CN114063246A - 光学镜头及电子设备 - Google Patents
光学镜头及电子设备 Download PDFInfo
- Publication number
- CN114063246A CN114063246A CN202010776130.XA CN202010776130A CN114063246A CN 114063246 A CN114063246 A CN 114063246A CN 202010776130 A CN202010776130 A CN 202010776130A CN 114063246 A CN114063246 A CN 114063246A
- Authority
- CN
- China
- Prior art keywords
- lens
- optical
- image
- convex
- equal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 223
- 238000003384 imaging method Methods 0.000 claims description 42
- 239000011521 glass Substances 0.000 description 17
- 230000004075 alteration Effects 0.000 description 15
- 230000001681 protective effect Effects 0.000 description 13
- 230000009286 beneficial effect Effects 0.000 description 10
- 230000002349 favourable effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 235000013312 flour Nutrition 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000004026 adhesive bonding Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000004304 visual acuity Effects 0.000 description 2
- 201000009310 astigmatism Diseases 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003331 infrared imaging Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本申请公开了一种光学镜头和包括该光学镜头的电子设备。该光学镜头沿着光轴由物侧至像侧依序包括:具有负光焦度的第一透镜,其物侧面为凸面,像侧面为凹面;具有负光焦度的第二透镜;具有正光焦度的第三透镜,其物侧面为凸面,像侧面为凸面;具有负光焦度的第四透镜,其物侧面为凹面,像侧面为凹面;具有正光焦度的第五透镜,其物侧面为凸面,像侧面为凸面;以及具有正光焦度的第六透镜;第四透镜和第五透镜胶合形成胶合透镜。
Description
技术领域
本申请涉及光学元件领域,更具体地,涉及一种光学镜头及电子设备。
背景技术
随着汽车的普及,驾驶员的疲劳驾驶对道路安全以及人身安全的影响越来越大,因此,市场上对车载镜头进行车内监控的要求也越来越高。目前,车载内视镜头为了提高成像质量,正朝着大芯片、大视场、大光圈以及高清的趋势发展。但是,随着芯片尺寸的增大,在一定程度上势必会增大镜头的总长,从而将会影响到车载镜头的安装使用。
如何通过合理分配透镜的光焦度和面型特征,以实现车载镜头同时兼顾高成像质量和小型化,是目前诸多镜头设计者亟待解决的难题之一。
发明内容
本申请一方面提供了一种光学镜头。该光学镜头沿着光轴由物侧至像侧依序包括:具有负光焦度的第一透镜,其物侧面为凸面,像侧面为凹面;具有负光焦度的第二透镜;具有正光焦度的第三透镜,其物侧面为凸面,像侧面为凸面;具有负光焦度的第四透镜,其物侧面为凹面,像侧面为凹面;具有正光焦度的第五透镜,其物侧面为凸面,像侧面为凸面;以及具有正光焦度的第六透镜;第四透镜和第五透镜胶合形成胶合透镜。
在一个实施方式中,第二透镜的物侧面为凸面,像侧面为凹面。
在一个实施方式中,第二透镜的物侧面为凹面,像侧面为凹面。
在一个实施方式中,第六透镜的物侧面为凸面,像侧面为凹面。
在一个实施方式中,第六透镜的物侧面为凸面,像侧面为凸面。
在一个实施方式中,第一透镜的物侧面至光学镜头的成像面在光轴上的距离TTL与光学镜头的总有效焦距F可满足:TTL/F≤9。
在一个实施方式中,光学镜头的最大视场角对应的第一透镜的物侧面的最大通光口径D、光学镜头的最大视场角对应的像高H以及光学镜头的最大视场角FOV可满足:D/H/FOV≤0.025。
在一个实施方式中,第六透镜的像侧面至光学镜头的成像面在光轴上的距离BFL与第一透镜的物侧面至第六透镜的像侧面在光轴上的距离TL可满足:BFL/TL≥0.15。
在一个实施方式中,光学镜头的最大视场角FOV、光学镜头的总有效焦距F以及光学镜头的最大视场角对应的像高H可满足:50≤(FOV×F)/H≤120。
在一个实施方式中,光学镜头的总有效焦距F与第一透镜的物侧面的中心曲率半径R11可满足:|F/R11|≤0.25。
在一个实施方式中,第一透镜的像侧面的中心曲率半径R12与第二透镜的物侧面的中心曲率半径R21可满足:R12/R21≥-0.55。
在一个实施方式中,第六透镜的物侧面的中心曲率半径R61与第六透镜的像侧面的中心曲率半径R62可满足:|R61/R62|≤0.45。
在一个实施方式中,光学镜头的最大视场角FOV、光学镜头的总有效焦距F以及光学镜头的最大视场角对应的像高H可满足:(H-F×FOV)/F×FOV≤-0.4。
在一个实施方式中,第一透镜的物侧面的中心曲率半径R11与第一透镜的像侧面的中心曲率半径R12可满足:2.5≤R11/R12≤5.5。
在一个实施方式中,第一透镜的有效焦距F1与第二透镜的有效焦距F2可满足:0.6≤|F1/F2|≤1.4。
在一个实施方式中,第二透镜的有效焦距F2与第三透镜的有效焦距F3可满足:0.8≤|F2/F3|≤2。
在一个实施方式中,第三透镜的有效焦距F3与第四透镜的有效焦距F4可满足:0.5≤|F3/F4|。
在一个实施方式中,第五透镜的有效焦距F5与第六透镜的有效焦距F6可满足:|F5/F6|≤2。
在一个实施方式中,第四透镜的有效焦距F4与第五透镜的有效焦距F5可满足:0.8≤|F4/F5|≤1.8。
在一个实施方式中,光学镜头的总有效焦距F与第一透镜、第二透镜和第三透镜的组合焦距F123可满足:0.2≤F/F123≤5。
本申请另一方面提供了这样一种光学镜头。该光学镜头沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜;具有光焦度的第二透镜;具有光焦度的第三透镜;具有负光焦度的第四透镜;具有正光焦度的第五透镜;以及具有正光焦度的第六透镜;第一透镜、第二透镜和第三透镜的组合焦距F123可满足:F123≥0。
在一个实施方式中,第一透镜具有负光焦度,其物侧面为凸面,像侧面为凹面。
在一个实施方式中,第二透镜具有负光焦度,其物侧面为凸面,像侧面为凹面。
在一个实施方式中,第二透镜具有负光焦度,其物侧面为凹面,像侧面为凹面。
在一个实施方式中,第三透镜具有正光焦度,其物侧面为凸面,像侧面为凸面。
在一个实施方式中,第四透镜的物侧面为凹面,像侧面为凹面。
在一个实施方式中,第五透镜的物侧面为凸面,像侧面为凸面。
在一个实施方式中,第六透镜的物侧面为凸面,像侧面为凹面。
在一个实施方式中,第六透镜的物侧面为凸面,像侧面为凸面。
在一个实施方式中,第四透镜和第五透镜胶合形成胶合透镜。
在一个实施方式中,第一透镜的物侧面至光学镜头的成像面在光轴上的距离TTL与光学镜头的总有效焦距F可满足:TTL/F≤9。
在一个实施方式中,光学镜头的最大视场角FOV、光学镜头的最大视场角对应的第一透镜的物侧面的最大通光口径D以及光学镜头的最大视场角对应的像高H可满足:D/H/FOV≤0.025。
在一个实施方式中,第六透镜的像侧面至光学镜头的成像面在光轴上的距离BFL与第一透镜的物侧面至第六透镜的像侧面在光轴上的距离TL可满足:BFL/TL≥0.15。
在一个实施方式中,光学镜头的最大视场角FOV、光学镜头的总有效焦距F以及光学镜头的最大视场角对应的像高H可满足:50≤(FOV×F)/H≤120。
在一个实施方式中,光学镜头的总有效焦距F与第一透镜的物侧面的中心曲率半径R11可满足:|F/R11|≤0.25。
在一个实施方式中,第一透镜的像侧面的中心曲率半径R12与第二透镜的物侧面的中心曲率半径R21可满足:R12/R21≥-0.55。
在一个实施方式中,第六透镜的物侧面的中心曲率半径R61与第六透镜的像侧面的中心曲率半径R62可满足:|R61/R62|≤0.45。
在一个实施方式中,光学镜头的最大视场角FOV、光学镜头的总有效焦距F以及光学镜头的最大视场角对应的像高H可满足:(H-F×FOV)/F×FOV≤-0.4。
在一个实施方式中,第一透镜的物侧面的中心曲率半径R11与第一透镜的像侧面的中心曲率半径R12可满足:2.5≤R11/R12≤5.5。
在一个实施方式中,第一透镜的有效焦距F1与第二透镜的有效焦距F2可满足:0.6≤|F1/F2|≤1.4。
在一个实施方式中,第二透镜的有效焦距F2与第三透镜的有效焦距F3可满足:0.8≤|F2/F3|≤2。
在一个实施方式中,第三透镜的有效焦距F3与第四透镜的有效焦距F4可满足:0.5≤|F3/F4|。
在一个实施方式中,第五透镜的有效焦距F5与第六透镜的有效焦距F6可满足:|F5/F6|≤2。
在一个实施方式中,第四透镜的有效焦距F4与第五透镜的有效焦距F5可满足:0.8≤|F4/F5|≤1.8。
在一个实施方式中,光学镜头的总有效焦距F与第一透镜、第二透镜和第三透镜的组合焦距F123可满足:0.2≤F/F123≤5。
本申请另一方面提供了一种电子设备。该电子设备包括根据本申请提供的光学镜头及用于将光学镜头形成的光学图像转换为电信号的成像元件。
本申请采用了六片透镜,通过优化设置各透镜的形状、光焦度等,使光学镜头具有高成像质量、小型化、低成本等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其它特征、目的和优点将变得更加明显。在附图中:
图1为示出根据本申请实施例1的光学镜头的结构示意图;
图2为示出根据本申请实施例2的光学镜头的结构示意图;
图3为示出根据本申请实施例3的光学镜头的结构示意图;
图4为示出根据本申请实施例4的光学镜头的结构示意图;
图5为示出根据本申请实施例5的光学镜头的结构示意图;以及
图6为示出根据本申请实施例6的光学镜头的结构示意图。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物的表面称为该透镜的物侧面,每个透镜最靠近成像侧的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度形式化意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其它方面进行详细描述。
在示例性实施方式中,光学镜头包括例如六片具有光焦度的透镜,即第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。这六片透镜沿着光轴从物侧至像侧依序排列。
在示例性实施方式中,光学镜头还可进一步包括设置于成像面的感光元件。可选地,设置于成像面的感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。
在示例性实施方式中,第一透镜可具有负光焦度。第一透镜可具有凸凹面型。第一透镜具有负光焦度,有利于提高成像质量,同时有利于避免物方光线发散过大,有利于后方镜片的口径控制;第一透镜的物侧面为凸面,有利于尽可能地收集大视场光线进入后方光学系统,增加通光量,有利于实现整体大视场范围;同时将第一透镜的物侧面设置为凸面,有利于镜头适应室外使用环境,如雨雪等恶劣天气的水珠滑落,减小对成像的影响。
在示例性实施方式中,第二透镜可具有负光焦度。第二透镜可具有凸凹面型或凹凹面型。第二透镜的这种光焦度和面型设置,有利于将光线进一步发散或汇聚,调整光线,减小色差。优选地,第二透镜具有非球面镜面,可以进一步提高解像质量。
在示例性实施方式中,第三透镜可具有正光焦度。第三透镜可具有凸凸面型。第三透镜的这种光焦度和面型设置,有利于将光线进行汇聚,调整光线,使光线走势平稳过渡至后方;可以平衡由前两组镜片引入的球差。
在示例性实施方式中,第四透镜可具有负光焦度。第四透镜可具有凹凹面型。
在示例性实施方式中,第五透镜可具有正光焦度。第五透镜可具有凸凸面型。
在示例性实施方式中,第六透镜可具有正光焦度。第六透镜可具有凸凹面型或凸凸面型。第六透镜具有正光焦度,可以将经过胶合件的光线平缓过渡至成像面,减小总长,校正像散和场曲,提高分辨率。优选地,第六透镜具有非球面镜面,可以进一步提高解像质量。
在示例性实施方式中,根据本申请的光学镜头可满足:TTL/F≤9,其中,TTL是第一透镜的物侧面至光学镜头的成像面在光轴上的距离,F是光学镜头的总有效焦距。更具体地,TTL和F进一步可满足:TTL/F≤8。满足TTL/F≤9,可以有效地限制镜头的长度,有利于实现镜头小型化。
在示例性实施方式中,根据本申请的光学镜头可满足:D/H/FOV≤0.025,其中,D是光学镜头的最大视场角对应的第一透镜的物侧面的最大通光口径,H是光学镜头的最大视场角对应的像高,FOV是光学镜头的最大视场角。更具体地,D、H和FOV进一步可满足:D/H/FOV≤0.02。满足D/H/FOV≤0.025,有利于减小前端口径,有利于镜头小型化。
在示例性实施方式中,根据本申请的光学镜头可满足:BFL/TL≥0.15,其中,BFL是第六透镜的像侧面至光学镜头的成像面在光轴上的距离,TL是第一透镜的物侧面至第六透镜的像侧面在光轴上的距离。更具体地,BFL和TL进一步可满足:BFL/TL≥0.2。满足BFL/TL≥0.15,有利于在实现小型化的基础上,满足后焦BFL较长,以利于模组的组装。
在示例性实施方式中,根据本申请的光学镜头可满足:50≤(FOV×F)/H≤120,其中,FOV是光学镜头的最大视场角,F是光学镜头的总有效焦距,H是光学镜头的最大视场角对应的像高。更具体地,FOV、F和H进一步可满足:55≤(FOV×F)/H≤115。满足50≤(FOV×F)/H≤120,有利于实现大角度分辨率,有助于光学镜头同时兼顾大视场角和小畸变。
在示例性实施方式中,根据本申请的光学镜头可满足:|F/R11|≤0.25,其中,F是光学镜头的总有效焦距,R11是第一透镜的物侧面的中心曲率半径。更具体地,F和R11进一步可满足:|F/R11|≤0.2。满足|F/R11|≤0.25,有利于避免第一透镜物侧面曲率过小,以有效避免光线入射时像差的产生,有利于第一透镜的生产。
在示例性实施方式中,根据本申请的光学镜头可满足:R12/R21≥-0.55,其中,R12是第一透镜的像侧面的中心曲率半径,R21是第二透镜的物侧面的中心曲率半径。更具体地,R12和R21进一步可满足:R12/R21≥-0.5。满足R12/R21≥-0.55,可以校正该光学系统的像差,并且可以保证从第一透镜出射的光线入射到第二透镜的物侧面时,入射光线较为平缓,从而降低该光学系统的公差敏感度。
在示例性实施方式中,根据本申请的光学镜头可满足:|R61/R62|≤0.45,其中,R61是第六透镜的物侧面的中心曲率半径,R62是第六透镜的像侧面的中心曲率半径。更具体地,R61和R62进一步可满足:|R61/R62|≤0.4。满足|R61/R62|≤0.45,有利于提升解像力。
在示例性实施方式中,根据本申请的光学镜头可满足:(H-F×FOV)/F×FOV≤-0.4,其中,FOV是光学镜头的最大视场角,F是光学镜头的总有效焦距,H是光学镜头的最大视场角对应的像高。更具体地,H、F和FOV进一步可满足:(H-F×FOV)/F×FOV≤-0.5。满足(H-F×FOV)/F×FOV≤-0.4,可以在保证镜头视场角和成像面大小不变的情况下,增大镜头的焦距,突出镜头成像面中心区域的成像效果。
在示例性实施方式中,根据本申请的光学镜头可满足:2.5≤R11/R12≤5.5,其中,R11是第一透镜的物侧面的中心曲率半径,R12是第一透镜的像侧面的中心曲率半径。更具体地,R11和R12进一步可满足:3≤R11/R12≤5。满足2.5≤R11/R12≤5.5,有利于提升解像力。
在示例性实施方式中,根据本申请的光学镜头可满足:0.6≤|F1/F2|≤1.4,其中,F1是第一透镜的有效焦距,F2是第二透镜的有效焦距。更具体地,F1和F2进一步可满足:0.8≤|F1/F2|≤1.2。满足0.6≤|F1/F2|≤1.4,有利于光线平稳过渡,提高解像质量。
在示例性实施方式中,根据本申请的光学镜头可满足:0.8≤|F2/F3|≤2,其中,F2是第二透镜的有效焦距,F3是第三透镜的有效焦距。更具体地,F2和F3进一步可满足:1≤|F2/F3|≤1.8。满足0.8≤|F2/F3|≤2,有利于光线平稳过渡,提高解像质量。
在示例性实施方式中,根据本申请的光学镜头可满足:0.5≤|F3/F4|,其中,F3是第三透镜的有效焦距,F4是第四透镜的有效焦距。更具体地,F3和F4进一步可满足:0.55≤|F3/F4|。满足0.5≤|F3/F4|,有利于光线平稳过渡,提高解像质量。
在示例性实施方式中,根据本申请的光学镜头可满足:0.8≤|F4/F5|≤1.8,其中,F4是第四透镜的有效焦距,F5是第五透镜的有效焦距。更具体地,F4和F5进一步可满足:1≤|F4/F5|≤1.6。满足0.8≤|F4/F5|≤1.8,有利于光线平稳过渡,提高解像质量。
在示例性实施方式中,根据本申请的光学镜头可满足:|F5/F6|≤2,其中,F5是第五透镜的有效焦距,F6是第六透镜的有效焦距。更具体地,F5和F6进一步可满足:|F5/F6|≤1。满足|F5/F6|≤2,有利于光线平稳过渡,提高解像质量。
在示例性实施方式中,根据本申请的光学镜头可满足:0.2≤F/F123≤5,其中,F是光学镜头的总有效焦距,F123是第一透镜、第二透镜和第三透镜的组合焦距。更具体地,F和F123进一步可满足:0.25≤F/F123≤4。满足0.2≤F/F123≤5,可以使组合焦距F123为正值,这样有利于汇聚大角度范围内的光线,增大视场角,缩短总长。若该条件式的保护范围过小,如F/F123<0.2,既不利于增大视场角,也不利于提升周边的解像力;若该条件式的保护范围过大,如F/F123>5,则可能会导致光学镜头的总长过长,不利于提高解像质量。
在示例性实施方式中,根据本申请的光学镜头可满足:F123≥0,其中,F123是第一透镜、第二透镜和第三透镜的组合焦距。更具体地,F123进一步可满足:F123≥6。
在示例性实施方式中,第三透镜与第四透镜之间可设置有用于限制光束的光阑以进一步提高光学镜头的成像质量。将光阑设置在第三透镜和第四透镜之间,有利于对进入光学镜头的光线进行有效的收束,缩短光学镜头的总长度,减小镜片口径。在本申请实施方式中,光阑可设置在第三透镜的像侧面的附近处,或设置在第四透镜的物侧面的附近处。然而,应注意,此处公开的光阑的位置仅是示例而非限制;在替代的实施方式中,也可根据实际需要将光阑设置在其他位置。
在示例性实施方式中,根据需要,根据本申请的光学镜头还可包括设置在第六透镜与成像面之间的滤光片,以对具有不同波长的光线进行过滤。根据本申请的光学镜头还可包括设置在第六透镜与成像面之间的保护玻璃,以防止光学镜头的像方元件(例如,芯片)损坏。
如本领域技术人员已知的,胶合透镜可用于最大限度地减少色差或消除色差。在光学镜头中使用胶合透镜能够改善像质、减少光能量的反射损失,从而实现高解像,提升镜头成像的清晰度。另外,胶合透镜的使用还可简化镜头制造过程中的装配程序。
在示例性实施方式中,第四透镜和第五透镜胶合形成胶合透镜。物侧面和像侧面均为凹面的第四透镜与物侧面和像侧面均为凸面的第五透镜相胶合,既有利于将第四透镜出射的光线平缓过渡至成像面,减小光学系统总长,又有利于矫正光学系统的各种像差,实现在光学系统结构紧凑的前提下,提高系统分辨率、优化畸变及CRA等光学性能。上述透镜间采用胶合方式具有以下优点中的至少一个:减少自身色差,降低公差敏感度,通过残留的部分色差以平衡系统的整体色差;减小两个透镜之间的间隔距离,从而减小系统总长;减少透镜之间的组立部件,从而减少工序,降低成本;降低透镜单元因在组立过程中产生的倾斜/偏芯等公差敏感度问题,提高生产良率;减少透镜间反射引起光量损失,提升照度;进一步减小场曲,有效矫正光学镜头的轴外点像差。这样的胶合设计分担了系统的整体色差矫正,有效校正像差,以提高解像力,且使得光学系统整体紧凑,满足小型化要求。上述胶合透镜优选非球面镜片,以进一步提高解像质量。
在示例性实施方式中,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜中均可具有非球面镜面。非球面透镜的特点是:从透镜中心到周边曲率是连续变化的。与从透镜中心到周边有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而提升镜头的成像质量。非球面透镜的设置有助于矫正系统像差,提升解像力。具体地,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜中至少一片透镜为非球面透镜,有利于提高光学系统的解像质量。
根据本申请的上述实施方式的光学镜头通过各透镜形状和光焦度的合理设置,在仅使用6片透镜的情况下,实现光学系统具有成像范围广、小型化、大光圈、大视场角、小畸变、低成本、后焦长、红外成像、良好的成像质量等至少一个有益效果。同时,光学系统还兼顾镜头体积小、敏感度低、生产良率高的低成本要求。该光学镜头还具有CRA较小的特点,避免光线后端出射时打到镜筒上产生杂光,又可以很好的匹配车载芯片,不会产生偏色和暗角现象。同时该光学镜头温度适应性能佳、高低温环境下成像效果变化小、像质稳定的优点。
根据本申请的上述实施方式的光学镜头通过设置胶合透镜,分担系统的整体色差矫正,既有利于矫正系统像差,提高系统解像质量,减少配合敏感问题,又有利于使得光学系统结构整体紧凑,满足小型化要求。
在示例性实施方式中,光学镜头中的第一透镜至第六透镜可均由玻璃制成。用玻璃制成的光学透镜可抑制光学镜头后焦随温度变化的偏移,以提高系统稳定性。同时采用玻璃材质可避免因使用环境中高、低温温度变化造成的镜头成像模糊,影响到镜头的正常使用。具体地,在重点关注解像质量和信赖性时,第一透镜至第六透镜可均为玻璃非球面镜片。当然在温度稳定性要求较低的应用场合中,光学镜头中的第一透镜至第六透镜也可均由塑料制成。用塑料制作光学透镜,可有效减小制作成本。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六片透镜为例进行了描述,但是该光学镜头不限于包括六片透镜。如果需要,该光学镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学镜头的具体实施例。
实施例1
以下参照图1描述根据本申请实施例1的光学镜头。图1示出了根据本申请实施例1的光学镜头的结构示意图。
如图1所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的凸凹透镜,其物侧面S3为凸面,像侧面S4为凹面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S5为凸面,像侧面S6为凸面。第四透镜L4为具有负光焦度的双凹透镜,其物侧面S8为凹面,像侧面S9为凹面。第五透镜L5为具有正光焦度的双凸透镜,其物侧面S9为凸面,像侧面S10为凸面。第六透镜L6为具有正光焦度的凸凹透镜,其物侧面S11为凸面,像侧面S12为凹面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第三透镜L3与第四透镜L4之间,以提高成像质量。例如,光阑STO可靠近第三透镜L3的像侧面S6设置。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’,该滤光片L7可用于校正色彩偏差以及该保护玻璃L7’可用于保护位于成像面S15处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表1示出了实施例1的光学镜头的各透镜的曲率半径R、厚度T(应理解,S1所在行的厚度T为第一透镜L1的中心厚度,S2所在行的厚度T为第一透镜L1与第二透镜L2之间的间隔距离T12,以此类推)、折射率Nd以及阿贝数Vd。
表1
在实施例1中,第二透镜L2的物侧面S3和像侧面S4以及第四透镜L4至第六透镜的物侧面和像侧面均可以是非球面,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S3-S4、S8-S12的圆锥系数k和高次项系数A4、A6、A8、A10、A12、A14和A16。
面号 | k | A4 | A6 | A8 | A10 | A12 |
S3 | 3.4574 | 3.1917E-05 | -4.9243E-04 | 6.1867E-05 | -3.7821E-06 | 8.6007E-08 |
S4 | -0.1077 | 5.1211E-03 | -2.1299E-03 | 4.9752E-04 | -4.1628E-05 | 5.5550E-07 |
S8 | 0.2820 | -1.7425E-03 | -8.7071E-04 | 5.5764E-05 | -7.0916E-06 | 1.1576E-06 |
S9 | -16.5104 | -5.0589E-04 | 1.3646E-04 | 1.1064E-04 | 2.0085E-05 | -5.9903E-06 |
S10 | -0.1773 | 1.1672E-03 | -1.7766E-04 | 4.6568E-06 | 2.0951E-06 | 1.8425E-07 |
S11 | -0.7007 | 3.1734E-04 | -4.6052E-04 | 8.3274E-05 | -7.0032E-06 | 3.3578E-07 |
S12 | 38.6850 | 3.0274E-03 | -5.2034E-04 | 6.8008E-05 | -3.2009E-06 | -1.0007E-08 |
表2
实施例2
以下参照图2描述了根据本申请实施例2的光学镜头。图2示出了根据本申请实施例2的光学镜头的结构示意图。
如图2所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的凸凹透镜,其物侧面S3为凸面,像侧面S4为凹面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S5为凸面,像侧面S6为凸面。第四透镜L4为具有负光焦度的双凹透镜,其物侧面S8为凹面,像侧面S9为凹面。第五透镜L5为具有正光焦度的双凸透镜,其物侧面S9为凸面,像侧面S10为凸面。第六透镜L6为具有正光焦度的凸凹透镜,其物侧面S11为凸面,像侧面S12为凹面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第三透镜L3与第四透镜L4之间,以提高成像质量。例如,光阑STO可靠近第三透镜L3的像侧面S6设置。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’,该滤光片L7可用于校正色彩偏差以及该保护玻璃L7’可用于保护位于成像面S15处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表3示出了实施例2的光学镜头的各透镜的曲率半径R、厚度T、折射率Nd以及阿贝数Vd。表4示出了可用于实施例2中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表3
表4
实施例3
以下参照图3描述了根据本申请实施例3的光学镜头。图3示出了根据本申请实施例3的光学镜头的结构示意图。
如图3所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的凸凹透镜,其物侧面S3为凸面,像侧面S4为凹面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S5为凸面,像侧面S6为凸面。第四透镜L4为具有负光焦度的双凹透镜,其物侧面S8为凹面,像侧面S9为凹面。第五透镜L5为具有正光焦度的双凸透镜,其物侧面S9为凸面,像侧面S10为凸面。第六透镜L6为具有正光焦度的双凸透镜,其物侧面S11为凸面,像侧面S12为凸面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第三透镜L3与第四透镜L4之间,以提高成像质量。例如,光阑STO可靠近第三透镜L3的像侧面S6设置。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’,该滤光片L7可用于校正色彩偏差以及该保护玻璃L7’可用于保护位于成像面S15处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表5示出了实施例3的光学镜头的各透镜的曲率半径R、厚度T、折射率Nd以及阿贝数Vd。表6示出了可用于实施例3中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表5
面号 | k | A4 | A6 | A8 | A10 | A12 |
S3 | 9.4894 | 1.3242E-04 | -4.2953E-04 | 6.6067E-05 | -4.1533E-06 | 7.9150E-08 |
S4 | -0.4826 | 6.3863E-03 | -2.2881E-03 | 4.9745E-04 | -1.2959E-05 | -1.5883E-06 |
S8 | 0.8815 | -1.3588E-04 | -1.4880E-04 | 3.4622E-04 | -2.2622E-07 | -2.4855E-05 |
S9 | 2.7990 | -5.1434E-05 | 9.8150E-04 | 2.9356E-04 | -1.5455E-06 | -2.2673E-05 |
S10 | -0.2543 | 1.3573E-03 | -1.5880E-04 | 1.0982E-04 | 7.4684E-06 | 2.6263E-06 |
S11 | -1.0699 | -3.5962E-04 | -4.4382E-04 | 8.9748E-05 | -7.3156E-06 | 4.8201E-07 |
S12 | 10.4200 | 5.5900E-03 | -5.8302E-04 | 6.6232E-05 | -4.0362E-06 | 2.0027E-07 |
表6
实施例4
以下参照图4描述了根据本申请实施例4的光学镜头。图4示出了根据本申请实施例4的光学镜头的结构示意图。
如图4所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的凸凹透镜,其物侧面S3为凸面,像侧面S4为凹面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S5为凸面,像侧面S6为凸面。第四透镜L4为具有负光焦度的双凹透镜,其物侧面S8为凹面,像侧面S9为凹面。第五透镜L5为具有正光焦度的双凸透镜,其物侧面S9为凸面,像侧面S10为凸面。第六透镜L6为具有正光焦度的双凸透镜,其物侧面S11为凸面,像侧面S12为凸面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第三透镜L3与第四透镜L4之间,以提高成像质量。例如,光阑STO可靠近第三透镜L3的像侧面S6设置。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’,该滤光片L7可用于校正色彩偏差以及该保护玻璃L7’可用于保护位于成像面S15处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表7示出了实施例4的光学镜头的各透镜的曲率半径R、厚度T、折射率Nd以及阿贝数Vd。表8示出了可用于实施例4中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表7
面号 | k | A4 | A6 | A8 | A10 | A12 |
S3 | 9.3381 | 1.2751E-04 | -4.3085E-04 | 6.5878E-05 | -4.1700E-06 | 7.6068E-08 |
S4 | -0.4919 | 1.3093E-03 | -2.2843E-03 | 4.9681E-04 | -1.3516E-05 | -3.6821E-06 |
S8 | 1.1762 | -1.1691E-03 | -1.1409E-04 | 4.2421E-04 | 1.1508E-05 | -1.7840E-05 |
S9 | 25.5300 | 7.8348E-05 | 1.5787E-04 | 5.3194E-04 | 6.1621E-05 | -4.7870E-05 |
S10 | -0.2479 | 1.3827E-03 | -4.9887E-04 | 1.0432E-04 | 4.0626E-06 | 2.3391E-06 |
S11 | -1.0457 | -3.2383E-04 | -4.4163E-04 | 8.9049E-05 | -7.5476E-06 | 3.0373E-07 |
S12 | 17.4750 | 5.5460E-03 | -5.9102E-04 | 4.5293E-05 | -4.0960E-06 | 4.5257E-08 |
表8
实施例5
以下参照图5描述了根据本申请实施例5的光学镜头。图5示出了根据本申请实施例5的光学镜头的结构示意图。
如图5所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的双凹透镜,其物侧面S3为凹面,像侧面S4为凹面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S5为凸面,像侧面S6为凸面。第四透镜L4为具有负光焦度的双凹透镜,其物侧面S8为凹面,像侧面S9为凹面。第五透镜L5为具有正光焦度的双凸透镜,其物侧面S9为凸面,像侧面S10为凸面。第六透镜L6为具有正光焦度的凸凹透镜,其物侧面S11为凸面,像侧面S12为凹面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第三透镜L3与第四透镜L4之间,以提高成像质量。例如,光阑STO可靠近第三透镜L3的像侧面S6设置。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’,该滤光片L7可用于校正色彩偏差以及该保护玻璃L7’可用于保护位于成像面S15处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表9示出了实施例5的光学镜头的各透镜的曲率半径R、厚度T、折射率Nd以及阿贝数Vd。表10示出了可用于实施例5中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表9
面号 | k | A4 | A6 | A8 | A10 | A12 |
S3 | -100.0000 | 3.8900E-03 | -6.4123E-04 | 5.7674E-05 | -3.5359E-06 | 9.5211E-08 |
S4 | 2.1989 | 1.3168E-02 | -2.0493E-03 | 3.7596E-04 | -3.2692E-05 | -2.6775E-08 |
S8 | -0.1516 | -1.2157E-03 | -9.0960E-04 | 1.9151E-04 | -1.8644E-05 | 2.0578E-15 |
S9 | 24.8373 | -3.6301E-04 | -1.4631E-04 | -1.5287E-05 | 2.5440E-06 | 1.8547E-06 |
S10 | -0.2661 | 1.9768E-03 | -2.0143E-04 | 1.6923E-05 | -4.3510E-07 | 5.0153E-07 |
S11 | -0.5937 | 4.4939E-04 | -4.3999E-04 | 8.0213E-05 | -8.4747E-06 | 3.3857E-07 |
S12 | 19.0010 | 1.2295E-03 | -3.1891E-04 | 5.6976E-05 | -4.4466E-06 | 1.9025E-08 |
表10
实施例6
以下参照图6描述了根据本申请实施例6的光学镜头。图6示出了根据本申请实施例6的光学镜头的结构示意图。
如图6所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的双凹透镜,其物侧面S3为凹面,像侧面S4为凹面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S5为凸面,像侧面S6为凸面。第四透镜L4为具有负光焦度的双凹透镜,其物侧面S8为凹面,像侧面S9为凹面。第五透镜L5为具有正光焦度的双凸透镜,其物侧面S9为凸面,像侧面S10为凸面。第六透镜L6为具有正光焦度的凸凹透镜,其物侧面S11为凸面,像侧面S12为凹面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第三透镜L3与第四透镜L4之间,以提高成像质量。例如,光阑STO可靠近第三透镜L3的像侧面S6设置。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’,该滤光片L7可用于校正色彩偏差以及该保护玻璃L7’可用于保护位于成像面S15处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表11示出了实施例6的光学镜头的各透镜的曲率半径R、厚度T、折射率Nd以及阿贝数Vd。表12示出了可用于实施例6中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表11
面号 | k | A4 | A6 | A8 | A10 | A12 |
S3 | -100.0000 | 3.9526E-03 | -6.3969E-04 | 5.7672E-05 | -3.5361E-06 | 9.2834E-08 |
S4 | 2.1682 | 1.3053E-02 | -2.0952E-03 | 3.7411E-04 | -3.2655E-05 | -4.0404E-08 |
S8 | -0.1516 | -9.0121E-04 | -8.2131E-04 | 1.9333E-04 | -2.1940E-05 | -9.8647E-07 |
S9 | 37.4995 | 1.2417E-04 | 4.3785E-04 | 2.0057E-05 | 3.6214E-06 | -4.1555E-07 |
S10 | -0.2490 | 1.8743E-03 | -1.9588E-04 | 1.8098E-05 | -1.3555E-06 | 5.2149E-09 |
S11 | -0.6004 | 4.4904E-04 | -4.4777E-04 | 7.9151E-05 | -8.5563E-06 | 3.3844E-07 |
S12 | 18.4444 | 7.3188E-04 | -3.2087E-04 | 5.6417E-05 | -4.5444E-06 | 9.3395E-09 |
表12
综上,实施例1至实施例6分别满足以下表13所示的关系。在表13中,TTL、F、D、H、BFL、TL、F1、F2、F3、F4、F5、F6、F123、R11、R12、R21、R61、R62的单位为毫米(mm),FOV的单位为度(°)。
表13
本申请还提供了一种电子设备,该电子设备可包括根据本申请上述实施方式的光学镜头及用于将所述光学镜头形成的光学图像转换为电信号的成像元件。该电子设备可以是诸如探测距离相机的独立电子设备,也可以是集成在诸如探测距离设备上的成像模块。此外,电子设备还可以是诸如车载相机的独立成像设备,也可以是集成在诸如辅助驾驶系统上的成像模块。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
Claims (10)
1.光学镜头,其特征在于,沿着光轴由物侧至像侧依序包括:
具有负光焦度的第一透镜,其物侧面为凸面,像侧面为凹面;
具有负光焦度的第二透镜;
具有正光焦度的第三透镜,其物侧面为凸面,像侧面为凸面;
具有负光焦度的第四透镜,其物侧面为凹面,像侧面为凹面;
具有正光焦度的第五透镜,其物侧面为凸面,像侧面为凸面;以及
具有正光焦度的第六透镜;
所述第四透镜和所述第五透镜胶合形成胶合透镜。
2.根据权利要求1所述的光学镜头,其特征在于,所述第二透镜的物侧面为凸面,像侧面为凹面。
3.根据权利要求1所述的光学镜头,其特征在于,所述第二透镜的物侧面为凹面,像侧面为凹面。
4.根据权利要求1所述的光学镜头,其特征在于,所述第六透镜的物侧面为凸面,像侧面为凹面。
5.根据权利要求1所述的光学镜头,其特征在于,所述第六透镜的物侧面为凸面,像侧面为凸面。
6.根据权利要求1-5中任一项所述的光学镜头,其特征在于,所述第一透镜的物侧面至所述光学镜头的成像面在所述光轴上的距离TTL与所述光学镜头的总有效焦距F满足:TTL/F≤9。
7.根据权利要求1-5中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场角FOV、所述光学镜头的最大视场角对应的所述第一透镜的物侧面的最大通光口径D以及所述光学镜头的最大视场角对应的像高H满足:D/H/FOV≤0.025。
8.根据权利要求1-5中任一项所述的光学镜头,其特征在于,所述第六透镜的像侧面至所述光学镜头的成像面在所述光轴上的距离BFL与所述第一透镜的物侧面至所述第六透镜的像侧面在所述光轴上的距离TL满足:BFL/TL≥0.15。
9.光学镜头,其特征在于,沿着光轴由物侧至像侧依序包括:
具有光焦度的第一透镜;
具有光焦度的第二透镜;
具有光焦度的第三透镜;
具有负光焦度的第四透镜;
具有正光焦度的第五透镜;以及
具有正光焦度的第六透镜;
所述第一透镜、所述第二透镜和所述第三透镜的组合焦距F123满足:F123≥0。
10.一种电子设备,其特征在于,包括根据权利要求1至9中任一项所述的光学镜头及用于将所述光学镜头形成的光学图像转换为电信号的成像元件。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010776130.XA CN114063246B (zh) | 2020-08-05 | 2020-08-05 | 光学镜头及电子设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010776130.XA CN114063246B (zh) | 2020-08-05 | 2020-08-05 | 光学镜头及电子设备 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114063246A true CN114063246A (zh) | 2022-02-18 |
CN114063246B CN114063246B (zh) | 2024-07-12 |
Family
ID=80232210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010776130.XA Active CN114063246B (zh) | 2020-08-05 | 2020-08-05 | 光学镜头及电子设备 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114063246B (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108072966A (zh) * | 2016-11-15 | 2018-05-25 | 宁波舜宇车载光学技术有限公司 | 光学镜头 |
CN109001893A (zh) * | 2018-09-29 | 2018-12-14 | 苏州莱能士光电科技股份有限公司 | 一种适用于人脸识别系统的光学成像系统 |
CN110161662A (zh) * | 2019-07-16 | 2019-08-23 | 江西联创电子有限公司 | 广角镜头及应用该广角镜头的成像设备 |
CN210427928U (zh) * | 2019-10-21 | 2020-04-28 | 东莞市宇瞳光学科技股份有限公司 | 一种大光圈定焦镜头和拍摄装置 |
CN111273426A (zh) * | 2020-03-17 | 2020-06-12 | 天津欧菲光电有限公司 | 广角镜头、成像模组、电子装置及驾驶装置 |
CN211086757U (zh) * | 2019-10-12 | 2020-07-24 | 浙江舜宇光学有限公司 | 光学成像系统 |
-
2020
- 2020-08-05 CN CN202010776130.XA patent/CN114063246B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108072966A (zh) * | 2016-11-15 | 2018-05-25 | 宁波舜宇车载光学技术有限公司 | 光学镜头 |
CN109001893A (zh) * | 2018-09-29 | 2018-12-14 | 苏州莱能士光电科技股份有限公司 | 一种适用于人脸识别系统的光学成像系统 |
CN110161662A (zh) * | 2019-07-16 | 2019-08-23 | 江西联创电子有限公司 | 广角镜头及应用该广角镜头的成像设备 |
CN211086757U (zh) * | 2019-10-12 | 2020-07-24 | 浙江舜宇光学有限公司 | 光学成像系统 |
CN210427928U (zh) * | 2019-10-21 | 2020-04-28 | 东莞市宇瞳光学科技股份有限公司 | 一种大光圈定焦镜头和拍摄装置 |
CN111273426A (zh) * | 2020-03-17 | 2020-06-12 | 天津欧菲光电有限公司 | 广角镜头、成像模组、电子装置及驾驶装置 |
Also Published As
Publication number | Publication date |
---|---|
CN114063246B (zh) | 2024-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113495342B (zh) | 光学镜头及电子设备 | |
CN111474673B (zh) | 光学镜头及成像设备 | |
CN112305715B (zh) | 光学镜头及电子设备 | |
CN111830672B (zh) | 光学镜头及成像设备 | |
CN114063247A (zh) | 光学镜头及电子设备 | |
CN114509859B (zh) | 光学镜头及电子设备 | |
CN114089500A (zh) | 光学镜头及电子设备 | |
CN111239962B (zh) | 光学镜头及成像设备 | |
CN114384665B (zh) | 光学镜头及电子设备 | |
CN112987230A (zh) | 光学镜头及电子设备 | |
CN112014945A (zh) | 光学镜头及成像设备 | |
CN112748512B (zh) | 光学镜头及电子设备 | |
CN112147751B (zh) | 光学镜头及电子设备 | |
CN114488468A (zh) | 光学镜头及电子设备 | |
CN113805305A (zh) | 光学镜头及电子设备 | |
CN114488467A (zh) | 光学镜头及电子设备 | |
CN114442260A (zh) | 光学镜头及电子设备 | |
CN113759496A (zh) | 光学镜头及电子设备 | |
CN114690368A (zh) | 光学镜头及电子设备 | |
CN114442258A (zh) | 光学镜头及电子设备 | |
CN114384666A (zh) | 光学镜头及电子设备 | |
CN114428385A (zh) | 光学镜头及电子设备 | |
CN113448057A (zh) | 光学镜头及电子设备 | |
CN112987231A (zh) | 光学镜头及电子设备 | |
CN115201997B (zh) | 光学镜头及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |