所述的方法,其特征在于,结合目标鱼类的游泳能力、上溯行为特征和所述水环境参数信息,确定目标鱼类的运动轨迹,具体包括:
获取所述目标鱼类的游泳能力;
根据所述游泳能力,确定所述目标鱼类的上溯行为特征;
结合所述目标鱼类的游泳能力、上溯行为特征和所述水环境参数信息,确定目标鱼类的运动轨迹。
3.根据权利要求2所述的方法,其特征在于,目标鱼类游泳能力的表征参数包括感应流速、临界游泳速度和突进游泳速度。
4.根据权利要求3所述的方法,其特征在于,所述临界游泳速度根据第一公式确定,所述第一公式为:
Figure FDA0003644968590000021
式中,Vc为所述目标鱼类的临界游泳速度,Vp为所述目标鱼类极限疲劳的前一个水流速度,Vi为相邻两次增速之间的水流增速值,tf为流速增加到极限疲劳流速后所述目标鱼类持续游泳的时间,ti为增速前后的时间间隔。
5.根据权利要求2所述的方法,其特征在于,获取所述目标鱼类的游泳能力,具体包括:
采用封闭环形水槽对所述目标鱼类开展游泳能力测试;
采用开放水槽对所述目标鱼类开展游泳能力测试;
利用所述开放水槽的游泳能力测试结果修正所述封闭环形水槽的游泳能力测试结果,得到所述目标鱼类的游泳能力。
6.根据权利要求1所述的方法,其特征在于,所述聚类分析方法为层次聚类分析方法。
7.根据权利要求1所述的方法,其特征在于,所述水环境参数信息包括水动力参数信息、水温参数信息和水质参数信息。
8.一种鱼类洄游通道确定系统,其特征在于,包括:
参数获取模块,所述参数获取模块用于根据目标鱼类栖息地的基础地形数据和水文数据确定所述目标鱼类栖息地的水环境参数信息;
运动轨迹确定模块,所述运动轨迹确定模块用于结合目标鱼类的游泳能力、上溯行为特征和所述水环境参数信息,确定目标鱼类的运动轨迹,具体包括:结合目标鱼类游泳能力、上溯行为特征和水环境参数信息,以三维水环境模型为基础,在ABM框架下搭建基于个体的鱼类运动模型,利用所述鱼类运动模型确定目标鱼类的运动轨迹;
潜在通道确定模块,所述潜在通道确定模块用于利用聚类分析方法对所述运动轨迹进行聚类,确定目标鱼类的多条潜在洄游通道;
洄游通道确定模块,所述洄游通道确定模块用于确定每条潜在洄游通道的权重,利用加权平均法确定所述目标鱼类的最终洄游通道,具体包括:
根据第二公式确定每条潜在洄游通道的权重,所述第二公式为:
Figure FDA0003644968590000031
式中,T(x,y)为计算网格(x,y)内所述潜在洄游通道的权重,Wi为计算网格(x,y)内与第i条潜在洄游通道重叠的所述运动轨迹的数量;
建立直角坐标系,所述计算网格位于所述直角坐标系内;
逐一获取每一个横坐标点处,多条所述潜在洄游通道的加权平均值;
多个所述加权平均值依次相连,得到所述目标鱼类的最终洄游通道。
CN202111365006.5A 2021-11-17 2021-11-17 一种鱼类洄游通道确定方法及系统 Active CN114065520B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111365006.5A CN114065520B (zh) 2021-11-17 2021-11-17 一种鱼类洄游通道确定方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111365006.5A CN114065520B (zh) 2021-11-17 2021-11-17 一种鱼类洄游通道确定方法及系统

Publications (2)

Publication Number Publication Date
CN114065520A CN114065520A (zh) 2022-02-18
CN114065520B true CN114065520B (zh) 2022-07-05

Family

ID=80278009

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111365006.5A Active CN114065520B (zh) 2021-11-17 2021-11-17 一种鱼类洄游通道确定方法及系统

Country Status (1)

Country Link
CN (1) CN114065520B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115152671B (zh) * 2022-08-24 2023-06-09 中国长江三峡集团有限公司 改善珍稀鱼类种群生境的水利工程调控系统及调控方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004187649A (ja) * 2002-12-13 2004-07-08 Fisheries Research Agency 浮魚資源現存量の区間推定方法、そのためのプログラム及び記録媒体
CN104430076A (zh) * 2014-11-13 2015-03-25 水利部交通运输部国家能源局南京水利科学研究院 一种鱼类临界游泳速度测试方法
CN112070799A (zh) * 2020-05-29 2020-12-11 清华大学 基于人工神经网络的鱼类轨迹跟踪方法和系统
CN112131745A (zh) * 2020-09-24 2020-12-25 福州大学 一种基于虚拟仿真平台的鱼道实验系统
CN112418521A (zh) * 2020-11-23 2021-02-26 青岛科技大学 一种短时海洋鱼群和鱼量的预测方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102499157B (zh) * 2011-11-08 2013-07-17 中国水产科学研究院珠江水产研究所 一种快速确定洄游鱼类种群分布及洄游路线的方法
CN103858805B (zh) * 2014-03-28 2015-09-02 水利部中国科学院水工程生态研究所 一种评估鱼类游泳能力的方法及应用
CN108664022B (zh) * 2018-04-27 2023-09-05 湘潭大学 一种基于拓扑地图的机器人路径规划方法及系统
CN109307511A (zh) * 2018-09-04 2019-02-05 山东理工大学 一种人工鱼群算法优化的容积粒子滤波导航方法
CN109271694B (zh) * 2018-09-06 2022-02-01 西安理工大学 基于鱼类个体动态模拟技术的栖息地识别方法
CA3119273A1 (en) * 2018-11-09 2020-05-14 Iocurrents, Inc. Machine learning-based prediction, planning, and optimization of trip time, trip cost, and/or pollutant emission during navigation
CN110080178B (zh) * 2019-04-01 2020-06-12 河海大学 一种鱼道设计方法
CN110396998B (zh) * 2019-04-01 2021-06-04 福建省水利水电勘测设计研究院 符合自然流动规律和鱼类行为特点的进鱼口设计方法
CN110205994A (zh) * 2019-05-31 2019-09-06 西安理工大学 一种堰体交错布置型鱼道
CN110359415B (zh) * 2019-07-10 2020-02-14 中国水利水电科学研究院 一种基于个体模式的鱼道过鱼模拟方法
CN110580327A (zh) * 2019-08-19 2019-12-17 武汉大学 一种河流生态流量计算方法
CN113468825A (zh) * 2020-03-31 2021-10-01 中国水利水电科学研究院 鱼类洄游生态流量的确定方法和装置
CN111582380A (zh) * 2020-05-09 2020-08-25 中国人民解放军92493部队试验训练总体研究所 一种基于时空特征的船舶轨迹密度聚类方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004187649A (ja) * 2002-12-13 2004-07-08 Fisheries Research Agency 浮魚資源現存量の区間推定方法、そのためのプログラム及び記録媒体
CN104430076A (zh) * 2014-11-13 2015-03-25 水利部交通运输部国家能源局南京水利科学研究院 一种鱼类临界游泳速度测试方法
CN112070799A (zh) * 2020-05-29 2020-12-11 清华大学 基于人工神经网络的鱼类轨迹跟踪方法和系统
CN112131745A (zh) * 2020-09-24 2020-12-25 福州大学 一种基于虚拟仿真平台的鱼道实验系统
CN112418521A (zh) * 2020-11-23 2021-02-26 青岛科技大学 一种短时海洋鱼群和鱼量的预测方法

Also Published As

Publication number Publication date
CN114065520A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
Essery et al. A distributed model of blowing snow over complex terrain
CN109657418A (zh) 一种基于mike21的湖泊水环境容量计算方法
Markfort et al. Wind sheltering of a lake by a tree canopy or bluff topography
CN108022047A (zh) 一种海绵城市水文计算方法
CN112257352A (zh) 一维水动力模型和二维水动力模型的耦合方法及系统
CN110359415A (zh) 一种基于个体模式的鱼道过鱼模拟方法
Liu et al. Dune sand transport as influenced by wind directions, speed and frequencies in the Ordos Plateau, China
CN110197017A (zh) 一种城市河流橡胶坝群水生态调控方法
CN114065520B (zh) 一种鱼类洄游通道确定方法及系统
Xie et al. Computer simulations of wind-induced estuarine circulation patterns and estuary-shelf exchange processes: the potential role of wind forcing on larval transport
CN115795399A (zh) 一种多源遥感降水数据自适应融合方法和系统
CN114692471A (zh) 一种岩溶地下水系统流网模拟方法
CN108867582B (zh) 基于过饱和tdg对鱼类影响的梯级电站生态调度方法
CN111626501B (zh) 一种评估互花米草适生区域的方法
Zacharias et al. Hydrodynamic and dispersion modeling as a tool for restoration of coastal ecosystems. Application to a re-flooded lagoon
Fajar Maharta et al. Identification of marine debris sources in Kuta Beach, Bali, Indonesia
CN110109194A (zh) 基于栅格陆面模型与向量化流径的河道栅格入流计算方法
Özsoy et al. Forecasting circulation in the Cilician Basin of the Levantine Sea
CN102262245B (zh) 一种地震层析成像处理中的自适应加权sirt反演方法及其系统
Kuok et al. Particle swarm optimization for calibrating and optimizing Xinanjiang model parameters
Chowdhury et al. Estimation of reference evapotranspiration using artificial neural network for Mohanpur, Nadia District, West Bengal: a case study
CN114399103A (zh) 一种基于cnn的陆水一体化河流水质时空连续预测方法
CN109116348B (zh) 一种面向昆虫迁飞起飞与巡航的远距离轨迹模拟方法
Guan et al. Variation in wind speed and surface shear stress from open floor to porous parallel windbreaks: A wind tunnel study
Gao et al. A relationship between spatial processes and a partial patchiness index in a grassland landscape

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant